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Cyropyrin-associated periodic syndromes (CAPS) are clinically distinct syndromes that
encompass a phenotypic spectrum yet are caused by alterations in the same gene,
NLRP3. Many CAPS cases and other NLRP3-autoinflammatory diseases (NLRP3-AIDs)
are directly attributed to protein-coding alterations in NLRP3 and the subsequent
dysregulation of the NLRP3 inflammasome leading to IL-1b-mediated inflammatory
states. Here, we used bioinformatics tools, computational modeling, and computational
assessments to explore the proteomic consequences of NLRP3 mutations, which
potentially drive NLRP3 inflammasome dysregulation. We analyzed 177 mutations
derived from familial cold autoinflammatory syndrome (FCAS), Muckle-Wells Syndrome
(MWS), and the non-hereditary chronic infantile neurologic cutaneous and articular
syndrome, also known as neonatal-onset multisystem inflammatory disease (CINCA/
NOMID), as well as other NLRP3-AIDs. We found an inverse relationship between clinical
severity and the severity of predicted structure changes resulting from mutations in
NLRP3. Bioinformatics tools and computational modeling revealed that NLRP3 mutations
that are predicted to be structurally severely-disruptive localize around the ATP binding
pocket and that specific proteo-structural changes to the ATP binding pocket lead to
enhanced ATP binding affinity by altering hydrogen-bond and charge interactions.
Furthermore, we demonstrated that NLRP3 mutations that are predicted to be
structurally mildly- or moderately-disruptive affect protein-protein interactions, such as
NLRP3-ASC binding and NLRP3-NLRP3 multimerization, enhancing inflammasome
formation and complex stability. Taken together, we provide evidence that proteo-
structural mechanisms can explain multiple mechanisms of inflammasome activation in
NLRP3-AID.

Keywords: NLRP3, cryopyrin-associated periodic syndrome, NLRP3-AID, familial cold autoinflammatory syndrome,
Muckle-Wells Syndrome, chronic infantile neurologic cutaneous and articular syndrome, neonatal-onset
multisystem inflammatory disease
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INTRODUCTION

Inflammasomopathies, types of autoinflammatory diseases, are
driven by activation of inflammasomes, leading to IL-1b-mediated
conditions with distinct clinical presentations (1–5).
Inflammasomes are multiprotein complexes that are assembled in
response to various stimuli and responsible for caspase-1-dependent
IL-1b activation (6–9). NLRP3 is an inflammasome sensor, whose
activation leads to a variety of autoinflammatory diseases (NLRP3-
AIDs), including three well-documented periodic fever syndromes:
familial cold autoinflammatory syndrome (FCAS), Muckle-Wells
syndrome (MWS), and chronic infantile neurologic cutaneous and
articular syndrome, also known as neonatal-onset multisystem
inflammatory disease (CINCA/NOMID) (10–15). The phenotypic
spectrum encompassing these threeNLRP3-associated syndromes is
collectively known as cyropyrin-associated periodic syndrome
(CAPS) (16–19). Among CAPS, FCAS is the mildest phenotype,
requiring a trigger such as cold temperature to cause symptom
onset, while CINCA/NOMID is the most severe phenotype with
onset in neonates, without a need for a trigger and often with
neurological consequences (20). While both FCAS and MWS are
known heritable conditions with a familial autosomal dominant
pattern of inheritance (21, 22), CINCA/NOMID is sporadic and
attributed to de novo mutations in NLRP3.

NLRP3 is expressed in an autoinhibited form (23, 24). Only
upon stimulation initiated throughATPpriming (25), doesNLRP3
undergo a conformational change, facilitating the homotypic PYR-
PYR domain interactions with ASC (6, 26, 27). Bound together,
NLRP3-ASC complexes multimerize and recruit procaspase-1
through homotypic CARD-CARD interactions, which bring
procaspase-1 into a conformation that facilitates self-cleavage and
activationof its catalytic subunits (28, 29).Ultimately, the activation
of the effector protein caspase-1 allows for the swift processing of
pro-IL1-b into its active form (9, 28, 30–32). Given its complex
regulation and downstream effectors, it is understandable that
dysregulated NLRP3 leads to the development of AID such as
CAPS. While some studies have shown the direct effects of NLRP3
mutations on increased cytokine production and inflammasome
activity in CAPS cases, fewer have investigated the mechanisms of
how mutated NLRP3 drives these human diseases (33, 34).

In this study, we performed a systematic review of publications
and databases describing NLRP3-AIDs, summarized the clinical
and molecular effects of germline NLRP3mutations, and explored
the structural differences that underlie CAPS mutations. The
computational modeling of NLRP3 predicted enhanced ATP
binding and multimerization as mechanisms of NLRP3
activation in cryopyrin-associated periodic syndromes.
MATERIALS AND METHODS

Literature Review of NLRP3-AID Mutations
A literature review of NLRP3-AID mutations was performed in
PubMed and Google Scholar by querying “NLRP3mutation” and
terms including CAPS, AID, FCAS, MWS, CINCA, NOMID,
JIA, RA, and disease. Review papers and databases such as
Infevers and Online Mendelian Inheritance in Man (OMIM)
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were also queried for NLRP3-AID mutations. Information on
clinical phenotypes and molecular consequences from disease
reports, case studies, and other primary papers were compiled.

Criteria for Classification
FCAS: intermittent fever, cold-induced urticarial papules and
plaques lasting minutes to several days with associated
arthralgias, conjunctivitis and headaches

MWS: intermittent fever, widespread urticarial papules and
plaques lasting 1–2 days with associated abdominal pain, myalgias,
arthralgias, conjunctivitis, episcleritis, and sensorineural hearing loss

CINCA/NOMID: intermittent fever, widespread, continuous
urticarial papules and plaques with associated arthritis, deforming
arthropathy, conjunctivitis, uveitis, blindness, sensorineural hearing
loss, aseptic meningitis, seizures often presenting at birth

Structural Bioinformatics Scoring Tools
PolyPhen-2 (35) was used through http://genetics.bwh.harvard.
edu/pph2/bgi.shtml, and standard instructions for Batch Query
were followed. SIFT (36) and PROVEAN (37, 38) were
simultaneously used through http://provean.jcvi.org/protein_
batch_submit.php?species=human, and standard instructions for
the query were followed. All algorithm inputs utilized the UniProt
protein identifier for NLRP3: Q96P20 in addition to the NLRP3
protein FASTA sequence. All results were downloaded in TSV file
format or Excel-compatible text format for further analysis.

Combination Scoring System
To obtain a reliable scoring metric for mutation analysis, we
generated a combined score from all three bioinformatics
algorithms, PolyPhen-2, SIFT, and PROVEAN. To factor out
the unknown distribution of these scores, we ranked them from
most to least structurally disruptive. For scores that were tied, the
highest rank was applied to each tied score.

Next, we combined the scores in a mathematically meaningful
way. This can be done by deriving p-values from rank scores
since there are well-defined rules for combining p-values. Under
the null hypothesis, the ranks are random, so if the maximum
rank is rmax, then the likelihood (probability), p, of a given rank,
r, is as good or better than it was measured to be is:

p =
r

rmax
:

We used this formula to derive p-values against the null
hypothesis for each of the ranks from all three algorithms. Next,
we made the simplifying assumptions that 1) the PolyPhen-2 p-
values (pPolyPhen-2) are independent of those from SIFT and
PROVEAN (pSIFT and pPROVEAN, respectively) since PolyPhen-
2 uses a completely different algorithm, 2) pSIFT and pPROVEAN
behave as dependent variables because PROVEAN is a slightly
modified version of the SIFT algorithm, and 3) pSIFT and
pPROVEAN should be equally weighted since we have no
evidence that one is more reliable than the other. Assumption
1 implies that the joint p-value combining all three algorithms,
which we term pweighted, is the product of pPolyPhen-2 and the
combined p-values of SIFT and PROVEAN. Assumptions 2 and
3 imply that the pSIFT and pPROVEAN should be combined by a
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multiplicative average. The final equation for this joint
probability is:

Pweighted = pPolyPhen2(½pSIFT � pPROVEAN �1=2) :
Since we did not know the extent to which assumptions 1–3

would hold, we interpreted pweighted as a score rather than a
probability. However, we considered that the assumptions were
sufficiently correct that pweighted is close to the actual joint p-value
against the null hypothesis; therefore, we took pweighted < 0.05 as a
significance threshold.

