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Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if
chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS)
changes and if these changes are sensitive to treatment with thioctic acid.Thioctic acid is a naturally occurring antioxidant existing
in two optical isomers (+)- and (−)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated
with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive
reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/−)-, (+)-, or (−)-thioctic acid. Oxidative
stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of
oxidative stressmarkers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed
in SHR.This phenomenonwasmore pronounced after CCI.Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic
acid being more active than (+/−)- or (−)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS
lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.

1. Introduction

Lesions of the nervous system can induce dysfunctional
pain signalling and altered sensory mechanisms identifying
a heterogeneous category of diseases defined neuropathies.
These pathologies are difficult to treat. In general, drugs avail-
able counter hyperalgesic symptomatology of neuropathy, but
do not affect the course of these diseases. Neuroprotective
and/or neurorestorative effects elicited by pharmacological
treatments were reported only rarely [1].

Chronic constriction injury (CCI) is an animal model
of peripheral neuropathy induced by the loose ligation of
the sciatic nerve [2]. CCI mimics an entrapment mononeu-
ropathy and is characterized by a painful syndrome with
hyperalgesia. Painful symptomatology starts approximately

from the 3rd day after nerve injury, reaches a plateau between
7 and 15 days, and then decreases [3]. In CCI, hyperalgesia is
accompanied by the occurrence of apoptosis phenomena in
the nerve starting from the second week after ligation [4].

Treatment of neuropathic pain, initiated or caused by
central nervous system (CNS) primary lesions/dysfunctions
or by peripheral nervous system (nerves outside the brain
and spinal cord) damage is problematic because of sever-
ity, chronicity, and resistance to common analgesics [5].
Reactive oxygen species (ROS) have been implicated in the
development of persistent pain states resulting from nerve
injury or inflammatory phenomena [6–10]. Several studies
have shown that antioxidants are effective in alleviating
hyperalgesia in spinal nerve-ligated neuropathic rats [11, 12]
and capsaicin-induced secondary mechanical hyperalgesia
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in rats and mice. Increasing evidence supports the view
that ROS are a pathogenetic factor for the development and
maintenance of persistent neuropathic pain [13].

Morphological changes of some brain areas including
the prefrontal cortex were reported in patients experiencing
chronic pain [14, 15]. Structural and functional reorganization
of the medial prefrontal cortex was also found in rats
affected by neuropathic pain [16]. Although these studies
have suggested a correlation between neuropathic pain and
cognitive dysfunction, there is still much to learn on how
chronic painmay affect brain function and to identify cellular
mechanisms underlying cognitive disturbances taking place
in chronic pain conditions.

Thioctic acid is as a naturally occurring (biological)
antioxidant and detoxifying agent proposed for treating
diabetic neuropathy, for countering age-associated cardio-
vascular, cognitive, and neuromuscular deficits, and as a
modulator of various inflammatory signaling pathways [17].
The pharmacology of thioctic acid and its role as biological
antioxidant, neuroprotectant, and agent interfering in liver
metabolism and disease were reviewed [18–21]. Due to the
presence of an asymmetric carbon C3, thioctic acid exists
in two enantiomers, namely, (+)- and (−)-thioctic acid. The
latter enantiomer probably represents the active form of
the compound. It is located intracellularly and elicits the
biological effects of thioctic acid [17]. Thioctic acid is used
worldwide as a nutraceutical or registered drug, and it is
marketed mainly in the racemic (+/−)-thioctic acid form for
stability reasons.

Rat strains with genetically inherited hypertension were
developed since more than 50 years. The spontaneously
hypertensive rat (SHR) is probably the model more widely
investigated. It is characterized by arterial hypertension,
increased oxidative stress, and overproduction of ROS [22].
Hence, SHR can be used as an animal model of oxidative
stress and for investigating the activity of antioxidants.

The purpose of the present study was to assess if
experimental compression of sciatic nerve, induced by loose
ligation of it, is accompanied by an increased oxidative stress
and by CNS changes. This study has also investigated the
effect of treatment with enantiomers of thioctic acid on
oxidative stress and on CNS damage induced by periph-
eral nerve injury, using western blotting and quantitative
immunohistochemistry. Treatment with thioctic acid was
compared to treatment with pregabalin, which is used as
a standard pharmacological treatment of neuropathic pain
[23].

