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Abstract
KIT D816 mutations (KIT D816mut) are strongly associated with systemic mastocytosis (SM) but are also detectable in acute
myeloid leukemia (AML), where they represent an adverse prognostic factor in combination with core binding factor (CBF)
fusion genes. Here, we evaluated the clinical and molecular features of KIT D816mut/CBF-negative (CBFneg) AML, a
previously uncharacterized combination. All KIT D816mut/CBFneg cases (n= 40) had histologically proven SM with
associated AML (SM-AML). Molecular analyses revealed at least one additional somatic mutation (median, n= 3) beside
KIT D816 (e.g., SRSF2, 38%; ASXL1, 31%; RUNX1, 34%) in 32/32 (100%) patients. Secondary AML evolved in 29/40
(73%) patients from SM ± associated myeloid neoplasm. Longitudinal molecular and cytogenetic analyses revealed the
acquisition of new mutations and/or karyotype evolution in 15/16 (94%) patients at the time of SM-AML. Median overall
survival (OS) was 5.4 months. A screen of two independent AML databases (AMLdatabases) revealed remarkable similarities
between KIT D816mut/CBFneg SM-AML and KIT D816mut/CBFneg AMLdatabases (n= 69) with regard to KIT D816mut variant
allele frequency, mutation profile, aberrant karyotype, and OS suggesting underlying SM in a significant proportion of
AMLdatabases patients. Bone marrow histology and reclassification as SM-AML has important clinical implications regarding
prognosis and potential inclusion of KIT inhibitors in treatment concepts.

Introduction

According to the World Health Organization (WHO) clas-
sification, advanced systemic mastocytosis (advSM) com-
prises aggressive SM, SM with an associated hematologic
neoplasm (SM-AHN), and mast cell leukemia [1–3]. SM-
AHN is the most frequent subtype diagnosed in up to 80%
of advSM patients [4]. The AHN is characterized in >90%
of patients as a myeloid neoplasm, e.g., myelodysplastic/
myeloproliferative neoplasm unclassifiable (SM-MDS/

MPN-u), chronic myelomonocytic leukemia (SM-CMML),
myeloproliferative neoplasm (SM-MPN), myelodysplastic
syndrome (SM-MDS), or acute myeloid leukemia (SM-
AML) [4].

In general, acquired mutations in KIT (usually KIT
D816V) are detectable in >90% of patients with SM,
acknowledged to be most relevant for disease pathogenesis
[5]. In advSM, multi-lineage involvement (including non-
mast-cell-lineage cells, e.g., monocytes, eosinophils, and
others) of KIT mutations is frequently observed and the basis
for the phenotype of SM-AHN [6–8]. Recent data have,
however, also highlighted that the molecular pathogenesis of
advSM is much more complex with the presence of one or
more additional somatic mutations, e.g., in SRSF2, ASXL1,
RUNX1, JAK2, TET2 [9–11]. These additional mutations are
often acquired by neoplastic (stem) cells prior to KIT D816V
thereby indicating a multi-mutated stem cell disease and a
step-wise process of oncogenesis [12].

* Andreas Reiter
andreas.reiter@medma.uni-heidelberg.de

Extended author information available on the last page of the article.

Supplementary information The online version of this article (https://
doi.org/10.1038/s41375-018-0346-z) contains supplementary material,
which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-018-0346-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-018-0346-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-018-0346-z&domain=pdf
http://orcid.org/0000-0001-5481-2555
http://orcid.org/0000-0001-5481-2555
http://orcid.org/0000-0001-5481-2555
http://orcid.org/0000-0001-5481-2555
http://orcid.org/0000-0001-5481-2555
mailto:andreas.reiter@medma.uni-heidelberg.de
https://doi.org/10.1038/s41375-018-0346-z
https://doi.org/10.1038/s41375-018-0346-z


Core binding factor (CBF) positive AML (CBFpos AML)
represents 5–8% of all AMLs and is defined by the presence
of a t(8;21)(q22;q22) and the associated RUNX1–RUNX1T1
fusion gene, or an inv(16)(p13.1q22)/t(16;16)(p13.1;q22)
with the resulting CBFB–MYH11 fusion gene. CBFpos AML
is categorized to the genetically favorable risk group.
However, KIT. mutations, most frequently at position D816
(KIT D816mut), are detectable in up to 45% of CBFpos

patients and associated with adverse prognosis [13, 14]. The
potential association of KIT D816mut/CBFpos AML with
underlying SM has been described in various case reports,
case-series, and/or literature reviews [15–19], however,
there is little information available on KIT D816mut/CBFneg