We tested our combined score by scoring rare NLRP3 single-
nucleotide variants (minor allele frequency < 0.001) from
gnomAD (39) and compared the averages and score
distributions of these to our collection of 177 pathogenic
NLRP3-AID variants (Supplementary Figure 4).

Statistical Analysis
Differences were analyzed using unpaired Student’s t-test using
GraphPad Prism version 8.3.0 (GraphPad Software, SanDiego, CA).

NLRP3 Homology Model
As no structural data currently exists for the humanNLRP family or
any of its orthologs, we generated several structural homology
models of human NLRP3 using the MODELLER protocol (40)
within the Discovery Studio 2018 suite (Biovia, Inc, San Diego, CA)
andby submitting the protein sequence to theModWeb and I-Tasser
(41) protein modeling servers. The resulting top-scoring models
were then subjected to explicit solvent-based molecular dynamics
(MD) simulations with YASARA v19.4 (YASARA Biosciences,
GmbH, Vienna, Austria) utilizing the YASARA2 force field (42–
45), which combines the AMBER (ff14SB) force field (46) with self-
parameterizing knowledge-based potentials (47), to refine each
model as described previously (43). Refinement simulations were
run for one nanosecond (ns) with snapshots taken every 25
picoseconds (ps) and assessed using the WHAT_IF and
WHAT_CHECK (48, 49) structure validation tools, which
compare model characteristics (dihedral angles, residue packing,
etc.) to the average values of~30,000high-resolution structures in the
PDB (www.rcsb.org) (50). The best-refined model was the model
that was generated using the ModWeb server with a quality score of
-0.69, indicating that the overall characteristics of the NLRP3
homology model are within one standard deviation of the average
values for high-resolution protein crystal structures.

The NLRP3 trimer structure was generated by superimposition
and molecular overlay of the NLRP3 monomer homology model
onto three consecutive monomers of NLRC4 from the cryo-EM
structure of the NAIP2-NLRC4 inflammasome complex (PDB ID:
3JBL) using Discovery Studio 2018 (Biovia, Inc, San Diego, CA).

NLRP3 Structural Analysis
Structural analysis was performed using the human NLRP3 PYR
crystal structure (3QF2) by Bae and Park (51) and the NLRP3
homology model generated as described above. To elucidate the
potential functional ramifications of NLRP3 mutations, we made
each mutation individually to the WT structure and subjected the
WTand eachmutant to explicit solvent-based energyminimization
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with the AMBER (ff14SB) force field (46) to assess predicted
alterations in protein structure and surface characteristics. The
predicted effects of themutations onATP binding were assessed by
docking ADP and ATP into the refinedWT andmutant structures
using the flexible docking protocol (52) in Discovery Studio 2018
(Biovia, Inc, San Diego, CA), and the binding energies were
calculated using the AutoDock VINA (53) module within
YASARA v19.4 (YASARA Biosciences, GmbH, Vienna, Austria).

To assess the effects of the PYR mutations, we first performed
the MD-based refinements of the WT NMR structures of full-
length ASC (PDB ID: 2KN6) (54) and the PYR of NLRP3 (PDB
ID: 2NAQ) (55) as described above for the homology modeling
of NLRP3. The ZDOCK (56), ZRANK (57), and RDOCK (58)
algorithms were employed to predict the binding mode of the
NLRP3 PYR at each of the two established interaction interfaces
of the PYR of ASC in the assembled inflammasome. We modeled
the effects of the NLRP3 mutations located at each of these
interfaces, as well as those located at the interface of the middle
monomer in the assembled NLRP3 trimer structure, using explicit
solvent-based energy minimization as described above.

The predicted binding orientations and intermolecular
contacts of ATP, as well as the protein-protein interactions in
each NLRP structure, were visualized in 2D and 3D using
Discovery Studio 2018 (Biovia, Inc., San Diego, CA).
RESULTS

NLRP3-AID Mutations Are Localized
Diversely Within the Coding Sequence
We retrieved reports of NLRP3-AIDs and compiled a
comprehensive list of germline and somatic mosaic mutations in
NLRP3 inTable 1. Themutations are listed bydisease phenotype and
detail the genetic changes reported for each proteomic change
alongside references. In many reports of germline NLRP3
mutations, the amino acid positions are mismatched to the
canonical amino acid positions reported in the US National Library
of Medicine NCBI and Ensembl as a result of the protein sequence
being counted from the second methionine (M3) instead of M1 due
tobetter alignmentof theKozakconsensus sequencewith theM3(59,
128). All mutations in our study have been updated to match the
NCBINLRP3 canonical protein sequence and are counted fromM1.

NLRP3iscomposedofanN’-terminalpyrin(PYR)domain,NAIP
CIITAHET-ETEP1(NACHT)domain,andC-terminal leucine-rich
repeat (LRR)domains.ThePYRdomain is responsible forhomotypic
PYR-PYR interactions with the inflammasome adaptor protein
apoptosis speck-like protein containing a CARD (ASC). The
NACHT domain senses stimuli through the nucleotide-binding
domain (NBD) and is regulated by its regulatory helical 1 (HD1),
winged-helix domain (WHD), and helical 2 (HD2) subdomains in
addition to the LRR domain, limiting NACHT domain access in the
protein’s inactiveconformation(129–135).Exon3ofNLRP3encodes
for its NACHT domain and is known to harbor many mutations
associated with both CAPS and non-CAPSNLRP3-AIDs.

To understand the distribution of disease-specific mutations in
NLRP3, we plotted all 177 mutations (Figures 1A–D and
November 2020 | Volume 11 | Article 584364
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TABLE 1 | Literature Review of NLRP3 Germline Mutations.

Disease Phenotype Proteomic Change (Amino Acid Change) [References]

Familial Cold
Autoinflammatory Syndrome
(FCAS)

V200M (c.562G>A) (17, 59–63), D213N (c.631G>A) (64), C261W (c.777T>G) (62, 64, 65), R262W (c.778C>T) (17, 60, 64, 66); FCAS/MWS

overlap syndrome (59), V264G (c.785T>G) (64, 67), G303D (c.902G>A) (64, 68), L307P (c.914T>C) (59, 64, 69), L355P (c.1058T>C) (62, 64,
69–70, 71), K377E (c.1123A>G) (64, 72), T438A (c.1306A>G) (64, 73), T438I (c.1307C>T) (19), A441T (c.1315G>A) (69), A441V
(c.1316C>T) (11, 64, 69, 70, 74), R490K (c.1463G>A) (64, 75), F525C (c.1568T>G) (76), E527K (c.1573G>A) (64, 77), Y565N
(c.1687T>A) (62, 64), E607V (c.1814A>T) (64, 78)+, E629G (c.1880A>G) (11, 60, 64, 69, 79), M661K (c.1976T>A) (64, 77)

Muckle-Wells Syndrome
(MWS)

D31V (c.86A>T) (64, 80, 81), V72M (c.208G>A) (64, 80), R137H (c.404G>A) (64, 82), R172S (c.508C>A) (64, 83), V200M (c.562G>A)
(11, 59–62, 64), R262L (c.779G>T) (64, 69), R262W (c.778C>T) (17, 60, 64, 66); FCAS/MWS overlap syndrome (59), V264G (c.785T>G) (64,
67), L266V (c.790C>G) (64), T268P (c.796A>C) MWS/CINCA overlap syndrome (64), D305N (c.907G>A; c.913G>A) (17, 64, 66), E313K
(c.931G>A) (10, 64, 70, 84), H314P (c.935A>C) (64, 85), R327W (c.973C>T) (64, 86), T350M (c.1043C>T) (17, 64, 70, 80, 87), A354V
(c.1055C>T) (10, 11, 60, 64, 87), W416L (c.1241G>T) (64), A441T (c.1315G>A) (17, 64), Y443H (c.1321T>C) MWS/CINCA overlap syndrome