2. Materials and Methods

2.1. Animals and Tissue Treatment. Twenty-week-old male
SHR (𝑛 = 42) and age-matched WKY rats (𝑛 = 6) were used.
Four rats were housed per cage (size 26 × 41 cm) and placed
in the experimental room for acclimatization 24 h before
testing. The animals were fed with standard laboratory diet
and with tap water ad libitum and kept at 23± 1∘C with a 12 h
light/dark cycle, light at 7 a.m. Animal manipulations were

carried out according to the National and European Com-
munityGuidelines for Animal Care (DL 116/92, application of
the European Communities Council Directive 86/609/EEC)
and ethical guidelines of the University of Florence. These
guidelines are consistent with the Guide for the Care and
Use of Laboratory Animals of the US National Institutes of
Health (NIH Publication 85-23, revised 1996; University of
Florence assurance number: A5278-01). All efforts weremade
to minimize animal suffering and to reduce the number of
animals used.

2.2. Peripheral Mononeuropathy Rat Model. CCI is a model
of peripheral neuropathy induced by the loose ligation of
the sciatic nerve [2]. Briefly, rats were anaesthetized with
400mg/kg chloral hydrate intraperitoneally (i.p.). Under
aseptic conditions, the right common sciatic nerve was
exposed at the level of the middle thigh by blunt dissec-
tion. Proximal to the nerve trifurcation, connective tissue
surrounding it was carefully removed and four chromic cat
gut ligatures (4–0, Ethicon, Norderstedt, Germany) were tied
loosely around the nerve with about 1mm spacing. After
hemostasis was confirmed, incision was closed in layers.
Animals were allowed to recover from surgery and then
housed one per cage with free access to standard laboratory
chow and water.

CCI operated animals were treated once a day for 14
days starting from the day of the operation with an i.p.
injection of 250 𝜇mol/kg/day of (±)-thioctic acid (𝑛 = 6),
125 𝜇mol/kg/day of (±)-thioctic acid (𝑛 = 6), 125 𝜇mol/kg/day
of (+)-thioctic acid lysine salt (𝑛 = 6), 125 𝜇mol/kg/day of
(−)-thioctic acid (𝑛 = 6), and 300 𝜇mol/kg/day of pregabalin
(𝑛 = 6). Sham-operated WKY (𝑛 = 6), Sham-operated SHR
(𝑛 = 6) rats, and control CCI-operated SHR (𝑛 = 6) rats
received the same amounts of vehicle.

Before killing animals were anaesthetised with pentobar-
bital sodium (50mg/kg, i.p.), had 5mL of blood collected by
intracardiac withdrawal, and then were decapitated. In blood
samples levels of thiobarbituric acid reactive substances
(TBARS) and the activity of superoxide dismutase (SOD)
were measured using commercial kits (Cayman Chemical
Company, Cat. number 10009055 and Cat. number 706002,
resp.). Plasma protein oxidation levels were also assessed by
immunoblotting using a commercial kit (OxyBlot Protein
Oxidation Kit, Millipore, Cat. number S7150).

The brain was removed from skull, washed, weighed,
fixed in a Histochoice solution, and embedded in semi-
synthetic paraffin. Serial coronal consecutive 8𝜇m thick
sections containing motor cortex (including zones 1 (layers
I–IV) and 2 (layers V–VI) and corresponding white mat-
ter) (3.20mm from Bregma, Plate 8) and sensory cortex
(including zones 1 (layers I–IV) and 2 (layers V–VI) and
corresponding white matter) (−0.30mm from Bregma, Plate
19) [24] were stained with Nissl’s method (cresyl violet 1.5%)
for morphometric analysis and with hematoxylin and eosin
for assessing the occurrence of relevant microanatomical
changes. Serial consecutive coronal 12𝜇m thick sections of
the same area were processed for immunohistochemistry as
detailed below.
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Table 1: Systolic blood pressure values.