AML [20]. We therefore evaluated (a) clinical and mole-
cular genetic characteristics, (b) response to treatment, and
(c) survival and prognostic factors in 40 patients with KIT
D816mut/CBFneg AML collected at 4 centers of the Eur-
opean Competence Network on Mastocytosis (ECNM). To
further investigate whether KIT D816mut/CBFneg defines a
distinct AML subtype associated with SM and poor prog-
nosis, two independent AML databases (AMLdatabases,
German/Austrian AML Study Group, Munich Leukemia
Lab) were retrospectively screened for KIT D816mut/CBFneg

AML patients (selection criteria were all AML patients with
available status on CBF and KIT D816mut).

Methods

Diagnosis of SM-AML

The diagnosis of SM-AML was established according to the
WHO classification [2, 21–23]. Bone marrow biopsies and
smears were evaluated by reference pathologists of the
ECNM (H-PH and K Sotlar). A total of 48 CBFneg SM-
AML patients, diagnosed in 4 ECNM centers between 2003
and 2018, were included in this retrospective analysis. Eight
patients negative for KIT D816 mutations (n= 5) or with
unknown KIT D816 mutation status (n= 3) were excluded.
Among all SM-AML patient from the 4 ECNM centers, one
patient was KIT D816mut/CBFpos. The study design adhered
to the tenets of the Declaration of Helsinki and was
approved by the institutional review board of the Medical
Faculty of Mannheim, Heidelberg University, as part of the
“German Registry on Disorders of Eosinophils and Mast
Cells”. All patients gave written informed consent.

Molecular analyses

Targeted next-generation sequencing (NGS) was either
performed by 454 FLX amplicon chemistry (Roche, Penz-
berg, Germany) or library preparation based on the TruSeq
Custom Amplicon Low Input protocol (Illumina, San

Diego, CA, USA) and sequencing on the MiSeq instrument
(Illumina) to investigate mutation status of KIT and the
following 32 genes: ASXL1, BCOR, CALR, CBL,
CSNK1A1, DNMT3A, ETNK1, ETV6, EZH2, FLT3,
GATA1, GATA2, IDH1, IDH2, JAK2, KRAS, MLL, MPL,
NPM1, NRAS, PHF6, PIGA, PTPN11, RUNX1, SETBP1,
SF3B1, SRSF2, TET2, TP53, U2AF1, ZRSR2, and WT1 [9].

Subsequent to bcl2fastq and demultiplexing, alignment
and variant calling were performed using JSI SeqNext
v4.4.0 (JSI Medical Systems, Kippenheim, Germany) soft-
ware with default parameters. Only basecalls with quality
score of 30 or above were considered for further processing.
In median ~1800 reads were aligned to the target region. All
regions below the minimal coverage of 400 reads were
rejected and resequenced for higher depth. Variants were
called with a variant allele frequency (VAF) cutoff of 3%
and each assessed manually for pathogenicity. Mutation
assessment was performed using COSMIC (v78), dbSNP
(v150), ClinVar (2018-07), gnomAD (r2.0.2 and dbNSFP
v3.5).

Qualitative and quantitative assessments of KIT D816V
and KIT D816V expressed allele burden, respectively, was
performed using allele-specific quantitative real-time
reverse transcriptase polymerase chain reaction analyses
(qRT-PCR) as previously described [24]. Molecular ana-
lyses were performed at diagnosis of SM ±AHN and at
diagnosis of SM-AML.

Conventional cytogenetic analysis and fluorescence
in situ hybridization

Cytogenetic analyses of at least 20 Giemsa-banded bone
marrow metaphases (24 h and/or 48 h culture) was per-
formed and interpreted according to the International Sys-
tem for Human Cytogenetic Nomenclature [25]. If
necessary, chromosome banding analysis was combined
with fluorescence in situ hybridization according to the
manufacturer's instructions (Metasystems, Altlussheim,
Germany) [26].