(64), I482F (c.1438A>T) (64, 88), R490K (c.1463G>A) (70, 75),A497V (c.1484C>T) (64, 75), M523T (c.1562T>C) (64), F525C (c.1568T>G)
(62, 64, 89), E527K (c.1573G>A) (34), F568Y (c.1697T>A; c.1703T>A) (64), E569A (c.1700A>C) (64, 83), K570N (c.1704G>C;
c.1710G>C) (90), G571R (c.1705G>C) (17, 60, 64, 65, 69), F581Y (c.1736T>A) (64, 91), I600F (c.1792A>T) (64), R605G (c.1807A>G)
(64), P651S (c.1945C>T) (64), M703T (c.2102T>C) (64), Q705K (c.2107C>A) (80), S712C (c.2129C>G) (64)

Mosaic MWS R262P (c.779G>C) (92), D305A (c.908A>C) (64, 83), I336V (c.1000A>G) (83), K357N (c.1065A>T) (83), K357T (c.1064A>C) (64, 83),
L413V (c.1231C>G) (64, 83), F525L (c.1569C>A; c.1569C>G) (83), E569K (c.1699G>A) (64, 93), Q638E (c.1906C>G) (64, 94)

Chronic Infantile Neurologic,
Cutaneous, and articular
syndrome (CINCA/NOMID)

C150Y (c.433G>A) (19, 64), R170Q (c.503G>A) (64), I174T (c.515T>C) (64, 95), K175E (c.517A>G) (61, 64), R262P (c.779G>C) (61, 64,
69), R262Q (c.785G>A; c.779G>A) (64, 96) +, R262W (c.778C>T) (93), V264A (c.785T>C) (62, 64, 76), L266F (c.790C>T) (62, 64, 69–
70), L266H (c.791T>A) (64, 66, 89), L266R (c.791T>G) (64), T268P (c.796A>C) (64), D305G (c.908A>G) (64, 69), D305H (c.907G>C) (64,
68), D305N (c.907G>A; c.913G>A) (16, 17, 34, 64, 66, 76, 90–97, 93), E306K (c.910G>A) (64, 98), Q308E (c.916C>G) (64), Q308K
(c.916C>A) (64, 69, 97), G309V (c.920G>T) (64, 99), F311S (c.926T>C; c.932T>C) (60, 64, 66, 69, 97), F311Y (c.926T>A) (64), P317L
(c.944C>T) (64, 100), G328E (c.977G>A) (64, 101), S333R (c.993C>A) (64, 102), I336V (c.1000A>G) (64), T350M (c.1043C>T) (34, 69),
V353L (c.1051G>C; c.1051G>T) (64, 90), V353M (c.1051G>A) (64), A354T (c.1054G>A) (64), E356D (c.1062G>T) (64, 69), H360R
(c.1073A>G) (64, 87, 97), A376D (c.1121C>A) (64, 89), A376N (c.1121C>A) (69, 89), T407P (c.1213A>C) (61, 64, 69), M408I
(c.1218G>C) (34, 64, 98), M408T (c.1217T>C) (64), T435A (c.1297A>T) (61, 103), T438I (c.1307C>T) (64, 69), T438N (c.1307C>A) (64,
69, 97), T438P (c.1306A>C) (64), A441P (c.1315G>C) (64), A441V (c.1316C>T) (61, 93), Y443H (c.1321T>C) MWS/CINCA overlap syndrome

(64), F445L (c.1329C>G) (62, 64), N479K (c.1431C>A) (34, 64, 93, 98), I482F (c.1438A>T) (64, 88), R490K (c.1463G>A) (75), F525L
(c.1569C>A; c.1569C>G) (64, 69, 89), F525Y (c.1568T>A) (64, 104), E527V (c.1574A>T) (64), F568Y (c.1697T>A; c.1703T>A) (90),
G571A (c.1706G>C) (64), Y572C (c.1709A>G) (11, 64, 69, 87, 89), Y572F (c.1709A>T) (64), Y572H (c.1708T>C) (64, 105), L573F
(c.1713G>T; c.1713G>C) (64), I574F (c.1714A>T) (64), F575S (c.1718T>C) (60, 64, 69, 97), T589I (c.1760C>T) (64), S597G (c.1783A>G;
c.1789A>G) (64, 90, 106), I600F (c.1792A>T) (64), R605G (c.1807A>G) (33), E629D (c.1881A>T) (64), L634F (c.1896G>T) (64, 69),
M664T (c.1985T>C) (64, 69, 93, 97), E690K (c.2062G>A) (64, 98), E692K (c.2068G>A) (64), S728G (c.2176A>G) (64), G757A
(c.2264G>C) (15, 64), G757R (c.2263G>A) (15, 17–19, 64, 93), R779C (c.2329C>T; c.2335C>T) (90), G811S (c.2419G>A) (64, 107),
Y861C (c.2576A>G) (13, 64)

Mosaic CINCA/NOMID S198N (c.587G>A) (14, 64), L266F (c.790C>T) (93, 103),G303S (c.901G>A) (103), F304L (c.906C>A) (108), D305H (c.907G>C) (75, 103,
108, 109), G309D (c.920G>A) (64, 105), G309S (c.919G>A) (64, 93), K357N (c.1065A>T) (64, 103), M408V (c.1216A>G) (64, 103), T435I
(c.1298C>T) (64, 92, 103), A441P (c.1315G>C) (103), Y565C (c.1688A>G) (64, 92), G566S (c.1690G>A) (64, 92), F568L (c.1698C>A)
(64, 103), E569K (c.1699G>A) (64, 93), K570N (c.1704G>C; c.1710G>C) (64, 103), Y572C (c.1709A>G) (14, 93, 103), G757R
(c.2263G>A) (103)

Mosaic NLRP3-AID L266P (c.791T>C) Mosaic CAPS (64), K437E (c.1303A>G) Mosaic Schnitzler’s syndrome-variant CAPS (64, 110), F525L (c.1569C>A; c.1569C>G)
Mosaic MWS (83); Mosaic Schnitzler’s syndrome-variant CAPS (110), F568L (c.1698C>A) Undefined Mosaic CAPS (111); Mosaic CINCA/NOMID (64, 103), E569K
(c.1699G>A) Undefined Mosaic CAPS(111), Y572N (c.1708T>A) Undefined CAPS with mosaicism (64)

Unspecified CAPS/NLRP3-
AID

H51R (c.146A>G) (64), A77V (c.224C>T) (64) +, R170Q (c.503G>A) (68), V200M (c.562G>A) (5, 68, 70, 112), H215R (c.638A>G) (64),
L256M (c.760C>A) Undefined atypical CAPS (64)+, V264G (c.785T>G) (68), G303S (c.901G>A) (64), D305N (c.907G>A; c.913G>A) (5, 69, 71,
76, 89), Q308L (c.917C>T) (66), F311S (c.926T>C; c.932T>C) (90), E313K (c.931G>A) (5), I315V (c.937A>G) (5, 68), S333R (c.993C>A)
(5), S334N (c.995G>A) (64) +, I336V (c.1000A>G) (68), T350M (c.1043C>T) (5, 66, 68), P352L (c.1049C>T) (64, 113), V353L
(c.1051G>C; c.1051G>T) (64), A354V (c.1055C>T) (66, 68), L355P (c.1058T>C) (68),H360R (c.1073A>G) (66), L371M (c.1105C>A) (5);
Undefined atypical CAPS (64), M408I (c.1218G>C) (5), T438N (c.1307C>A) (66, 71), A441T (c.1315G>A) (66),
A441V (c.1316C>T) (5, 66, 68), F446V (c.1330T>G) (64), N479K (c.1431C>A) (5), E527K (c.1573G>A) (68), T544I (c.1630G>A) (64, 114)
+, T544M (c.1625C>T) (64, 115, 116), R550C (c.1642C>T) (64), T559A (c.1669A>G) (64), K567E (c.1693A>G) (64), G571R (c.1705G>C)
(66, 68, 87), Y572C (c.1709A>G) (66), F575S (c.1718T>C) (66, 87), D648Y (c.1936G>T) (64), L679P (c.2030T>C) (64), E692K
(c.2068G>A) (68), M703T (c.2102T>C) (68), Q705K (c.2107C>A) (5, 70, 117, 118), S712C (c.2129C>G) (5), A714S (c.2134G>T) (64),
G781V (c.2336G>T) (64, 111), D789N (c.2359G>A) (64), Q798P (c.2387A>C) (64, 104) +, Y861C (c.2576A>G) (68), Y861H (c.2575T>C)
(64), G868R (c.2596G>A) (64), S898P (c.2686T>C) (64), R920Q (c.2753G>A) (60, 64, 119), T954M (c.2855C>T) (64), M988I (c.2958G>A)
(64) +

