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Abstract: The Marangoni forced convective inclined magnetohydrodynamic flow is examined.
Marangoni forced convection depends on the differences in surface pressure computed by magnetic
field, temperature, and concentration gradient. Casson nanoliquid flow by an infinite disk is
considered. Viscous dissipation, heat flux, and Joule heating are addressed in energy expressions.
Thermophoresis and Brownian motion are also examined. Entropy generation is computed.
The physical characteristics of entropy optimization with Arrhenius activation energy are discussed.
Nonlinear PDE’s are reduced to highly nonlinear ordinary systems with appropriate transformations.
A nonlinear system is numerically computed by the NDSolve technique. The salient characteristics
of velocity, temperature, concentration, entropy generation, and Bejan number are explained.
The computational results of the heat-transfer rate and concentration gradient are examined through
tables. Velocity and temperature have reverse effects for the higher approximation of the Marangoni
number. Velocity is a decreasing function of the Casson fluid parameter. Temperature is enhanced for
higher radiation during reverse hold for concentration against the Marangoni number. The Bejan
number and entropy generation have similar effects for Casson fluid and radiation parameters. For a
higher estimation of the Brinkman number, the entropy optimization is augmented.

Keywords: mixed convection; rotating cone; viscous fluid; Bejan number; entropy generation; thermal
radiation; viscous dissipation; Dufour and Soret effects and chemical reaction

1. Introduction

An investigation of Marangoni forced convection is of great interest for the dissipative boundary
layer between a two-phase liquid flow like liquid–liquid and gas–liquid interfaces. Marangoni
convection depends on the difference in surface pressure determined by the concentration gradient,
magnetic field, and temperature gradient. These gradients occur when the liquid boundary layer has
different characteristics. Few significant applications of the Marangoni forced convection impact include
thin-film stretching, material sciences, applied physics, silicon wafers, nanotechnology, semiconductor
processing, soap films, etc. In addition, melting and welding are much more efficient manufacturing
applications of the Marangoni convection concept. Heat transfer in the Marangoni boundary layer flow
is also comprehensively deliberated. For instance, the magnetohydrodynamic Marangoni convection
flow of Casson axisymmetric nanomaterials with Joule heating is presented by Shafiq et al. [1].
Rasool et al. [2] examined magnetohydrodynamic (MHD) Marangoni forced convection flow of
second-grade nanomaterials with Brownian diffusion and thermophoresis. Heat flux in Marangoni
convective flow of a carbon nanotube was examined by Hayat et al. [3]. Imai et al. [4] developed
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a numerical analysis of Marangoni convective nanoscale flow. Prominent behavior of the thermal
transfer rate in the Marangoni boundary flow of pseudoplastic nanoliquids filling a porous medium
is given by Lin et al. [5]. Some relevant studies about Marangoni convective flow are highlighted in
refs. [6–8].

It is noticed that flow in the presence of a chemical reaction is discussed extensively. However,
few studies present in this direction when activation energy becomes significant. In fact, the magnitude
of the energy barrier separates the minimum potential energy surface concerning the initial and final
thermodynamic state. It can be affected by catalysts and temperature. Activation energy fluctuates for
different chemical reactions. Activation energy with a chemical reaction has applications in the fields
of water emulsions and geothermal engineering. Bestman [9] introduced the concept of activation
energy in boundary layer flows. He presented a study for Arrhenius activation energy on mass transfer.
The effects of entropy optimization and activation energy in flow are studied by Hayat et al. [10].
Hamid et al. [11] explored the activation energy in unsteady flow of Williamson nanomaterial as
illustrated. Khan et al. [12] studied the activation energy for the stagnation point flow of Cross
nanofluids. Characteristics of magnetohydrodynamic Couette–Poiseuille nanomaterial flows with
activation energy are deliberated by Zeeshan et al. [13]. Khan et al. [14] discussed activation energy in
Prandtl–Eyring nanomaterial with chemical reactions. Kumar et al. [15] investigated the influence
of activation energy in magnetohydrodynamic flows of Carreau liquids over a stretching surface.
Activation energy and the entropy impact in tangent hyperbolic nanoliquid flows are presented
by Khan et al. [16]. Thermophoresis and Brownian diffusion in convective nanomaterial flow with
activation energy are addressed by Dhlamini et al. [17]. Some advancements about heat and mass
transfer are highlighted in refs. [18–24].