Statistical analyses

Statistical analyses considered clinical, laboratory, or
molecular parameters obtained at the time of diagnosis.
Overall survival (OS) analysis was determined as time from
date of diagnosis to date of death or last follow up. Pearson
correlation analysis was performed for the correlation
between two parameters. Differences in the distribution of
continuous variables between categories were analyzed by
Mann–Whitney test (for comparison of two groups). For
categorical variables, Fisher’s exact test was used. OS
probabilities were estimated with the Kaplan–Meier method
and compared by the log-rank test in univariate analysis.
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For the estimation of hazard ratios (HRs) and multivariate
analysis, the Cox proportional hazard regression model was
used. P-values < 0.05 (two-sided) were considered sig-
nificant. There was no adjustment for multiple testing as all
analyses were explorative. SPSS version 22.0.0 (IBM
Corporation, Armonk, NY, USA) was used for statistical
analysis.

Results

Clinical and morphological characteristics

The median age of the 40 KIT D816mut/CBFneg SM-AML
patients was 65 years (range 28–83, male 73%). The median
percentage of mast cells in bone marrow trephine biopsies
was 10% (range 5–65). Blood parameters analyzed in this
study included: leukocytes (median 8.7 × 109/L, range 0.5–
71.8), hemoglobin (median 8.3 g/dL, range 5.1–14.3; <10 g/
dL in 79% of patients), platelets (median 40 × 109/L, range
5–412; <100 × 109/L in 88% of patients), eosinophils (0.2 ×
109/L, range 0–16.7; > 1.0 × 109/L in 18% of patients), and
monocytes (0.9 × 109/L, range 0.1–23.5; >1.0 × 109/L in
39% of patients). Median serum tryptase level (normal
value < 11.4 µg/L) was 92 µg/L (range 13–885; >100 µg/L
in 48% of patients). Signs of non-hematologic organ dys-
function included elevated alkaline phosphatase (AP, nor-
mal value < 130 U/L; median 145 U/L; range 52–1428;
>150 U/L in 50% of patients), splenomegaly (64%), and
ascites (25%) (Table 1a).

De novo SM-AML and secondary SM-AML

De novo SM-AML was diagnosed in 11/40 (28%) patients.
Secondary SM-AML evolving from indolent SM (n= 5) or
SM-AHN (n= 24) was observed in 29/40 (73%) patients
with a median time to progression of 24 months (range 2–
116). The 24 patients with AHN were classified as MDS/
MPN-u (n= 8), CMML (n= 6), MDS (n= 5), or MPN
associated with eosinophilia (MPN-eo) (n= 5) (Table 1a).
The comparison between de novo and secondary AML
revealed that patients with secondary AML were older, had
a higher monocyte count, a higher AP level, and a lower
serum tryptase level. However, there were no significant
differences regarding OS (P= 0.2).

Somatic mutations

All patients were positive for KIT D816V with a median
VAF of 36% (range 3–54). At the time of SM-AML,
material for NGS analysis was available from 32/40 (80%)
patients (Fig. 1a, Supplementary Table 1). All 32 patients
had at least one additional somatic mutation (median 3,

Table 1a Clinical characteristics and outcome of 40 patients with KIT
D816mut/CBFneg systemic mastocytosis associated with acute myeloid
leukemia (SM-AML)

n Variables

No. of patients (n) 40

Age in years, median (range) 65 (28–83)

Males, n (%) 29 (73)

29 Diagnosis prior to SM-AML

ISM, n (%) 5 (17)

SM-AHN, n (%) 24 (83)

24 AHN-subtypes 24 (83)

MDS/MPN-u, n (%) 8 (33)

CMML, n (%) 6 (25)

MDS, n (%) 5 (21)

MPN-eo, n (%) 5 (21)

29 Time to progression to SM-AML in months,
median (range)

24 (2–116)

SM-related findings

21 Mast cell infiltration in BM histology, %;
median (range)

10 (5–65)

27 Serum tryptase, µg/L; median (range) 92 (13–885)

>100 µg/L, n (%) 13 (48)

32 Alkaline phosphatase, U/L; median (range) 145 (52–1428)

>150 U/L, n (%) 16 (50)

36 Splenomegaly, n (%) 23 (64)

36 Ascites, n (%) 9 (25)

Outcome

Follow-up, months, median (range) 5 (0–91)

Death, n (%) 30 (75)