Unspecified non-CAPS
NLRP3-AID

D90Y (c.262G>T) (64), R100G (c.292C>G) (64), R100H (c.293G>A) (64, 90), R178W (c.526C>T) (64, 112), T195K (c.578C>A) (64),
E206G (c.611A>G) (64, 120), I290M (c.864C>G) Atypical Inflammatory Disease (64, 121), R779C (c.2329C>T; c.2335C>T) (64)

Juvenile Idiopathic Arthritis
(JIA)

E380K (c.1132G>A) (64, 107), R605G (c.1807A>G) (33)

(Continued)
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TABLE 1 | Continued

Disease Phenotype Proteomic Change (Amino Acid Change) [References]

Rheumatoid Arthritis (RA) A227V (c.674C>T) (64), M301V (c.895A>G) (64), Q705K (c.2107C>A) (122)

Other and Unknown D21H (c.55G>C) keratoendotheliitis fugax hereditaria (64, 123, 124), M70T (c.203T>C) UNKNOWN (64), T195M (c.578C>T) Behcet’s (64, 125), V200M
(c.562G>A) Behcet’s (126), P202T (c.598C>A) PFAPA (64, 127), D282N (c.838G>A) UNKNOWN (64), I315V (c.937A>G) Magic Syndrome (64),
R327Q (c.974G>A) UNKNOWN (64), G456E (c.1361G>A) UNKNOWN (64, 104), I521T (c.1556T>C) PFAPA,PFAPA-like (64), E640K (c.1912G>A)
UNKNOWN (64, 104), Q705K (c.2107C>A) Celiac (64); PFAPA (5); UNKNOWN (64), G811S (c.2419G>A) Atypical Autoinflammatory Syndrome/FMF (4),
A873T (c.2611G>A) UNKNOWN (64, 104), N913S (c.2732A>G) UNKNOWN (64)
Frontiers in Immunology | ww
+Sources that did not clearly identify patients into specific syndromes were reviewed by two clinical authors and grouped into appropriate categories based on presenting symptoms.
Patients with a NLRP3 mutation that did not meet criteria for FCAS, MWS, NOMID were placed into Unspecified CAPS/NLRP3-AID.
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FIGURE 1 | NLRP3 Germline Mutant Protein Maps. (A) Schematic representation of NLRP3 mutation proteomic locations known to cause or be associated with cyropyrin-
associated periodic syndromes (CAPS) inflammasomopathies [familial cold autoinflammatory syndrome (FCAS), Muckle-Wells Syndrome (MWS), and chronic infantile
neurologic cutaneous and articular syndrome, also known as neonatal-onset multisystem inflammatory disease (CINCA/NOMID)], and other NLRP3-AID. Annotated at each
mutated position is the specific amino acid substitution with notation for the diseases associated with the respective substitution corresponding with the color-coded legend in
the top-right corner of the panel. Representative proteomic locations of NLRP3 mutations reported in (B) FCAS, (C) MWS, and (D) CINCA/NOMID. (E) The proportion of
reported mutations for NLRP3-AID and other NLRP3-mutant conditions color-coded in the legend below the graph. NAIP CIITA HET-E TEP1 (NACHT) domain inset
annotations: WA, Walker A motif; WB, Walker B motif; S1, Sensor 1 motif; S2, Sensor 2 motif; GxP, GxP motif.
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Supplementary Figure 1) and analyzed the proportion of
mutations between all NLRP3-AIDs (Figure 1E). We confirmed
the high frequency of mutation, 83% (147/177 mutations), in
NACHT (Figure 1A) (136, 137). In all three CAPS, we found two
shared mutational hotspots: the first between the Walker A and
Walker B motifs from Cys261 and Thr268, and the second within
the WHD between Asn479 to Glu527 (hotspots 1 and 2, Figures
1B–D). We identified a third mutational hotspot between Asp305
andPhe311 inCINCA/NOMID(hotspot3,Figure1D).Amongthe
threeCAPS, FCASmutations exclusively occur within theNACHT
domain, while MWS and CINCA/NOMID both have mutations
occurring within the LRR domain, andMWS also has mutations in
PYR (Figure 1E). All CAPS NLRP3-AIDs had roughly the same
proportion of mutations in the NBD and HD2 subdomains.
However, they differed in the WHD subdomain: FCAS and
MWS, which are the hereditary and milder CAPS, have a higher
proportion of mutations within the WHD subdomain than
CINCA/NOMID.

Consistent with other studies (136–138), somatic mosaic
mutations occur mostly in the NBD and HD2 subdomains
(Figure 1E). We confirmed two previously-reported mutational
hotspots in the NBD subdomain between Gly303 to Gly309 and
within the HD2 domain (136) and identified a third mutational
hotspot that straddles the HD1 and WHD subdomains (boxed
areas, Supplementary Figure 1A). Due to fewer non-CAPS
NLRP3-AID reports, we were unable to determine whether these
NLRP3-AIDs had unique mutational hotspots or domain
mutational enrichments of significance (Supplementary
Figures 1B–E).

These data reveal similarities in domain mutation enrichments
in all threeCAPS,which cannot explain the phenotypic spectrumof
CAPS. Therefore, we have decided to investigate other factors that
can affect functional changes derived from NLRP3mutations.

Bioinformatics Tools Reveal Inverse
Relationship Between Clinical Severity
and Structurally Disruptive Potential
Themutations we compiled from the literature lead to a broad range
of clinical phenotypes and varying degrees of dysregulation of
inflammasome activity, including increased IL-1b cytokine
production and decreased monocyte sensitivity to inflammasome-
activating triggers such as lipopolysaccharides as observed in CAPS
patients (64). Because many of these mutations were reported in the
monogenic conditions and considered causative, we speculated that
themutation-related structural changes could alter protein functions
and inflammasome activity.While the patterns ofmutational lesions
have been described (137), no proteomic analyses to date have
demonstrated the mechanisms of NACHT domain-driven
inflammation or compare each of the CAPS mutations structurally.
Multiple distinct factors alter protein function, and specifically for
monogenic diseases such as NLRP3-AIDs, these factors include the
type of amino acid substitution encoded by genetic changes and
where these mutations are located on the protein.

To decipher the differences between CAPS mutations, we used
three structural bioinformatics tools: PolyPhen-2 (35), PROVEAN
(37, 38), and SIFT (36) to generate functional predictions, i.e.,
Frontiers in Immunology | www.frontiersin.org 6
potential to disrupt the structure and function of NLRP3, of all
reported mutations. Each tool uses metrics such as sequence
homology, sequence length, type of substitution, phylogenetic
comparison, structure data, and machine learning in differing
combinations to generate tool-specific scores and functional
predictions. These tools have occasionally been used in case
studies that compare a few mutations at once, but not in
conjunction with each other, nor in a large comparative study
(83, 139, 140). We combined the scores from these tools to have a
reliable scoring metric for mutational analysis, since each utilizes
algorithm-specific scoring thresholding parameters. The original
outputsof the tools are listed inSupplementaryTable 1.We ranked
all 177 mutations by their combinatorial “p-weighted” scores
(details in Materials and Methods). The lower (or more negative
if in the log) values for p-weighted scores correspond to more
structurally disruptive potential. All combinatorial scores p < 0.05
are shown in Table 2. All other combinatorial scores are listed in
Supplementary Table 2.