Treatment Before Treatment After Treatment
WKY SHR WKY SHR

Sham Vehicle 156 ± 7 209 ± 6

∗

144 ± 9 213 ± 3

∗

CCI Vehicle 145 ± 6 220 ± 8

∗

149 ± 13 232 ± 16

∗

CCI (+/−)-Thioctic acid 250 𝜇mol/Kg/day 157 ± 9 198 ± 8

∗

155 ± 8 207 ± 5

∗

CCI (+/−)-Thioctic acid 125𝜇mol/Kg/day 149 ± 11 208 ± 12

∗

150 ± 14 205 ± 9

∗

CCI (+)-Thioctic acid 125 𝜇mol/Kg/day 148 ± 6 211 ± 11

∗

136 ± 13 225 ± 8

∗

CCI (−)-Thioctic acid 125𝜇mol/Kg/day 154 ± 4 201 ± 14

∗

156 ± 9 217 ± 9

∗

CCI Pregabalin 300𝜇mol/Kg/day 150 ± 6 215 ± 5

∗

146 ± 5 201 ± 9

∗

The data are expressed as mmHg and are the mean of 3 different measurements. ∗𝑃 < 0.01 versus WKY rats of the same group of treatment.

2.3. Immunohistochemistry. Paraffin embedded coronal sec-
tions of the brain (12 𝜇m thick) were processed for the
immunohistochemical detection of glial fibrillary acidic pro-
tein (GFAP) as a marker of astroglial reaction and myelin
basic protein (MBP) as a marker of myelinated fibers. For
investigating cerebrocortical neuronal components status,
200 kDa neurofilament (NFP) was used as axonal marker. 8-
Oxo-2-deoxyguanosine (8-oxo-dG) immunohistochemistry
was used to analyse the DNA oxidative status.

The 1st, 7th, 13th, 19th, and 25th consecutive sections were
processed for GFAP immunohistochemistry using a mouse
serum against GFAP (Chemicon, Millipore, Cat. number
3402) diluted 1 : 500 with 0.3% PBS-Triton X 100. The 2nd,
8th, 14th, 20th, and 26th consecutive sections were processed
for MBP immunohistochemistry by exposing them to a
mousemonoclonal antibody raised against MBP (Chemicon,
Millipore, Cat. number 5262) diluted 1 : 500. The 3rd, 9th,
15th, 21th, and 28th consecutive sections were processed for
NFP immunohistochemistry by exposing them to a mouse
monoclonal antibody raised against neurofilament 200 kDa
(clone RT97, Chemicon,Millipore, Cat. number 5262) diluted
1 : 500.The 4th, 10th, 16th, 22th, and 28th were used as control
sections and exposed to a non-immune sera instead of the
primary antibody. The 5th, 11th, 17th, 23rd, and 29th were
processed for 8-oxo-dG (clone 2E2, Trevigen, Cat. number
4354-MC-050) diluted 1 : 250 in PBS containing 0.1% of BSA.
In accordance with the company protocol, the sections were
pretreated at 37∘C with 5𝜇g/mL Proteinase K in PBS for
30min and 100 𝜇g/mL RNase A in 15mM sodium citrate
buffer containing 150mM NaCl for 60min. The 6th slide of
each consecutive series was stained with Nissl’s method for
assessing morphological details. For immunohistochemistry
sections were exposed overnight in a moist chamber at 4∘C
to primary antibodies and then for 30min at 25∘C to corre-
sponding secondary biotinylated antibodies (goat anti-mouse
IgGs) diluted to 1 : 200. The product of immune reaction was
revealed using 3,3-diaminobenzidine as a chromogen.

2.4. Image Analysis. Nissl’s stained sections were viewed
under a light microscope at a final magnification of ×160.
Via a TV connection, images were transferred from the
microscope to the screen of an IAS 2000 image analyzer
and used as a microanatomical reference for quantitative
immunohistochemistry.The area of astrocytes, considered as

cells displaying a dark-brown GFAP immunoreactivity, was
assessed using on overlap function of the IAS 2000 image
analyzer. Morphometric data were then analyzed according
to the protocol described in an earlier paper of our group
[25].Thedensity of immunoreaction area occupied byNFPor
MBP was measured by image analysis in motor and sensory
cortices by the image analysis protocol detailed elsewhere
[26]. The intensity of NFP and MBP immunostaining devel-
oped in cerebrocortical axons was assessed microdensito-
metrically by calibrating the image analyzer taking “zero”
as the background developed in sections incubated with a
nonimmune serum and “250” as the conventional value of
maximum intensity of staining.

The 8-oxo-dG immunostaining, developed in the nuclei
of neurons of motor and sensory cortices, was also analyzed
microdensitometrically.

2.5. Data Analysis. Means of different parameters investi-
gated were calculated from single animal data, and group
means ± SEM. were then derived from single animal values.
The significance of differences between means was analyzed
by analysis of variance (ANOVA) followed by the Newman-
Keuls multiple range test.