AHN associated hematologic neoplasm, BM bone marrow, MDS/MPN-
u myelodysplastic/myeloproliferative neoplasm unclassifiable, CMML
chronic myelomonocytic leukemia, ISM indolent SM, MPN-eo MPN
associated with eosinophilia, n number

Table 1b Clinical characteristics, treatment modalities and outcome of
69 patients with KIT D816mut/CBFneg acute myeloid leukemia (AML)

n Variables

No. of patients (n) 69

Age in years, median (range) 66 (23–86)

Males, n (%) 40 (58)

69 Diagnosis

AML, n (%) 50 (72)

sAML, n (%) 19 (28)

17 Treatment modalities

Induction (intensive chemotherapy), n (%) 17 (100)

Consolidation (chemotherapy), n (%) 8 (59)

Consolidation (allogeneic SCT), n (%) 7 (41)

17 Outcome

Follow-up in months, median (range) 26 (4–113)

Deaths, n (%) 10 (59)

n number, sAML secondary AML, SCT stem cell transplantation

1126 M. Jawhar et al.



range 1–6) and 24/32 (75%) patients had ≥2 somatic
mutations in addition to KIT D816V (Fig. 1b). There was a
significant association between several pairs of mutations,
specifically TET2/SRSF2, IDH1/2/SRSF2, IDH1/2/BCOR,
and DNAMT3A/BCOR (P < 0.05) (Fig. 1c). The most fre-
quently mutated genes were SRSF2 (n= 12, 38% of
patients), RUNX1 (n= 11, 34%), TET2 (n= 11, 34%),
ASXL1 (n= 10, 31%), NPM1 (n= 7, 22%), DNMT3A (n=
5, 16%), IDH1/2 (n= 5, 16%), N/KRAS (n= 4, 13%),
BCOR (n= 3, 9%), SF3B1 (n= 3, 9%), SETBP1 (n= 2,
6%), TP53 (n= 2, 6%), and JAK2 (n= 2, 6%). CBL, EZH2,
FLT3, MLL, MPL, PTPN11, and U2AF1 were less fre-
quently affected (<5%) (Fig. 2b).

At least one somatic mutation in SRSF2, ASXL1, and/or
RUNX1 (S/A/Rpos) was identified in 21/32 (66%) patients.
The rate of S/A/Rpos patients was significantly higher in
secondary AML (20/23, 87%) as compared to de novo
AML (1/9, 11%, P= 0.0001). Furthermore, there was a
significant correlation between S/A/Rpos and age >60 years
(P= 0.02).

To further evaluate whether KIT D816mut occurred in
hematopoietic progenitor cells, we performed molecular
analyses on DNA derived from CD34+ cells from 6 KIT
D816V positive patients. KIT D816V was found in 1/6

(17%) patients while additional somatic mutations were
detected in all 6 patients.

Cytogenetic analyses

At diagnosis of SM-AML, 19/40 (48%) patients had a
normal and 21/40 (52%) patients an aberrant karyotype. All
patients were CBFneg. Intermediate-risk and poor-risk AML
karyotype were diagnosed in 7/21 (33%) and 14/21 (67%)
patients, respectively (Fig. 2c, Supplementary Table 2) [27].

Longitudinal molecular and cytogenetic analyses in
patients with secondary SM-AML

In 16/29 (55%) patients with secondary SM-AML, material
from the time of diagnosis of SM ±AHN and from the time
of diagnosis of secondary SM-AML was available for
molecular and cytogenetic analyses. At the time of SM ±
AHN, 11/16 (69%) patients were S/A/Rpos (Table 2).
Acquisition of new somatic mutations and/or karyotype
evolution at the time of secondary SM-AML was observed
in 15/16 (94%) patients: 4 patients revealed acquisition of
new somatic mutations (NPM1, n= 2; IDH2, n= 1; JAK2,
n= 1) without karyotype evolution, 5 patients with

25%

22%
28%

16%

9%

No. of affected genes (in addi�on to KIT D816) 
in 32 KIT D816mut/CBFneg SM-AML pa�ents