As observed inother studies (136, 141), we found thatmutations
with the lowest p-weighted scores (log(pw) < −2, corresponding to
pw < 0.01), which are expected to be themost severely-disruptive to
NLRP3 structure and function, occur in the NACHT domain
between Glu250 and Arg550 with a mutational hotspot including
the Arg262 site (Figure 2A). Arg262 is the most citedmutation site
(17, 59–61, 64, 66, 69, 93, 96, 136), is shared between all CAPS, and
has a wide variance of reported substitutions. The Leu266 and
Asp305 sites in this mutational range also have numerous citations
(5, 16, 17, 34, 62, 64, 66, 68–71, 76, 90, 93, 97, 108, 142). In contrast,
TABLE 2 | Ranked Combinatorial Scores for NLRP3 Mutants with pw <0.05.

Site Mutation pweighted

262 R262W 0.002797268
527 E527V 0.003230007
261 C261W 0.003752929
416 W416L 0.004708504
305 D305A 0.006500263
262 R262L 0.007021087
262 R262P 0.007961164
757 G757R 0.009421334
525 F525C 0.009929316
527 E527K 0.010085693
679 L679P 0.010277819
307 L307P 0.010382365
305 D305G 0.012488896
438 T438I 0.012587706
443 Y443H 0.012587706
438 T438P 0.013202097
954 T954M 0.01688818
634 L634F 0.019636212
305 D305H 0.021691606
21 D21H 0.023883493
305 D305N 0.025728784
303 G303D 0.033630895
306 E306K 0.035895245
334 S334N 0.036482638
408 M408T 0.03648867
661 M661K 0.039405753
262 R262Q 0.041757421
31 D31V 0.042837947
581 F581Y 0.043414953
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moderately-disruptive mutations (−2 < log(pw) < −1.3,
corresponding to 0.01 < pw < 0.05) occur not only in the NACHT
domain but also in the PYR domain (between Met1 and Arg100)
and the LRR domain (between Arg550 and Leu800). Additionally,
we observed that most of the mutations we assessed were predicted
to have modest changes to the protein structure, which may be in
part due to the multimeric nature of the functional NLRP3
inflammasome complex, as the effect of modest changes to the
Frontiers in Immunology | www.frontiersin.org 7
monomer NLRP3 would be multiplied when the multimeric
complex is formed. These results demonstrate that severely-
disruptive mutations occur within the NACHT domain, whereas
moderately-disruptive ones occur in all NLRP3 domains.

To determine whether there is any relationship between the
mutations’ disruptive potential and clinical severity, we compared
the score distributions of each NLRP3-AID. We found that the
FCAS had a more negative (i.e., lower) p-weighted score
A

B

D E

F

C

FIGURE 2 | (A) Distribution of NLRP3 mutation pw scores across amino acid positions. (B) Disease-specific mutations scores. Statistical significance was
determined against FCAS by t-test. (C) The proportion of reported mutations for NLRP3-AID and other NLRP3-mutant conditions per pw score. (D) Non-overlapping
disease-specific mutation scores. (E) The proportion of unique mutations for NLRP3-AID and NLRP3-mutant conditions per pw score. (F) The proportion of unique
CINCA/NOMID and FCAS mutations across the NLRP3 domains per clinical severity (mild – dotted; moderate – striped; severe – solid). Statistical significance was
determined against FCAS by t-test. ns, not significant; *p < 0.5, **p < 0.01, ***p < 0.001.
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distribution, and therefore was predicted to have more severely-
disruptive mutations than most other NLRP3-AIDs, including
undefined CAPS, CINCA/NOMID, undefined NLRP3-AID, other
and unknown NLRP3-AID, and mosaic NLRP3-AID (Figure 2B).
Further, when the proportion of disruptive mutations was
examined in all NLRP3-AID, FCAS had the highest proportion of
severely-disruptive mutations (log(pw) < –2) (black bars,
Figure 2C).

It is tempting to assume that the mutations predicted to be
severely-disruptive would correlate with disease severity.
However, our data suggest that there may be an inverse
relationship between disruptive potential and disease severity.
We speculated that large structural changes, such as a large
deletion, could lead to non-functional or degraded proteins,
whereas the effect of modest changes to the functional NLRP3
proteins would be multiplied when the proteins form the
multimeric complex. Alternatively, our observations could be
due to overlap between FCAS and a more severe clinical
phenotype such as CINCA/NOMID or the mosaic NLRP3-
AIDs, since many mutations are reported in more than one
NLRP3-AID.

To address the latter speculation, we reassessed the data using
only mutations unique to each condition. We found that the
enrichment of structurally-disruptive mutations in FCAS versus
CINCA/NOMID remained (Figure 2D). Further, FCAS retained
the highest proportion of moderately-disruptive mutations among
CAPS NLRP3-AIDs and still had more severely-disruptive
mutations compared to CINCA/NOMID (Figure 2E),
suggesting an inverse relationship between disruptive potential
and disease severity. Further analysis revealed that severely-
disruptive and moderately-disruptive mutations of FCAS were
enriched in the NBD and HD2 subdomains of NACHT (solid and
striped blue bars, respectively, Figure 2F). In contrast, for CINCA/
NOMID, the severely-disruptive mutations were enriched in the
WHD while the moderately-disruptive mutations were distributed
relatively evenly across all NACHT domains (solid and striped red
bars, respectively, Figure 2F).

Together, our analysis of NLRP3-AID mutations
demonstrates a surprising inverse relationship between clinical
severity and structurally disruptive mutations. We speculated
that, for mildly- and moderately-disruptive mutations to
correlate with more severe clinical outcomes, there might be
biological consequences that our initial analysis of structural
changes to NLRP3 was unable to identify. Thus, we decided to
investigate severely-disruptive mutations, which have a clear
structural impact, to explore their potential mechanisms to
alter the normal function of NLRP3.

Severely-Disruptive NLRP3 Mutations
Localize Around ATP Binding Pocket
and Alter ATP Binding Affinity
Of the myriad mechanisms regulating the formation of NLRP3
inflammasome (20, 25, 132, 143–149), two critical features are
priming and oligomerization. The stimulation-induced ATP
priming step activates NLRP3 and helps facilitate conformational
changes that mediate adaptor binding (25, 55, 148), whereas
Frontiers in Immunology | www.frontiersin.org 8
oligomerization involves both ASC docking and NLRP3-NLRP3
multimerization (6, 26, 27). Therefore, we explored whether
severely-disruptive mutations of FCAS and other CAPS
mutations affect these critical molecular mechanisms of NLRP3
activation. To understand their functional consequences, we
studied the locations of these mutations in NLRP3 protein.

The cryo-EM structure of NLRP3 has been recently deciphered;
however, its relatively low resolution and co-expression with the
adaptor protein NEK7 may skew the interpretation of how our
mutations affect protein function (132). In order to confidently
perform further structural analyses, we generated several structural
homology models of human NLRP3 using an established protocol
(40) and submitted the protein FASTA to proteinmodeling servers
(41). The top-scoring models were subjected to explicit solvent-
basedMDsimulations (42–45) for refinement (46, 47) and stringent
assessment with structure validation tools (48–50), resulting in a
refinedhomologymodel of qualitywithin one standarddeviationof
the average values for high-resolution protein crystal structures
(further details in the Materials and Methods).