3. Results

Body weight values were similar in normotensive WKY or
SHR either control or treated with different formulations of
thioctic acid or pregabalin. Brain weight values were lower
in SHR either controls or treated compared to normotensive
WKY rats (data not shown).

Systolic blood pressure values were higher in SHR rats
compared to the normotensive WKY rats (Table 1). Ligation
of the sciatic nerve and treatment with different enan-
tiomers/dosages of thioctic acid or with pregabalin did not
affect significantly blood pressure values in SHR (Table 1).

3.1. Plasma Analysis. In SHR an increased oxidative stress
characterized by a significant rise of plasma levels of TBARS
(Figure 1(a)) with SOD decrease (Figure 1(b)) and increase
of the protein oxidative status (Figure 2) was observed
compared to WKY rats. Treatment with (+)-thioctic
acid (125 𝜇mol/kg/day) significantly decreased TBARS
(Figure 1(a)). The two different doses of (+/−)-thioctic acid
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Figure 1: TBARS levels in plasma, expressed as 𝜇M of malondialdehyde (a), and activity of SOD in plasma, expressed as U/mL (b).
(A) Control Sham-operated WKY rats; (B) control Sham-operated SHRs; (C) control CCI SHRs; (D) CCI SHRs treated with (+/−)-
thioctic acid 250 𝜇mol/kg/day; (E) CCI SHRs treated with (+/−)-thioctic acid 125 𝜇mol/kg/day; (F) CCI SHRs treated with (+)-thioctic acid
125𝜇mol/kg/day; (G) CCI SHRs treated with (−)-thioctic acid 125𝜇mol/kg/day; (H) CCI SHRs treated with pregabalin 300 𝜇mol/kg/day.
∗

𝑃 < 0.05 versus WKY control rats; ∗∗𝑃 < 0.05 versus SHR Sham-operated control rats; ∗∗∗𝑃 < 0.05 versus control CCI SHR.
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Figure 2:Western blot analysis of plasma oxidized protein (a) and densitometric analysis of these bands (b).The system revealed the oxidized
plasmatic proteins with a range of molecular weight between 250KDa and 55KDa. (A) Control Sham-operatedWKY rats, (B) control Sham-
operated SHRs, (C) control CCI SHRs, (D) CCI SHRs treated with (+/−)-thioctic acid 125𝜇mol/kg/day, (E) CCI SHRs treated with (+/−)-
thioctic acid 250 𝜇mol/kg/day, (F) CCI SHRs treated with (+)-thioctic acid 125𝜇mol/kg/day, (G) CCI SHRs treated with (−)-thioctic acid
125𝜇mol/kg/day, and (H) CCI SHRs treated with pregabalin 300 𝜇mol/kg/day (H). Data of densitometric analysis were expressed as arbitrary
units. ∗∗𝑃 < 0.05 versus SHR Sham-operated control rats; ∗∗∗𝑃 < 0.05 versus control CCI SHR.

had only a slight effect on TBARS (Figure 1(a)). SOD activity
was also decreased in CCI-operated rats (Figure 1(b)).
Treatment with higher dose of (+/−)-thioctic acid
(250𝜇mol/kg/day) and (+)-thioctic acid (125 𝜇mol/kg/day)
significantly increased SOD activity (Figure 1(b)), whereas
the lower doses of (+/−)-thioctic acid (125 𝜇mol/kg/day)
and (−)-thioctic acid (125 𝜇mol/kg/day) were ineffective
(Figure 1(b)). Immunoblotting analysis of protein oxidative
status revealed an increase of oxidized protein levels in CCI-
operated SHR (Figure 2). Treatment with (+/−)-thioctic acid
at (250 𝜇mol/kg/day) and (+)-thioctic acid (125 𝜇mol/kg/day)
countered a similar extent oxidative modification of plasma
protein, whereas (−)-thioctic acid (125 𝜇mol/kg/day) or
pregabalin was ineffective (Figure 2).