1 2 3 4 5

100%

≥5

KIT D816Vmut/CBFneg SM-AML
# 1 3 9 11 13 15 18 21 23 28 33 40 2 5 6 7 12 22 25 26 27 37 38 8 14 19 20 24 29 30 31 39

secondary AML de novo AML
SRSF2

RUNX1

TET2

ASXL1

NPM1

DNMT3A

IDH1/2

N/KRAS

BCOR

SF3B1

SETBP1

TP53

JAK2

MPL

CBL

PTPN11

MLL

U2AF1

EZH2

FLT3
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C

Fig. 1 Mutational profile of 32 patients with KIT D816mut/CBFneg

systemic mastocytosis associated with acute myeloid leukemia (SM-
AML). a Alignment of gene mutations in 32 patients with SM-AML.
Each column represents an individual patient, b distribution of number

of affected genes, and c the co-occurrence and overall frequency of
mutated genes represented by Circos diagram. Asterisk marks a sig-
nificant association between several pairs of mutations. Supplementary
Table 1 provides the variant allele frequency of all mutations
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karyotype evolution, and 6 patients with acquisition of new
somatic mutations (TP53, n= 2; NPM1, n= 1; RUNX1,
n= 1; ASXL1, n= 1; BCOR, n= 1; IDH1/2, n= 1) and
karyotype evolution (Table 2, Supplementary Table 3).

Treatment modalities and response rate

Thirty-one of 40 (78%) patients were treated with intensive
(induction) chemotherapy (n= 24, e.g., daunorubicin/

cytarabine [DA, 7+ 3], mitoxantrone/cytarabine [S-HAM])
± non-intensive therapy (hypomethylating agents, n= 8, ±
cladribine, n= 2). The complete response (CR) rates after
intensive induction chemotherapy and non-intensive ther-
apy were 40% and 0, respectively. Two patients had
cytarabine-based consolidation (without allogeneic stem
cell transplantation [SCT]) and are alive 91 and 15 months,
retrospectively, after diagnosis of SM-AML. Allogeneic
SCT was performed in 12/40 (30%) patients with 4 patients
being in CR prior to allogeneic SCT. A durable CR was
achieved by 6/12 patients (50%). Nine of 40 (22%) patients
received only best supportive care due to advanced age ±
comorbidity.

S/A/Rpos ± presence of a poor-risk karyotype were
negative predictive markers for response to treatment
(intensive chemotherapy ± allogeneic SCT) with 10/11
(91%) non-responders presenting with S/A/Rpos ± poor-risk
karyotype. On the other hand, 4/8 (50%) responders were S/
A/Rpos ± poor-risk karyotype (P= 0.04) indicating that
intensive treatment should not be withheld in this subgroup.

Comparison of KIT D816mut/CBFneg SM-AML with KIT
D816mut/CBFneg AML from two independent
databases

To further investigate whether KIT D816mut/CBFneg AML
represents a distinct subtype which is associated with SM
and poor prognosis, two independent AML databases
(AMLdatabases) were retrospectively screened for KIT D816mut/
CBFneg AML patients. Overall, 69 KIT D816mut/CBFneg

AMLdatabases patients could be identified. Mutation profile and
karyotype were available from all patients, detailed clinical
characteristics from 17/69 patients (Tables 1b and 3).

KIT D816mut/CBFneg SM-AML (n=40)* KIT D816mut/CBFneg AMLdatabases (n=69)
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Fig. 2 KIT D816 variant allele frequency (VAF), somatic mutations,
and aberrant karyotype in KIT D816mut/CBFneg SM-AML in
comparison to KIT D816mut/CBFneg AML from the two databases
(AMLdatabases). a KIT D816 VAF, b relative frequency distribution of

mutated genes, and c aberrant karyotype. Gray columns: KIT D816mut/
CBFneg SM-AML and blue columns: KIT D816mut/CBFneg

AMLdatabases. Asterisk represents targeted next-generation sequencing
was performed in 32/40 SM-AML patients

Table 2 Longitudinal genetic profile of 16 KIT D816mut/CBFneg

systemic mastocytosis associated with acute myeloid leukemia (SM-
AML) patients who progressed from SM with or without and
associated hematologic neoplasm (SM ±AHN)

MDS myelodysplastic syndrome, MDS/MPN-u myelodysplastic/mye-
loproliferative neoplasm unclassifiable, CMML chronic myelomono-
cytic leukemia, ISM indolent SM, MPN-eo MPN associated with
eosinophilia