To examine where the mutations occur and interrogate their
biochemical consequences, we plotted all germline mutations onto
our refinedhomologymodel ofNLRP3.Weobserved ahighdensity of
the mutations in and around the NACHT domain (Supplementary
Figure 2). Nearly 45% of severely-disruptive mutations occur buried
within the NBD domain, located explicitly around the ATP binding
pocket, while most moderately-disruptive mutations occur along the
periphery of theNBDdomain instead (Figures 3A, B; boxes highlight
the NACHT domain and ATP binding pocket).We found that, while
these severely-damaging mutations are distributed within separate
subdomains, they are indeed close to one another within the ATP
bindingpocket. Thesemutations includeCys261,Arg262, andAsp305
within theNBDsubdomain,Trp416within theWHDsubdomain,and
Phe525 and Glu527 within the WHD subdomain (Figure 3A,
dashed box).

Since the severely-disruptive mutations are located in the
ATP binding pocket (Figure 3 and Table 2), we quantified the
mutations on relative ATP binding affinity using small-molecule
docking calculations of both ADP and ATP. We analyzed the
wild-type (WT) and the top 10 ranked mutations with the lowest
p-weighted score, predicted to be structurally severely-disruptive
and moderately-disruptive to the protein, and calculated their
respective binding energies and the DDG between ATP and ADP.
The results are summarized in Table 3. While none of the
mutations substantively altered the binding affinity for ADP,
the majority of the mutations predicted to be disruptive to the
protein exhibited an enhanced ATP binding affinity, reflected in
lower DDG values.

We note that this computational modeling has the limitation of
being derived from a homology model, and the extent to which the
ATP binding enhancement occurs may be different when tested in
the laboratory. Nonetheless, our data suggest that one mechanism
of the severely-disruptive mutations is via enhanced ATP binding
affinity, resulting in a greater propensity of these mutants for
NLRP3 activation. The data also suggest that the structural
bioinformatics tools highlight differences in protein-intrinsic
function, such as regulation of NLRP3 activation by ATP priming.
November 2020 | Volume 11 | Article 584364
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CAPS Mutations Differentially Enhance
ATP Binding by Altering Hydrogen-Bond
and Charge Interactions
Next, to understand how ATP priming is facilitated, we analyzed
the ATP binding pocket of WT NLRP3 and the top three most
structurally disruptive mutations: R262W, C261W, and E527V,
which are also the most prevalent in CAPS (Figure 4). ATP is
demarcated by dotted lines in the 2D panels (Figure 4, left
panels): purple dotted lines surround adenosine, and orange
dotted lines surround the triphosphate. In the 3D panels of
Frontiers in Immunology | www.frontiersin.org 9
Figure 4 (right panels), ATP is the stick model with the yellow
label, while NLRP3 is in the ribbon model.

Within the binding pocket of theWTNBD (Figure 4A), ATP is
stabilized by the interactions with Leu232 and His522 (orange
circles and arrows in the 2D and 3D panels, respectively). H-bonds
(green dashed lines) from Ile234, Ile230, Gly231 (out of plane),
Gly229, and Thr233 also stabilize ATP on the triphosphate (green
circles and circle-ended lines in the 2Dand 3Dpanels, respectively).
Furthermore, adenosine is stabilized by H-bonds with the
surrounding residues Lys192, Lys194, and Glu182 (dashed green
A
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D

C

FIGURE 3 | Structurally Disruptive Mutation Sites. Representative locations of (A) severely-disruptive mutations (pw < 0.01; boxes highlight NAIP CIITA HET-E TEP1
(NACHT) domain [solid line] and ATP binding site [dashed line]; inset shows enlarged ATP binding site with labeled mutation sites), (B) moderately-disruptive
mutations (0.01 < pw < 0.05), and (C) mildly-disruptive mutations (pw > 0.05) mapped on our NLRP3 homology model, which excludes mutations in the PYR domain
and beyond Leu943. (D) All germline mutations in PYR mapped on the NLRP3 PYR crystal structure. Severely-disruptive mutations in deep blue, moderately-
disruptive mutations in pale blue, mildly-disruptive mutations in cyan spheres.
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circles and square-ended lines in the 2D and 3D panels,
respectively), and hydrophobic interactions (pink dashed lines)
with Pro412 (pink circle and double arrow in the 2D and 3D
panels, respectively).

We compared the models between WT NLRP3 and that of
R262W(Figure 4B). The R262Wmutation shifts the triphosphate-
and adenosine-stabilizing interactions to enhance ATP binding.
Due to the loss of positive charge and bulky substitution of
tryptophan in the R262W mutation, the site no longer
participates in the direct interactions with ATP within the
binding pocket (R262W is beyond the plane of view). For the
triphosphate, an additional attractive interaction (marked by an
asterisk in the 2D panel) occurs on the first phosphate group from
His522 (orange circle and arrow in the 2D and 3D panels,
respectively). For the adenosine, Gln185 (green circle and square-
ended line in the 2D and 3D panels, respectively) now H-bonds
(green dashed lines) with adenine ring, and the pi-stacking
interaction (orange dashed lines) with Lys194 (yellow circle and
double arrow in the 2D and 3D panels, respectively) is stronger and
more prominent than in the WT, resulting in more favorable
binding with ATP.

Together, themodeling of R262W revealed that the substitution
of tryptophan in the 262 site likely replaced apositive chargewith an
uncharged and bulky amino acid, changing the interactions
between ATP and the ATP pocket to more favorable and
attractive interactions between ATP and other amino acids,
including histidine, glutamine, and lysine. These favorable
bindings with ATP, together with higher baseline levels of
autocrine ATP observed from CAPS monocytes, may explain
why there is more activation of the NLRP3 inflammasome and
IL-1b secretion in CAPS patients (20).

We then explored the impact of the second and third most
structurally disruptive mutations identified in our bioinformatics
analyses: E527V and C261W (Figures 4C, D). Incidentally, these
mutations are specific to CINCA/NOMID and FCAS,
respectively. In the WT structure, Glu527 is involved in a salt
bridge with Arg351, while Cys261 does not directly interact with
ATP (all three sites are outside of the plane of view in Figure
4A). The E527V mutation abrogates the aforementioned ionic
interaction: the Glu527-Arg351 salt bridge, and alters the
positioning of Arg351 to farther into the ATP binding site
Frontiers in Immunology | www.frontiersin.org 10
where it interacts with terminal phosphate of ATP directly,
thus enhancing binding (Figure 4C). Similarly, the C261W
mutation alters the binding pocket as it adds two hydrogen
bond interactions with Gln185 and decreases the intermolecular
distance between the terminal phosphate and the basic residues
in this region of the binding site (Figure 4D).

Similar to the computational modeling of R262W, the study
of the second and third most structurally disruptive mutations,
E527V and C261W, revealed that substitutions at these sites
likely altered the ATP binding pocket interactions such that ATP
more favorably interacts with Arginine (for E527V) and
glutamine (for C261W). Further laboratory study is needed to
verify how these three mutations affect ATP binding.

Next, we extended our examination of ATP binding
enhancement through adding or shifting stabilizing interactions
to a group of 10 FCAS-specific and 40 CINCA/NOMID-specific
mutations in an attempt to determine whether either group
exhibited greater dependency on enhanced ATP binding or other
potential biochemical mechanisms to enhance NLRP3 activation.
Our observations are summarized in Supplementary Table 3.
Among 10 FCAS-specific mutations, three (C261W, L307P, and
G303D) showed differences in ATP binding affinity compared to
WT(DDGcolumn,SupplementaryTable 3). TwoFCASmutations
in proximity to the ATP binding site, L307P and G303D (both are
out of the plane in Supplementary Figures 3A, B), had a much
stronger effect on ATP binding than C261W, and resulted in
repositioning to move the residue further into the ATP site and
directly interacting with the terminal phosphate ofATP, suggesting
that all three among 10 FCAS-specific mutations enhance
ATP binding.