Recently, one of the most important concerns for engineers and scientists was to develop a
mechanism that controls the consumption of beneficial energy. All thermal devices depend on
the thermodynamic principle and create an irreversibility phenomenon. The use of the second
thermodynamic law leads to a mathematical technique for the reduction of entropy-generation rate and
friction. It is one of the methods that can be used to determine the destruction in the current performance
of a thermal system. Therefore, it is essential to improve entropy optimization to inhibit any thermal
losses that can disturb system performance. The idea of entropy-generation minimization is necessary
to improve efficiency in thermodynamic systems such as thermal storage, the design of heat exchangers,
power plants, the cooling of electronic devices, the environmental control of aircrafts, refrigerators,
etc. Entropy optimization has attained more consideration due to tremendous applications in power
collectors, geothermal energy systems, engineering phenomena, geothermal processes, slider bearings,
fuel cells, and advanced nanotechnology. Therefore, in recent times, numerous engineers and scientists
have focused their attention on entropy-generation complications. This has enhanced the significance
of many electronic devices and led to engineering improvements. Bejan [25–28] deliberated through
theoretical works about entropy in fluid flow with thermal transport. He revealed a new concept for
the significance of the thermal system, which acts as the thermodynamic principle. Gibanov et al. [29]
explained MHD natural convective flow of nanoliquid with entropy optimization. Irreversibility
exploration in Marangoni convective flow of Newtonian liquid in an open cavity is investigated by
Saleem et al. [30]. Viscous entropy for carbon nanotube-based Darcy–Forchheimer nanoliquid flow is
exemplified by Khan et al. [31]. An investigation of entropy in non-Newtonian nanomaterial flow is
explored by Zhuang and Zhu [32]. Numerical analysis of irreversibility in a rectangular convective
porous fin is discussed by Khatami and Rahbar [33]. Khan et al. [34] described the entropy rate in
MHD nanoliquid flow between two stretchable rotating disks.

The above-mentioned literature survey witnesses that no attempt has been made to deliberate
the influence of entropy generation in Marangoni forced convection Casson nanoliquid flow by an
infinite disk. Here we address such a problem. The thermal and solutal capillaries’ behaviors are key
factors in Marangoni convection of liquids and nanoliquids. Thermophoresis and Brownian diffusion
behaviors are scrutinized. Entropy generation and Arrhenius activation energy are accounted for.
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A nonlinear ordinary differential system is computed by the NDSolve technique. Characteristics of
different involved parameters for velocity, temperature, concentration, entropy optimization, and Bejan
number are examined. The computational outcome of Nusselt and Sherwood number are numerically
deliberated. Reasonable agreement is found between the present and previous results in a limiting
sense (see Table 1).

Table 1. Comparison of Nusselt number with [35,36].

PR. SITHOLE ET AL. [35] OLANREWAJU ET AL. [36] PRESENT RESULT

0.5 0.21441547 0.214368 0.214363
0.7 0.24976956 0.250142 0.250139
1.0 0.28782508 0.289161 0.289142
2.0 0.35519994 0.356176 0.356145

2. Statement of Problem

Marangoni forced convective inclined magnetohydrodynamic flow of Casson nanoliquid by
an infinite disk is studied. Flow generated due to concentration and temperature gradients is also
studied. Thermal radiation, Joule heating, and viscous dissipation in energy equation are considered.
The thermal and solutal capillaries’ behaviors are key components in Marangoni convection of liquid
and nanoliquid. Impacts of thermophoresis and Brownian diffusion are discussed. Salient features of
entropy optimization and Arrhenius activation energy are explained. The current density (J) is Ohm’s
laws is J = σ(E + V × B). Here, E represents the strength of the electric field, which is neglected; B is
magnetic field strength, and σ is electrical conductivity. Induced magnetic field and Hall effects for
low-magnetic Reynolds numbers are neglected. The ionslip effects are ignored. The magnetic field of
constant strength (B0) is exerted. The linearized form of thermal radiation is taken. The geometry of
the problem is presented in Figure 1.
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Employing continuity, momentum, energy, and concentration expressions [2,3,6]:
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The boundary conditions are