Boxes highlighted in orange and blue indicate new molecular,
karyotype aberrations, respectively

*No karyotype available at the time of SM-AHN

**More (additional) karyotype aberrations

1128 M. Jawhar et al.



This comparison revealed remarkable molecular and
karyotype similarities between the KIT D816mut/CBFneg

SM-AML and the KIT D816mut/CBFneg AMLdatabases

cohort (Fig. 2a–c, Table 3): (a) The median KIT D816 VAF
was 34% (range 3–54) and 29% (range 3–93), respectively,
(b) with the exception of SRSF2 (38% vs. 18%), the fre-
quency of the most frequently somatic mutations (RUNX1,
TET2, ASXL1, NPM1, DNMT3A, IDH1/2) was highly
similar between the two groups, (c) in contrast to de novo
AML, the frequency of FLT3 aberrations was very low (3%
and 7%, respectively), and (d) the frequency of an aberrant
karyotype was 52% and 42, respectively, with a comparable
rate of intermediate-risk and poor-risk karyotype.

The median OS of 40 KIT D816mut/CBFneg SM-AML
and 17 evaluable KIT D816mut/CBFneg AMLdatabases patients
was 5.4 (95% confidence interval, CI [1.7–9.1]) and 26.4
(95% CI [0–61.0]) months (P= 0.015), respectively. In the
KIT D816mut/CBFneg SM-AML cohort, 16 patients received
non-intensive therapy only, with a median OS of
2.7 months (95% CI [1.5–3.9]), while all 17 KIT D816mut/
CBFneg AMLdatabases patients received intensive che-
motherapy. Median OS was not significantly different (16.7
vs. 26.4 months, P= 0.4) between KIT D816mut/CBFneg

SM-AML and KIT D816mut/CBFneg AMLdatabases patients
who received intensive chemotherapy (Fig. 3a, b).

In a combined analysis of both cohorts, median OS was
not significantly different between intensive chemotherapy
(n= 22) only vs. intensive chemotherapy followed by
allogeneic SCT (n= 19), 10.2 months (95% CI [5.9–14.4])
vs. 26.5 months (95% CI [0–58.5]), respectively (P= 0.3)
(Fig. 3c). With exception of age (patients with allogeneic
SCT were younger), no significant differences were
observed between the two cohorts regarding clinical and
molecular genetic characteristics (Table 4).

In univariate analyses (including age, hemoglobin, pla-
telets, AML subtype, treatment modalities [non-allogeneic
vs. allogeneic SCT], somatic mutations, and aberrant

karyotype), only age >60 years, at least one additional
somatic mutation in the S/A/R gene panel (S/A/Rpos) and a
poor-risk karyotype were identified as poor prognostic
variables regarding OS. In multivariate analysis, S/A/Rpos

and a poor-risk karyotype remained the only independent
adverse factors with regard to OS. Accordingly, a weighted
score (based on the HR) of 1 was assigned to S/A/Rpos and
poor-risk karyotype. Significantly different OS probabilities
were observed for the comparisons S/A/Rneg+ normal-/
intermediate-risk karyotype (0 point, n= 14), S/A/Rpos or
poor-risk karyotype (1 point, n= 23), and S/A/Rpos+ poor-
risk karyotype (2 points, n= 10) with median OS not
reached vs. 14.0 [6.2–21.8] vs. 7.0 months [4.5–9.6] (P=
0.001). These results were independent of treatment mod-
alities (Fig. 4a, b).

Discussion

We report here on a large series of 40 patients with mor-
phologically proven KIT D816mut/CBFneg SM-AML.
Approximately 65% of patients evolved from other advSM
subtypes. Similar to previous reports concerning the mole-
cular profile of advSM, all patients with SM-AML had at
least one additional somatic mutation, most frequently
affecting TET2, SRSF2, ASXL1, RUNX1, and NPM1. In
contrast to de novo AML, only one patient had a FLT3
mutation. The overall molecular profile of SM-AML
therefore was more similar to the profile of advSM than
to that of de novo AML [28].