3.2. Motor and Sensory Cortex Immunohistochemistry. The
results of image analysis of the size of GFAP reactive
astrocytes are shown in Figures 3–5. In control SHR a
significant increase in the size of GFAP immunoreactive

astrocytes was observed (Figure 3). This phenomenon was
more pronounced in the gray matter of sensory cortex
(Figure 3(b)). InWKY rats astrocyteswere apparently normal
and only few hypertrophic elements were observed (Figures
4(a) and 5(a)). In SHR the presence of hypertrophic ele-
ments characterized by hyperreactive astrocytes (H/R) and
hypertrophic/hyperimmunoreactive astrocytes (H/H) was
observed (Figures 4(b) and 5(b)). After sciatic nerve ligation
an increase of GFAP immunoreactive astrocytes was found
in the gray and white matter of motor (Figure 3) and sensory
cortex (Figures 3, 4(c), and 5(c)). In sensory cortex clusters
of H/R and H/H elements were observed in zone 2 near the
corpus callosum, where astrocytes were more numerous and
characterized by more length cellular processes compared to
those of WKY rats (Figures 4(c) and 5(c)).

Treatment with (+/−)-thioctic acid (250𝜇mol/kg/day)
(Figures 3 and 5(d)) and to a greater extent with (+)-thioctic
acid (125 𝜇mol/kg/day) (Figures 3 and 5(f)) countered the
increase in the volume of GFAP-immunoreactive astrocytes.
In sensory cortex (−)-thioctic acid (125 𝜇mol/kg/day) and
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Figure 3: Size of GFAP-immunoreactive astrocytes in the cerebral cortex primary motor and sensory areas. Mean of immunoreactions areas
of astrocytes is expressed in𝜇m2. Data are themean± SE. (A)Control Sham-operatedWKY rats, (B) control Sham-operated SHRs, (C) control
CCI SHRs, (D) CCI SHRs treated with (+/−)-thioctic acid 250𝜇mol/kg/day, (E) CCI SHRs treated with (+/−)-thioctic acid 125 𝜇mol/kg/day,
(F) CCI SHRs treated with (+)-thioctic acid 125𝜇mol/kg/day, (G) CCI SHRs treated with (−)-thioctic acid 125𝜇mol/kg/day, and (H) CCI
SHRs treated with pregabalin 300𝜇mol/kg/day (H). The data of densitometric analysis were expressed as arbitrary units. ∗𝑃 < 0.05 versus
WKY control rats; ∗∗𝑃 < 0.05 versus SHR Sham operated control rats; ∗∗∗𝑃 < 0.05 versus control CCI SHR.
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Figure 4: Sections of the sensory cortex (S1HL) processed for the immunohistochemical demonstration of glial fibrillary acidic protein
(GFAP). Note the increase of the immunoreactions in the zone II of the cortex in the control Sham-operated SHRs and in larger extent in the
control CCI SHRs. (a) WKY control Sham-operated rats, (b) control Sham-operated SHRs, and (c) control CCI SHRs. I: zone 1; II: zone 2;
CC: corpus callosum; LV: lateral ventricle. Calibration bar: 200𝜇m.

pregabalin did not affect astroglial reaction (Figures 3, 5(g),
and 5(f)).

NFP immunoreactivity was localized in nerve fibre-like
structures within motor and sensory cortices (Figure 6).
Quantitative image analysis performed in zones 1 (layers I–
IV) and 2 (layers V–VI) revealed both in motor and sensory