µ
(
1 + 1

β

)
∂u
∂z = ∂σ

∂T
∂T
∂r + ∂σ

∂C
∂C
∂r , w = 0,

Tw = T0r2 = T∞ + Ar2θ, Cw = C0r2 = C∞ + Br2φ, at z = 0
u→ 0, T = T∞, C = C∞ when z→∞

 (5)

where µ indicates the dynamic viscosity, u and w are the velocity components, ρ is density, r and
z are cylindrical coordinates, Tw and Cw are temperature and concentration of disk, β is Casson
fluid parameter, σ⊗ is electrical conductivity, α∗ is inclination angle, σ is surface tension, k is thermal
conductivity, T is temperature, cp is specific heat, T∞ is ambient temperature, τ is ratio of heat capacities,
k∗ is mean absorption coefficient, DT is thermophoresis diffusion coefficient, σ∗ is Stefan–Boltzman
constant, DB is Brownian movement coefficient, C is concentration, kr is reaction rate, C∞ is ambient
concentration, Ea is activation energy, n is fitted rate constant, K = 8.61 × 10−5eV/K is Boltzman
constant,

(
T

T∞

)n
exp[−Ea

KT ] is Arrhenius function, and a is positive dimensional constant.
We consider surface tension as a linear function of concentration and temperature [1,2]:

σ = σ0 − γT(T − T∞) − γC(C−C∞), (6)

with
γT = −

∂σ
∂T

∣∣∣∣∣
T=T∞

, γC = −
∂σ
∂C

∣∣∣∣∣
C=C∞

. (7)

where γT, σ0, and γC denote the positive constants.
Taking

u = rΩ f ′(ξ), w = −2
√

Ων f (ξ), θ(ξ) = (T−T∞)
T0r2

φ(ξ) =
(C−C∞)

C0r2 , ξ =
√

Ω
ν z

, (8)

we obtain (
1 +

1
β

)
f ′′′ + 2 f f ′′ − f ′2 −M sin2 α∗ f ′ = 0, (9)

(1 + Rd)θ′′ − 2Pr f ′θ+ 2Pr fθ′ + PrNtθ′2 + PrNbθ′φ′ + Br
(
1 +

1
β

)
f ′′ 2 + M sin2 α∗ f ′2, (10)

φ′′ − 2 f ′φ+ 2Le fφ′ +
Nt
Nb
θ′′ − λLeφ(1 + nα1θ) exp[

−E
(1 + α1θ)

], (11)

f (0) = 0,
(
1 + 1

β

)
f ′′ (0) = −2Ma(1 + Ra), θ(0) = 1, φ(0) = 1

f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0

 (12)
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Here, M
(
=

σ⊗B2
0
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)
represents magnetic parameter, Ma

(
=

γTA
µΩ

√
Ω
γ

)
Marangoni number,
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radiation parameter, Ra
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Marangoni ratio parameter, Pr

(
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α

)
Prandtl number,
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(
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)
Eckert number, Nb

(
= τDBC0

ν

)
Brownian diffusion parameter, Br(= PrEc) Brinkman number,

Nt
(
= τDTT0
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)
thermophoresis parameter, Le

(
= v
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)
Lewis number, λ

(
=
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r

Ω

)
chemical reaction parameter,

E
(
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)
activation energy parameter, and α1

(
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)
temperature difference variables.

3. Entropy Modeling

Entropy generation is defined as [30,31,34]:
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∞
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∞
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)(
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, (13)

it should be noted that in the above expression, the entropy generation is because of four effects.
The first term on RHS is due to the heat transfer across a finite temperature difference. It is a local
volumetric entropy generation known as heat transfer irreversibility (HTI). The second term, known as
fluid friction irreversibility, occurs because of viscous dissipation. The third term occurs in view of the
magnetic field. The last two terms indicate diffusion irreversibility. These are because of diffusion or
mass transfers across finite concentration differences.