Using CFU-GM-colonies and microdissected cells, we
have previously shown that mast cells and AHN cells are
not only positive for KIT D816V but also for additional
somatic mutations, indicating that both derive from a
common progenitor [12]. However, a significant proportion
of colonies were positive for additional somatic mutations
but negative for KIT D816V [12]. In line with this and other

Table 3 Comparison between
KIT D816mut/CBFneg SM-AML
and KIT D816mut/CBFneg AML
cases regarding molecular
pattern, aberrant karyotype, KIT
D816 variant allele frequency
(VAF), and overall
survival (OS)

Variables KIT D816mut/
CBLneg SM-
AML (n= 40)

KIT D816mut/
CBLneg AMLa

(n= 69)

P-value

KIT D816 VAF, median
in % (range)

34 (3–54) 29 (3–93) n.s.

S/A/Rpos, n (%) 21/32 (66) 27/54 (50) n.s.

FLT3pos, n (%) 1/32 (3) 4/59 (7) n.s.

Aberrant karyotype, n (%) 21/40 (52) 28/66 (42) n.s.

OSb, median in months
(95% CI)

16.7 (9–24) 26.4 (0–61) n.s.

n.s. non-significant, FLT3pos mutation in FLT3, S/A/Rpos at least one mutation in SRSF2, ASXL1, and/or
RUNX1
aFrom the two AML databases (data on OS from 17/69 patients)
bData on patients treated with intensive chemotherapy ± allogeneic stem cell transplantation only
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data demonstrating the absence of KIT D816V in myeloid
blasts of 50% of SM-AML cases [20], we confirmed the
absence of KIT D816V but the presence of additional
somatic mutations in CD34+ cells in 5 of 6 SM-AML
cases, indicating that the additional somatic mutations rather
than KIT D816V are the driving force for progression to
secondary AML. In addition, serial molecular genetic ana-
lyses revealed the acquisition of new somatic mutations,
e.g., in NPM1, IDH1/2, RUNX1, with or without karyotype
evolution in >90% of patients as further underlying
mechanisms for progression to secondary SM-AML. This
data is reminiscent of reports on progression in other
myeloid neoplasms such as MDS or MDS/MPN, and our
previous reports on progression of SM to advSM or pro-
gression within advSM subtypes, e.g., to secondary mast
cell leukemia, in which somatic mutations in NPM1, IDH2,
or RUNX1 were also identified as late events and drivers for
disease progression [29–35].

SM-AHN is the most common subtype of advSM but the
diagnosis is challenging because the mast cell infiltrate may

obscure the AHN and vice versa [20, 36–38]. This is par-
ticularly true for AML where the morphological but not the
histological examination of bone marrow has been estab-
lished as a standard diagnostic tool. Recently reported data
collected from deep targeted sequencing indicated that KIT
D816 mutations can be identified in 1–6% of patients with
various subtypes of myeloid neoplasms, e.g., MDS, MDS/
MPN-u, CMML, polycythemia vera, essential thrombo-
cythemia, or myelofibrosis [39–44]. However, many of
these cases have not routinely been screened by histo-
pathology for the presence of co-existing SM. Within our
registry, all KIT D816Vmut patients, who had initially been
diagnosed as myeloid neoplasms such as CMML, triple-
negative MF, and others, in fact fulfilled the WHO-criteria
for a diagnosis of SM-AHN.

We therefore sought to investigate the incidence of KIT
D816mut/CBFneg in retrospective screens of two indepen-
dent AML databases. Rather unexpectedly, 69 patients
were identified which revealed remarkable similarities
concerning the high KIT D816 VAF, the mutation profile
and the aberrant karyotype (Table 2), suggesting that the
vast majority of these AMLdatabases patients are likely to
have SM-AML. Unfortunately, the lack of bone marrow
trephine biopsies at initial diagnosis of AML has not
allowed a definite re-evaluation of these cases and formal
reclassification as SM-AML. However, based on our data,
which are in line with previously published results, an
underlying or concomitant SM can be diagnosed in most
cases of KIT D816Vmut AML, when the bone marrow is
investigated using standard histopathological and mole-
cular studies.