On the other hand, four (E527V, D305G, E306K, and R262Q)
out of 40 CINCA/NOMID-specific mutations had differences in
ATP binding affinity compared to WT (DDG column,
Supplementary Table 3). E306K exhibits enhanced ATP
binding affinity (Supplementary Figure 3C). However, unlike
the other ATP affinity-enhancing mutations, E306K is shifted into
the pocket to directly interact with ATP’s terminal phosphate
(marked with a black asterisk), doubly enhancing ATP’s binding
affinity (Supplementary Table 3). E306K also strengthens the pi-
stacking interaction with Lys194 (yellow circle), repositions
Arg262 to stabilize the terminal phosphate (orange circle
marked with red arrow), and shuffles the H-bonds on both the
adenosine ring and the triphosphate compared to WT (green
dashed lines and green asterisks). However, CINCA/NOMID-
specific D305G and R262Q do not appear to significantly affect
ATP vs ADP binding affinity (Supplementary Table 3),
demonstrating that only two among the 40 CINCA/NOMID-
specific mutations enhance ATP binding.

Overall, the computational modeling of NLRP3 predicts
enhanced ATP binding as a mechanism of NLRP3 activation
in CAPS, indicating that enhanced ATP binding and increased
susceptibility to activation may be one of the primary drivers.
While some findings suggest that the FCAS mutants are more
likely to enhance ATP binding affinity to a higher degree than
mutations specific to CINCA/NOMID, further study is necessary
to verify this observation experimentally.
TABLE 3 | ADP, ATP, and ddG Energies for NLRP3 Mutants.

NLRP3 ADP interaction
energy (kcal/mol)

ATP interaction
energy (kcal/mol)

DDG (ATP-ADP)
(kcal/mol)

WT −9.73 −11.09 −1.36
R262W −9.54 −11.69 −2.15
C261W* −9.61 −11.37 −1.76
E527V# −9.58 −11.99 −2.41
W416L+ −9.83 −11.20 −1.37
D305A −9.68 −11.13 −1.45
R262L+ −9.79 −12.09 −2.30
R262P −9.68 −12.38 −2.70
G757R −9.67 −10.98 −1.31
F525C −9.73 −11.07 −1.34
E527K −9.28 −11.91 −2.63
Phenotype specificity: (*) FCAS, (+) MWS, (#) CINCA/NOMID.
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CAPS Mutations Enhance NLRP3-ASC
Binding and NLRP3 Multimerization
Based on the bioinformatics tools, the PYR domain mutations
are predicted to be either moderately- or mildly-disruptive, but
the bioinformatics tools do not integrate protein-protein
interaction disruption into their algorithms. The inter-protein
interactions that stabilize inflammasome formation and activity
may be significantly affected by the mutations, which yet
remain unexplored.
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Wehypothesized thatPYRmutationsmightpotentially enhance
NLRP3-ASC binding and facilitate inflammasome formation. We
identified nine PYR mutations to evaluate: D31V and V72M from
MWS (Figure 1C); H51R and A77V from undefined CAPS
(Supplementary Figure 1B); D90Y, R100G and R100H in
undefined NLRP3-AID (Supplementary Figure 1C); and D21H
andM70T fromotherNLRP3-AID(SupplementaryFigure1E).As
of this writing, these mutations have not been characterized for
NLRP3 oligomerization. We performed two computational
A

B

D

C

FIGURE 4 | 2D and 3D Interaction Plots of Mutations Affecting ATP Binding. (A, B) 2D and 3D Interaction Plots of wild-type) (WT) NLRP3 and the R262W mutant. (C, D) 2D
and 3D interaction plots of chronic infantile neurologic cutaneous and articular syndrome, also known as neonatal-onset multisystem inflammatory disease (CINCA/NOMID)-
specific E527V mutant and familial cold autoinflammatory syndrome (FCAS)-specific C261W mutant. ATP is demarcated by purple and orange dotted lines in the 2D panel (left
panels). In the 3D panels (right panels), ATP is shown in a stick model with the yellow label, while NLRP3 is shown as a ribbon model.
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modeling analyses and examined mutations that might possibly
affect NLRP3-ASC binding to explore their potential mechanisms.

The NLRP3 inflammasome adaptor ASC is bipartite, having
an N’-terminal PYR and C’-terminal CARD. ASC binds the PYR
domain of NLRP3 through a homotypic domain interaction (55,
148, 150) and the inflammasome effector CASP1 through
another homotypic interaction via its CARD domain. We
performed protein-protein docking studies to examine the
interactions between the PYR domains of NLRP3 and ASC.
Frontiers in Immunology | www.frontiersin.org 12
The domains associate across two different interfaces of ASC,
one involving helices 1 and 4 (type Ia interface; Figure 5A, top)
and the other involving helices 2 and 3 (type Ib interface; Figure
5A, bottom) (150). Our results with WT NLRP3 are in good
agreement with those previously reported (55).

Of the nine mutations reported in the PYR domain, we found
four mutations are present at one of these two interfaces with the
potential to directly affect the intermolecular interactions: H51R,
M70T, V72M, and A77V. However, only the H51Rmutation was
A

B

FIGURE 5 | Protein-Protein Affecting Mutations. (A) Predicted interaction between the pyrin domains of NLRP3 (cyan) and ASC (orange) at either the Type Ia or
Type Ib interfaces. (B) The trimer of NLRP3 monomers (orange, cyan, and purple) with the predicted intermolecular interactions between the wild-type (WT) (Leu266)
or the two identified mutations (L266H and L266R).
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predicted to alter the interaction pattern, which introduced a
salt-bridge interaction between Arg51 on NLRP3 with Asp6 on
ASC (Figure 5A top-right), resulting in an enhanced binding
between PYRs by 2.8 kcal/mol. The rest of the tested mutations
had no direct effect on the interactions, and due to the limitations
of the NMR structure (55), we did not model the R100G or
R100H mutations. While laboratory experiments are needed to
verify enhanced binding, among the four mutations occurring at
the NLRP3-ASC interaction surface, our study revealed that only
H51R was predicted to result in enhanced binding between the
PYR domains of both proteins.

We then hypothesized that some mutations in the NACHT
domain could affect NLRP3-NLRP3multimerization, which is also
vital for inflammasome formation. Therefore, in addition to the
extended examination for changes toATP binding potential for the
group of FCAS-specific and CINCA/NOMID-specific mutants, we
evaluated whether these mutations would affect NLRP3-NLRP3
binding (Evaluation Notes column, Supplementary Table 3). The
NLRP3 inflammasome is believed to form a similar structure to the
NLRC4-NAIP2 inflammasome (151), which was resolved as an 11-
mer (1 NAIP2:10 NLRC4 monomers) complex experimentally.
Thus, mutations that energetically affect NLRP3-NLRP3
oligomerization would be magnified 10-fold and could
profoundly affect inflammasome formation and activity.

To examine which mutations are located at the interaction
interface between NLRP3 monomers in the assembled
inflammasome complex, we generated a trimeric NLRP structure
basedon that of theNAIP2-NLRC4 inflammasomecomplex (Figure
5B) (151).We found that twomutations unique toCINCA/NOMID
at position 266 (L266H and L266R) are located at the interaction
interface. In both cases, each mutant induced the formation of two
additional salt bridges with Asp321 and Glu326 of the neighboring
monomer (Figure 5B insets). We found that these interactions
enhanced the monomers’ binding affinity by 3.4 and 4.2 kcal/mol
for the L266H and L266R mutants, respectively. An inflammasome
complex containing ten mutants would therefore exhibit a
substantial gain in total interaction energy of 34 and 42 kcal/mol,
respectively, thatwould also translate to the greater overall stability of
the oligomeric complex versus one containing onlyWTmonomers.

Altogether, the computational modeling of NLRP3 identified
enhanced inflammasome formation and complex stability as a
mechanism of NLRP3 activation in CAPS. Further study is
necessary to verify this observation experimentally.
DISCUSSION

Though NLRP3 is the common denominator of all NLRP3-
AIDs, the differences in clinical manifestations and disease onset
distinguish them from each other. We identified both mutational
hotspots and unique regions where disease-specific mutations
occur. CAPS generally report mutations in similar regions of the
NACHT domain, while non-CAPS have no apparent pattern.
Among CAPS, FCAS mutations exclusively occur within the
NACHT domain, MWS uniquely has mutations within the PYR
domain while FCAS and CINCA/NOMID do not, and the
Frontiers in Immunology | www.frontiersin.org 13
mutational hotspot between Asp305 and Pro317 seems unique
to CINCA/NOMID. By modeling and comparing sets of FCAS-
specific and CINCA/NOMID-specific mutations, we found that
enhanced ATP binding might be a primary driver toward an
enhanced priming state. We also found mutation-enhanced
protein-protein interactions as another mechanism to enhance
inflammasome formation and complex stability.