In dimensionless variables we have

NG = α1(1 + Rd)θ′2 + Br
(
1 +

1
β

)
f ′′ 2 + MBr sin2 α∗ f ′2 + Lθ′φ′ + L

α2

α1
φ′2. (14)

4. Bejan Number

The Bejan number is defined as

Be =
Heat and mass transfer irreversibility

Total irreversibility
, (15)

or

Be =
α1(1 + Rd)θ′2 + Lθ′φ′ + Lα2

α1
φ′2

α1(1 + Rd)θ′2 + Br
(
1 + 1

β

)
f ′′ 2 + MBr sin2 α∗ f ′2 + Lθ′φ′ + Lα2
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(16)

where NG
(
=

SGT∞ν
kΩT0

)
indicates the entropy rate, L

(
= RDC0

k

)
the diffusion variables, and α2

(
= C0

C∞

)
the

concentration ratio parameter.

5. Physical Quantities

5.1. Nusselt Number

The Nuselt number is defined as

Nux =
rqw

∣∣∣
z=0

k(Tw − T∞)
, (17)

with heat flux qw given by

qw = −

(
∂T
∂z

)
−

16
3
σ∗T3
∞

k∗

(
∂T
∂z

)
. (18)



Entropy 2020, 22, 433 6 of 20

From Equations (17) and (18) and dimensionless variables are obtained

NuxRe−1/2
x = −(1 + Rd)θ′(0). (19)

5.2. Sherwood Number

We have

Shx =
rjw

∣∣∣
z=0

(Cw −C∞)
, (20)

with mass flux jw given by

jw = −D
(
∂C
∂z

)
, (21)

now we finally write
ShxRe−1/2

x = −φ′(0). (22)

Here, Rex
(
= ruw

ν

)
, shows the local Reynold number.

6. Solution Methodology

The method NDSolve in “Numerical Differential Equations” allows us to get computational
convergent solutions differential systems. The NDSolve technique deals with single differential systems
and simultaneous differential systems. It also deals with partial differential systems. In the scheme
of ordinary systems, there are unknown functions like Yi. These functions depend on a distinct
“independent variable” x, which is the same for individual functions. It is a standard technique built in
Mathematica 9.0 [37].

7. Validation of Result

Table 1 is prepared for the comparison of the present results with a limiting sense and past studies.
Table 1 focuses on the assessment of the Nusselt number for different estimations of the Prandtl number
(Pr) with studies [35,36]. The results are very good in agreement.

The above tabulated values are in reasonable agreement.

8. Discussion

Here, we applied the NDSolve method to develop computational outcomes for the given differential
equations. Salient features of various parameters on velocity, concentration, Bejan number, entropy
optimization, and temperature are studied. Velocity gradient and Nusselt and Sherwood numbers are
numerically computed.

8.1. Velocity

The influence of the Casson fluid parameter (β) on f ′(ξ) is seen in Figure 2. Clearly, the velocity is
decreased for higher (β). An increment in Casson fluid parameter yields more disturbances to fluid
flow. Therefore, velocity is decreased. Physically, Casson fluid parameter (β) leads to resistance for
fluid particles. Figure 3 is drawn to show the effect of (Ma) on ( f ′(ξ)). One can find that a higher (Ma)
gives rise to velocity. Physically, a higher Ma corresponds to less viscosity. A less viscous force has a
tendency to speed up the fluid motion. Figure 4 reveals the outcome of (M) on f ′(ξ). Here, velocity
decreases against higher (M). In fact, the magnetic field applied in transverse direction opposes the
transport phenomena. That is why the application of such a magnetic field yields a drag-like force,
namely, the Lorentz force. This force acts in the opposite direction, which results in the reduction of
velocity. Such an observation qualitatively agrees with the expectations. The influence of (α∗) on f ′(ξ)
is portrayed in Figure 5. The results of α∗ and M on f ′ are similar in a qualitative sense.
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8.2. Temperature