cortex a decrease of NFP-immunoreactive structures in SHR
compared to WKY rats (Figure 7). In CCI-operated SHRs
a further decrease of NFP immunoreaction was observed
(Figures 6(c) and 7). This loss was countered primarily in
zone 2 of motor cortex by treatment with (+/−)-thioctic acid
(125 𝜇mol/kg/day) and (+)-thioctic acid (125 𝜇mol/kg/day)
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Figure 5: High magnification of the sections of the sensory cortex (S1HL) processed for the immunohistochemical demonstration of glial
fibrillary acidic protein (GFAP). (a) Control Sham-operatedWKY rats, (b) control Sham-operated SHRs, (c) control CCI SHRs, (d) CCI SHRs
treated with (+/−)-thioctic acid 250 𝜇mol/kg/day, (e) CCI SHRs treated with (+/−)-thioctic acid 125 𝜇mol/kg/day, (f) CCI SHRs treated with
(+)-thioctic acid 125 𝜇mol/kg/day, (g) CCI SHRs treated with (−)-thioctic acid 125𝜇mol/kg/day, and (h) CCI SHRs treated with pregabalin
300 𝜇mol/kg/day (H). II: zone 2 of sensory cortex. Calibration bar: 25 𝜇m.
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Figure 6: Sections of the sensory cortex (zone 2) processed for the immunohistochemical demonstration of neurofilament 200 kDa. (a)
Control Sham-operated WKY rats, (b) control Sham-operated SHRs, (c) control CCI SHRs, (d) CCI SHRs treated with (+/−)-thioctic acid
250 𝜇mol/kg/day, (e)CCI SHRs treatedwith (+/−)-thioctic acid 125 𝜇mol/kg/day, (f) CCI SHRs treatedwith (+)-thioctic acid 125𝜇mol/kg/day,
(g) CCI SHRs treated with (−)-thioctic acid 125𝜇mol/kg/day, and (H) CCI SHRs treated with pregabalin 300 𝜇mol/kg/day (h). II: zone 2 of
sensory cortex. Calibration bar: 25 𝜇m.
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Figure 7: Neurofilament 200 kDa immunoreactivity in the motor and sensory areas of cerebral cortex of the different animal groups
investigated. (A) Control Sham-operated WKY rats, (B) control Sham-operated SHRs, (C) control CCI SHRs, (D) CCI SHRs treated with
(+/−)-thioctic acid 250 𝜇mol/kg/day, (E) CCI SHRs treated with (+/−)-thioctic acid 125𝜇mol/kg/day, (F) CCI SHRs treated with (+)-
thioctic acid 125 𝜇mol/kg/day, (G) CCI SHRs treated with (−)-thioctic acid 125𝜇mol/kg/day, and (H) CCI SHRs treated with pregabalin
300 𝜇mol/kg/day (H). Values are expressed in arbitrary units calculated microdensitometrically as detailed in Section 2. Data are the mean ±
SE. ∗𝑃 < 0.05 versus WKY control rats; ∗∗𝑃 < 0.05 versus SHR Sham-operated control rats; ∗∗∗𝑃 < 0.05 versus control CCI SHR.
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Figure 8: Myelin basic protein immunoreactivity in the white matter of motor and sensory areas of the different animal groups investigated.
(A) Control Sham-operated WKY rats, (B) control Sham-operated SHRs, (C) control CCI SHRs, (D) CCI SHRs treated with (+/−)-
thioctic acid 250 𝜇mol/kg/day, (E) CCI SHRs treated with (+/−)-thioctic acid 125𝜇mol/kg/day, (F) CCI SHRs treated with (+)-thioctic acid
125𝜇mol/kg/day, (G) CCI SHRs treated with (−)-thioctic acid 125𝜇mol/kg/day, and (H) CCI SHRs treated with pregabalin 300 𝜇mol/kg/day
(H). Values are expressed in arbitrary units calculated microdensitometrically as detailed in Section 2. Data are the mean ± SE. ∗𝑃 < 0.05
versus WKY control rats; ∗∗𝑃 < 0.05 versus SHR Sham-operated control rats.

but not by (−)-thioctic acid (125 𝜇mol/kg/day) (Figures 6 and
7).

In zone 2 of sensory cortex treatment with (+/−)-thioctic
acid (250𝜇mol/kg/day or 125 𝜇mol/kg/day) and (+)-thioctic
acid (125 𝜇mol/kg/day) countered the NFP-immunoreaction
decrease. Pregabalin increased NFP immunoreactivity in
zone 2 of sensory cortex (Figures 6(h) and 7). (+)-Thioctic
acid (125 𝜇mol/kg/day) was the only treatment increas-
ing NFP immunoreaction in zone 1 of sensory cortex
(Figure 6).

Sections processed for MBP immunohistochemistry
developed dark-brown staining in the myelin around the

axons in zone 2 and in the corresponding white matter
of different cerebrocortical areas. The immunoreaction was
more pronounced in SHR compared to WKY (Figures 8
and 9). A further increase was seen in CCI-operated SHR
compared to control Sham-operated SHR (Figures 8 and 9).
Pharmacological treatments with thioctic acid or pregabalin
did not affect MBP immunoreactivity (Figures 8 and 9).