The median OS of the 40 SM-AML patients was
5.4 months and thus even worse as compared to patients
with mast cell leukemia, which is defined by the presence of
≥20% mast cells in a bone marrow smear [29]. No patient
achieved a CR on treatment with hypomethylating agents

CBA

Fig. 3 Kaplan–Meier estimates of overall survival (OS) of KIT
D816mut/CBFneg SM-AML and AML from the databases
(AMLdatabases). a OS of all KIT D816mut/CBFneg patients, b OS com-
paring the KIT D816mut/CBFneg SM-AML cohort with intensive che-
motherapy (ICT) ± allogeneic stem cell transplantation (SCT)
(yellow), the KIT D816mut/CBFneg AMLdatabases cohort with ICT ±

allogeneic SCT (green), and the KIT D816mut/CBFneg SM-AML with
non-intensive therapy (NIT)/best supportive care (BSC) (red), c OS of
all KIT D816mut/CBFneg patients treated with ICT only (blue) or with
allogeneic SCT (gray). CI confidence interval, n.s. non-significant.
Asterisk refers to included patients with SM-AML and AMLdatabases

Table 4 Clinical and genetic data of 41 patients with KIT D816mut/
CBFneg (systemic mastocytosis associated with) acute myeloid
leukemia (SM-)AMLa treated with intensive chemotherapy (ICT) ±
allogeneic stem cell transplantation (SCT)

Variables ICT
n= 22

Allogeneic
SCT
n= 19

P-
value

Age, median (range) 63 (23–79) 56 (23–70) 0.04

SM-AML from SM ±AHN, n
(%)

9 (41) 9 (47) n.s.

S/A/Rpos 9/21 (43) 9/18 (50) n.s.

Poor-risk karyotype, n (%) 5/21 (24) 5/18 (28) n.s.

n.s. non-significant, S/A/Rpos at least one mutation in SRSF2, ASXL1,
and/or RUNX1
aIncluded patients with SM-AML and AML from the two databases

1130 M. Jawhar et al.



and none of the patients was treated with midostaurin.
Following intensive induction chemotherapy in eligible
patients, the CR rate of 40% was significantly inferior
as compared to the general CR rate of de novo AML
(70–80%) [45] and median survival following intensive che-
motherapy with or without allogeneic SCT was 17 months. In
addition to the aforementioned similarities regarding the
molecular genetic characteristics (KIT D816V VAF, addi-
tional somatic mutations, and aberrant karyotype), the poor
median OS of 26 months in 17 KIT D816mut/CBFneg AML
patients from the two independent AML databases adds fur-
ther evidence that KIT D816mut/CBFneg AML may in fact
represent SM-AML in the vast majority, if not all patients.
Independently of treatment modalities and consistent with
previous reports on other advSM subtypes, e.g., mast cell
leukemia, mutations in S/A/R and a poor-risk karyotype
conferred an adverse impact on response to treatment, disease
progression, and OS [10, 29, 30].

Midostaurin, an orally administered multi-kinase/FLT3-/
KIT-inhibitor improves survival in FLT3pos AML and
achieves overall response rates of 60% in patients with
advSM [46, 47]. Better survival is observed in advSM
patients without additional somatic mutations in the S/A/R
gene panel and a >25% reduction of the KIT D816V VAF at
month 6 [30, 46–49]. If the presence of SM can be proven
in KIT D816mut/CBFneg AML by bone marrow histology
and elevated serum tryptase, KIT inhibitors (e.g., mid-
ostaurin, potentially avapritinib [BLU-285, Blueprint
Medicines, Cambridge, MA, USA]) in combination with
intensive chemotherapy and allogeneic SCT may help to

improve the poor prognosis of this distinct AML subtype
[50, 51].

We conclude that (a) progression to secondary AML
from a preceding KIT D816mut SM-AHN is frequently
observed and may be triggered by the acquisition of addi-
tional somatic mutations with or without karyotype evolu-
tion, (b) KIT D816mut/CBFneg AML is a distinct subtype
with remarkable similarities compared to SM-AML cases
concerning KIT D816 VAF mutation profile, aberrant kar-
yotype, and poor prognosis, suggesting that a significant
proportion of these AML patients may in fact have SM-
AML, which is a strong argument to propose a new eva-
luation, (c) with its very high positive and negative pre-
dictive value, serum tryptase is an excellent screening
marker for SM and should therefore be part of the diag-
nostic workflow in all AML patients. Cases with an ele-
vated serum tryptase level should subsequently be screened
for KIT D816mut, and (d) bone marrow histology is man-
datory in KIT D816mut patients. This simple diagnostic
procedure will allow reclassification to SM-AML and thus
allow inclusion of KIT inhibitors in established treatment
modalities of AML.
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