Figures 6–12 are sketched for characteristics of (Ma), (Rd), (Nt), (Nb), (Pr), (M), and (Br) on
temperature (θ(ξ)). Figure 6 examines the effect of (Ma) on θ(ξ). The temperature is increased for
a higher estimation of (Ma). There is no doubt that the velocity grows in view of less viscosity for a
higher (Ma). Temperature is the average kinetic energy of a fluid particle. As a result, the temperature
enhances for a higher Ma. The behavior of thermal radiation parameter (Rd) on (θ(ξ)) is portrayed in
Figure 7. For higher radiation parameter, the temperature θ(ξ) increases. Physically, the rise of Rd
has the tendency to enhance conduction impact and to increase temperature at each point away from
the surface. In other words, there is a higher heat flux for a larger Rd. Figures 8 and 9 displayed the
behaviors of (Nt) and (Nb) on θ(ξ). It is clear from Figures 8 and 9 that the temperature augmented
for higher (Nt) and (Nb). Clearly, the velocity grows at a higher Nt and Nb. These parameters lead
to an enhancement of thermal-boundary layer thickness. In view of such reasons, the temperature
is enhanced. The behavior of (Pr) on temperature is shown in Figure 10. For higher (Pr), thermal
diffusivity reduces and consequently θ(ξ) decreases. As expected, this is in accordance with the
fact that when θ is at higher Pr, the fluid has a thinner thermal boundary layer and it yields more
temperature gradient. The velocity reduces and momentum boundary layer thickness. The impact of
(M) on temperature is illustrated in Figure 11. Clearly, the fluid temperature accelerates by increasing
the strength of the magnetic field. This leads to the argument that an applied magnetic field tends to
heat the liquid, and thus heat transfer from the disk enhances. All of this occurs due to Lorentz force in
view of the transverse applied magnetic field opposing the transport phenomena and slowing down
the fluid motion. No doubt, the magnetic can be employed as a useful agent for controlling the flow
and heat transfer characteristics. Figure 12 displays the influence of Brinkman number on temperature
(θ(ξ)). One can find that the temperature increased against (Br). An augmentation in Br creates more
kinetic energy that enhances the temperature field. Physically, Eckert number in Brinkman number is
responsible for the increase in temperature. Such an increase in temperature through higher Eckert
number is due to more pronounced viscous heating. Obviously, a high Eckert number gives rise to
wall cooling and thus transfer of heat to fluid, so fluid temperature rises.
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8.3. Concentration

Characteristics of Marangoni number (Ma) on φ(ξ) are shown in Figure 13. For higher (Ma),
the concentration decays because of surface tension produced by temperature and concentration
gradients. The reduction in concentration is accompanied by simultaneous decay in the concentration
of boundary layer thickness. Figures 14 and 15 display the effects of (Nb) and (Nt) on φ(ξ). Opposite
impacts of (Nb) and (Nt) are seen on concentration. Such behavior totally depends upon the
nanoparticles volume fraction. When Brownian motion parameter Nb enhances, nanoparticles volume
fraction decays and so φ reduces. On the other hand, for a higher Nt, the volume fraction of
nanoparticles increases. Figure 16 exhibits the effect of (E1) on φ(ξ). In fact, higher activation energy
parameter reduces the modified Arrhenius function, which consequently increases the generative
chemical reaction. As a result, the concentration is augmented. Figure 17 shows the effect of (γ)
on concentration. Clearly, for a higher (γ) the liquid becomes thicker, and therefore concentration
decreases. This happens in view of higher viscosity. Figure 18 is provided to study the effect of (Le)
on concentration. One can find that concentration decays versus (Le). It is noticed that high Lewis
number (Le) decays the nanoparticles volume fraction. Lewis number is the ratio of thermal diffusivity
to mass diffusivity. A higher value of Lewis number enhances the thickness of the thermal boundary
layer. The concentration boundary layer thickness decays.
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8.4. Entropy Optimization and Bejan Number