8-Oxo-dG immunostaining was expressed in a thin
granular staining localized in the nuclei of cortical neurons.
Immunoreaction was more pronounced in SHR compared
to WKY and a certain increase of it was observed in CCI-
operated SHR compared to control Sham-operated SHR
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Figure 9: Sections of motor area (M1) processed for the immunohistochemical demonstration of myelin basic protein. (a) WKY control
Sham-operated rats, (b) control Sham-operated SHRs, (c) control CCI SHRs, (d) CCI SHRs treated with (+/−)-thioctic acid 250 𝜇mol/kg/day,
(e) CCI SHRs treated with (+/−)-thioctic acid 125𝜇mol/kg/day, (f) CCI SHRs treated with (+)-thioctic acid 125𝜇mol/kg/day, (g) CCI SHRs
treated with (−)-thioctic acid 125𝜇mol/kg/day, and (h) CCI SHRs treated with pregabalin 300 𝜇mol/kg/day (H). Calibration bar: 25 𝜇m.
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Figure 10: 8-Oxo-dG immunoreactivity in the cerebral cortex (layer VI) of the different animal groups investigated (a) and densitometric
analysis of the intensity of immunoreaction (histogram). (A)WKY control Sham-operated rats, (B) control Sham-operated SHRs, (C) control
CCI SHRs, (D) CCI SHRs treated with (+/−)-thioctic acid 250𝜇mol/kg/day, (E) CCI SHRs treated with (+/−)-thioctic acid 125 𝜇mol/kg/day,
(F) CCI SHRs treated with (+)-thioctic acid 125𝜇mol/kg/day, (G) CCI SHRs treated with (−)-thioctic acid 125𝜇mol/kg/day, and (H) CCI
SHRs treated with pregabalin 300 𝜇mol/kg/day (H). ∗𝑃 < 0.05 versus WKY control rats; ∗∗∗𝑃 < 0.05 versus control CCI SHR. Calibration
bar: 10𝜇m.

(Figure 10). Treatment with the different doses of (+/−)-
thioctic acid and enantiomers tested decreased the 8-oxo-dG
immunoreactions (Figure 10).

4. Discussion

Peripheral neuropathies are syndromes characterized by
nerve damage and degeneration. Their compressive nature
is documented in several condition. An example is given by
radiculopathy or sciatica which involves lower extremities
and is related to disc herniation [27].

Oxidative stress is induced by an imbalance in the cellular
redox state, depending either on overproduction of ROS
or on dysfunction of the antioxidant systems. Oxidative
stress plays an important role in experimental animal models
of neuropathic pain. In rats with neuropathy subsequent
to spinal nerve ligation, the production of superoxide is
increased in dorsal horn neurons [9] and ROS scavengers
alleviate neuropathic pain in a reversible manner [12].
Increasing evidence supports the notion that oxidative stress
is the biochemical trigger for sciatic nerve dysfunction in
rats treated chronically with alcohol [28]. Recent studies
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indicate that ROS are also involved in the development of
persistent pain. The removal of excessive ROS by free radical
scavengers, such as phenyl N-tert butylnitrone (PBN) and
4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL),
produced significant analgesic effects both in neuropathic [12,
29] and in inflammatory pain [30]. Furthermore, increased
production of ROS [9] and enhanced antioxidant activity [31]
were observed in the spinal cord after peripheral nerve injury.

Apart from oxidative stress, nitrosative stress too may
play an important role in the pathogenesis of neuropathic
pain. Increased levels of nitric oxide synthase (NOS) and
nitric oxide (NO) were reported in spinal cord after tissue
inflammation caused by capsaicin [32]. This increase is the
factor probably maintaining secondary hyperalgesia after
capsaicin treatment [32]. Superoxide anions can react with
nitric oxide, forming peroxynitrite, which rapidly causes
protein nitrosylation, lipid peroxidation, DNA damage, and
cell death and has direct toxic effects on nerve tissue [33, 34].

Oxidative stress and endothelial dysfunction are com-
monly observed in hypertensive individuals [35]. Increas-
ing evidence suggests that they also have a causal role
in the molecular processes leading to hypertension. ROS
may directly alter vascular function or cause changes in
vascular tone by several mechanisms including altered NO
bioavailability or signaling [35]. Enhanced oxidative stress
and brain vascular injury are documented in SHR [36].
Ligation of sciatic nerve further increases oxidative stress [9]
and therefore CCI-operated SHR could represent an elevated
oxidative stress model suitable for assessing the potential
neuroprotective activity of antioxidants. In this study we
have shown that nerve ligation increases oxidative stress,
documented by increased plasma levels of MDA, increased
oxidation state of the plasma proteins, and decreased SOD
activity. SHRs are more sensitive than their normotensive
cohort to the increase in oxidative stress induced by nerve
ligation, probably due to the impaired oxidative balance
induced by arterial hypertension [37]. On the other hand, the
experimental paradigm used in this study represents a good
model of entrapment (compressive) neuropathy as CCI leads
to massive nerve degeneration, with changes of both axonal
and myelin components [2, 38, 39].

Thioctic acid was chosen as antioxidant in view of the
increasing evidence of its neuroprotective activity in nervous
system disorders characterized by vascular injury [17, 40].
The antioxidant activity of the compound is assigned to
the (+)-enantiomer [17], although there is not a general
agreement on it [41]. The goal of these experiments was to
assess the effects of the CCI and of antioxidant or pregabalin
treatment on astroglial reaction, MBP, and neurofilament
expression in primary motor and sensory cortex of cerebral
cortex. The findings that different thioctic acid formulations
did not affect blood pressure values in SHR indicate that any
activity observed in the brain of SHR is not related to changes
in blood pressure.

Our results documented an antioxidant activity of thioc-
tic acid with decreased plasma levels ofMDA and a reduction
of oxidation of proteins. These findings are consistent with
clinical studies reporting a reduction of oxidative stress both
in healthy subjects and in patients with diabetic peripheral

neuropathy [42]. In diabetic individuals administration of
600mg/day of thioctic acid for 3months reduced significantly
the formation of products of lipid peroxidation [42].

Monolateral CCI of sciatic nerve increased GFAP expres-
sion mainly in the gray matter of sensory cortex and
decreasedNFP expression as a consequence of nerve damage.
Astrocytes play an active role in maintaining the structure,
metabolism, and function of the brain [43] and become
hypertrophic in response to diverse brain injury. Depending
on their activation status, they are also referred to as reactive
and/or activated astrocytes [44–46].

Chronic neuropathic pain is accompanied by reorganiza-
tion and functional changes in CNS cortical and subcortical
structures, including themedial prefrontal cortex [16, 47, 48],
thalamus [49], amygdala [50], and anterior cingulate cortex
[51]. Our study has shown that treatment with antioxidants,
but not with pregabalin, prevented to some extent astrogliosis
and neuronal damage in cerebral cortex. Comparatively the
(+)-thioctic acid enantiomer resulted more effective than
(+/−)-thioctic acid, even when the last one is used at
concentrations double of those of (+)-thioctic acid. (−)-
Thioctic acid was ineffective on brain damage induced by
CCI of the sciatic nerve. Effects of (+)-thioctic acid are
probably not limited to what we did observe in this study,
as the compound contributed to the regeneration of the
nerve axonal components and increased the threshold of the
nociceptive response to amechanical stimuli on ligated nerve
[39].

The neuroprotective activity of thioctic acid is probably
related to its antioxidant activity, as treatment with the
compound decreased of 8-oxo-dG immunoreactions in the
nuclei of cortical neurons. These findings are consistent with
the demonstration of neuroprotective properties of thioctic
acid in animal models of brain injury [52, 53].

Themost pronounced activity of (+)-thioctic acid is prob-
ably related to its more favorable kinetic profile and better
plasma bioavailability. Oral administration of (+)-thioctic
acid to healthy volunteers results in a kinetic profile similar
to that of intravenously administered (+/−)-thioctic acid,
although plasma accumulation was quantitatively different
for intravenous compared to the oral formulation of the com-
pound [54, 55]. The intravenous is the only administration
route of thioctic acid for which controlled studies have clearly
documented a clinical efficacy in the treatment of diabetic
neuropathy [56]. The antioxidant activity of (+)-thioctic acid
is also loftier than the racemic mixture of the compound
in cellular models of increased oxidative stress [20]. In
PC12 cells exposed to H

2
O
2
for inducing oxidative stress,

treatment with (+)-thioctic acid prevented cell death and
promoted growth, whereas the (−)-thioctic acid enantiomer
was ineffective and the racemic formwas active only at higher
doses [20, 57].

5. Conclusions

In summary, the demonstration of the activity of thioctic
acid, in countering oxidative stress and in protecting CNS
from damage induced by a lesion of peripheral nervous
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system mimicking entrapment neuropathy, suggests that
antioxidant strategies may represent a therapeutic approach
in the treatment of compressive neuropathies. The greater
activity of (+)-thioctic acid and its higher bioavailability
after oral administration [54, 55] may represent a stimulus
for assessing clinical activity of the compound in controlled
studies.
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