Characteristics of Brinkman (Br) number on NG and Be are elucidated in Figures 19 and 20. In fact,
Eckert number in definition of Br increases the temperature, and consequently entropy enhances.
Bejan number Be has the opposite scenario for higher Br. In other words, there is a direct relationship
of Br with heat transfer by molecular diffusion and heat generated by fluid friction. For higher Br,
there is more production of heat in the system. This raises the system disorderliness. Figures 21 and 22
elucidate the characteristics of (L) on NG and Be. Clearly, both NG and Be are increased for a higher
diffusion parameter (L). Here, more disorderliness of the system is due to a higher diffusivity in the
fluid particle. This fact leads to an increase in the diffusive variable, the entropy generation, and the
Bejan number. Figures 23 and 24 are displayed to study the variation of (Rd) on NG and Be. For a
higher estimation of (Rd), the NG increases. In fact, for a higher (Rd) the radiation enhances. As a result,
there is a growth in temperature, and therefore the entropy rate increases. Be also boosts up via higher
(Rd), because of the fact that heat transfer irreversibility dominates over total entropy optimization.
Influence of (β) on NG and Be is explained in Figures 25 and 26. Clearly, for a higher approximation of
(β), both NG and Be are augmented. Actually, for a higher estimation of (β), the more resistive force is
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created in flow region, which improves the thermal energy due to the collision of liquid particles. As a
result, the entropy generation is enhanced.Entropy 2020, 22, x FOR PEER REVIEW 15 of 20 
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8.5. Engineering Quantities

Salient features of different variables on Nusselt and Sherwood numbers are discussed in
Tables 1 and 2.

8.5.1. Nusselt Number

Table 2 elucidates the numerical approximation of (Nux) for (Ma), (Nb), (Nt), and (Pr). Nusselt
number increases via (Nb), while the reverse is observed through (Nt). For a higher (Ma), the Nusselt
number is decreased. (Nux) increases against higher (Pr). There is a thinner thermal boundary layer
for higher Pr. As a result, the rate of heat diffusion enhances.

Table 2. Variation of Physical Parameters against Ma.

Ma Nb Nt Pr Nux

0.0 0.5 0.4 0.5 1.00091

0.2 0.983521

0.4 0.974563

0.3 0.1 0.4 0.5 0.895316

0.6 0.934756

1.0 0.979105

0.3 0.5 0.2 0.5 0.99962

0.5 0.998332

0.8 0.997925

0.3 0.5 0.4 0.5 0.978231

1.0 0.989432

1.5 0.994214

8.5.2. Sherwood Number

Salient features of different variables like (Nt), (Nb), and (Le) on Sherwood number (Shx) are
shown in Table 3. Here, (Shx) boosts up for higher estimations of (Nb) and (Le). Sherwood number
(Shx) is a decreasing function of (Nt).

Table 3. Variation of Physical Parameters against Shx.

Nb Nt Le Shx

0.3 0.2 0.5 0.503491

0.6 0.615362

0.9 0.676212

0.2 0.2 0.5 0.514252

0.5 0.374541

0.8 0.234561

0.2 0.2 0.5 0.534567

1.0 0.697349

1.5 0.816734

9. Conclusions

The main points of the presented analysis are listed below.
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• There is a reduction in velocity for a higher Casson fluid parameter and magnetic field. However,
the scenario is different for velocity through the Marangoni number.

• Temperature is enhanced for both thermophoresis and Brownian motion parameters.
• An increasing trend of temperature is noticed for a higher Marangoni number, radiation and

magnetic field, and Brinkman number.
• Prandtl number reduces the temperature.
• Concentration for Lewis and Marangoni numbers is opposite to that of the activation

energy variable.
• Reverse behavior of Brownian motion and thermophoresis for concentration is noted.
• Bejan number for radiation and Brinkman number have opposite outcomes.
• A qualitative, similar effect of entropy generation and Bejan number is noted with respect to the

diffusion parameter.
• Sherwood number for Brownian motion and Lewis number is opposite when compared with the

thermophoresis parameter.

The present attempt is basic, and modeling and simulation about such problems can be extended
for the Williamson fluid subject to Soret and Dufour effects, viscous dissipation with rheological impact,
and porous medium employing modified Darcy’s law. Nothing is yet known about such facts in the
existing literature.
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