Using bioinformatics tools and computational modeling, we
demonstrated that disruptive mutations are enriched in the
NACHT domain, specifically within the ATP binding pocket,
whereas moderately-disruptive mutations are localized outside of
theATPbindingpocket.Weconfirmed thatmutations farther away
from the ATP binding pocket, even within the NBD, had little
bearing on nucleotide (ATP/ADP) binding affinity. Notably, our
analysis revealed an inverse relationship between clinical severity
and predicted mutation severity: the clinically severe phenotype,
CINCA/NOMID, was attributed mostly to moderately-disruptive
mutations while the clinically mild phenotype, FCAS, was
attributed mostly to severely-disruptive mutations. The severely-
disruptive mutations of FCAS were enriched in the NBD and HD2
subdomains. Although they were at opposite ends of NACHT, our
computational modeling shows that they were indeed close to one
another within the ATP binding pocket and played an essential
regulatory role in controllingATPbinding andaccess to thebinding
pocket. On the other hand, severely-disruptive mutations in
CINCA/NOMID were enriched in the WHD subdomain, whose
histidine residues interactmostly with the phosphates of nucleotide
substrates such as ATP and whose structure is thought to impose
specific conformation on the neighboring HD2 domain to lock
NLRP3 in an inactive state (152). Although the inverse relationship
statistically stands out, we expect that complex biology drives it,
which may not be exclusively explained by mutation-induced
structural changes. Our data examining R262W is an excellent
example of this complexity, where the samemutation is responsible
for causing each distinct CAPS phenotype; therefore, there must be
more factors affecting the clinical phenotypes.

Notable modern scoring tools such as Functional Analysis
through Hidden Markov Models (FATHMM) (153) and
Combined Annotation-Dependent Depletion (CADD) (154) have
not been used in case reports or databases mined for variants
included in this study. However, the reliability and track record of
these tools makes them appealing to use in addition to our
combined scoring system. Therefore, as a comparison, we first
used FATHMM to score all 177 mutations (Supplementary Table
4). We compared the 29 variants from Table 2 and the top 29
variants ranked by their FATHMM score and found 8/29 shared
hits: E527V, D305A, F525C, E527K, D305G, L634F, D305H, and
M661K. Incontrast to the top three variants selectedbyourmethod,
R262W, E527V, and C261W, the top three variants selected by
FATHMM were F525C/Y/L, indicating more structural and
functional impacts all occur at the Phe525 site. These three and
the following variants R490K, G571R, I521T, E569A, E569K,
G571A, and T544M comprise the top ten FATHMM selected
structurally-disruptive mutations and are located peripherally to
the ATP binding site within the WHD and HD2 domains. While
experimentally unconfirmed, it appears that the FATHMM scores
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highlight the regulatory WHD and HD2 domains preferentially
over mutations directly affecting the ATP binding pocket.

Next, we used CADD. Due to the CADD’s specific formatting
requirement, limitations to our gathered variant information, and
mismatch of the genetic information encoding many of these
NLRP3 proteomic variants, we only analyzed the 46 mutations
we could obtain from gnomAD (39) (Supplementary Table 4). The
PHRED CADD scores were normalized to ~9 billion SNVs, and
variants scoring 20 or greater indicate that the Raw CADD score
was in the top 1%, giving us confidence that these are likely
disruptive mutations (154). The top eight mutants with a PHRED
CADD score above 20 were T954M, D21H, M70T, R779C, E380K,
E607V, and E327W and R605G. The top two mutations, T954M
and D21H, were included in Table 2. In contrast to FATHMM and
our combined scoring system, there does not seem to be a domain
or subdomain preference highlighted by CADD. Unfortunately, the
T954M variant is outside of our homology model’s limits and may
affect either the oligomerization of the protein or the autoinhibition
exerted by the LRR domain. The two PYR mutations D21H and
M70T were examined in Section 4.5. In addition to scoring the
remaining 131 variants that we could not score using CADD,
experiments are needed to confirm any of the predictions
examined using these algorithms.

NLRP3 function has been tied to cAMP, levels of reactive oxygen
species (ROS), and redox states, among others, and we understand
that mutations in NLRP3 can affect these functions (20, 34, 146,
155). For example, one study determined that the NBD of NLRP3
mediates cAMP binding and that the binding affinity ofWTNLRP3
for cAMP was substantially higher than that of CAPS mutants
D305N, A354V, and F525C (146). As an inactivator of the NLRP3
inflammasome, changes in cAMP levels or cAMP binding affinity
may underscore the difference in activation threshold between
CAPS mutant variants of NLRP3 and WT. Another found that
the monocytes of a MWS patient carrying the R262W mutant
produced the highest amounts of secreted IL-1b with the fastest
secretion kinetics compared to both healthy donor monocytes and
even CINCA/NOMID monocytes (20). Correspondingly, higher
baseline levels of ROS were present in the MWS patient monocytes
as well. One more study compared the redox states between two
related patients, a father and a daughter, carrying the T350M
mutation presenting with MWS and MWS/CINCA overlap,
respectively. The redox states were correlated with disease
severity, and MWS/CINCA overlap monocytes had higher IL-1b
secretion, lower activation threshold, higher levels of ATP secretion,
and more impaired antioxidant response than the MWSmonocytes
(155). While their results seem contradictory to the correlation we
observe, the T350M mutation had mixed results when evaluated
bioinformatically (Supplementary Table 1), similar to the mixed
biological differences found in the previous study. Further cases
testing for redox states and responses between nonoverlap CAPS are
needed to correlate altered redox states with disease severity
definitively. Beyond comparing the two related patients, their
study also found that the production of IL-1Ra, which inactivates
the IL-1b-driven inflammatory response, is impaired in CAPS
(155). These studies show CAPS monocytes exhibit not only
higher baseline ROS, ATP release, and IL-1b secretion but also a
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lower activation threshold resulting in faster IL-1b secretion kinetics
in response to lipopolysaccharide stimulation concurrent with a
depressed oxidative response compared to WT monocytes (20, 34,
155). Thus, molecular experiments are necessary to definitively
determine why we observed more structurally disruptive mutations
in the least clinically severe CAPS and, conversely, why we observed
less structurally disruptive mutations in the most clinically
severe CAPS.

Given that the mutation is a dominant condition, the
inflammasome complexes could consist of a heterogeneous
population of WT and mutant monomers. Because residue L266
is located on the periphery of the NLRP3 protein, it makes no
intramolecular contacts with other residues in either the WT or
mutant state. Therefore, the mutations did not affect the protein
region containing D321 and E326 (Figure 5B insets, a comparison
of three structures), and the neighboring monomer’s interaction
interface was identical, no matter whether L266 was a mutant or
WT. When an inflammasome complex contains a mixed
population of monomers, the total gain in binding affinity and
complex stability would be the gain of each monomer pair
multiplied by the number of mutant monomers in the complex.

While protein-protein interactions between ASC-NLRP3 and
NLRP3-multimers are essential for forming large complexes
such as the inflammasome, the scores for mutations using our
structural bioinformatics tools were either moderately-disruptive
or mildly-disruptive and did not concur with the impact of
enhanced binding affinity we observed when multiplied by the
number of expected monomers in the fully constituted
inflammasome complex. This may be explained by differences
in the mutant monomers’ expression and the potential
heterogeneity of the various inflammasome complexes to the
number of mutant NLRP3 monomers contained therein. Our
results certainly justify a further review of additional activation
mechanisms for complexes such as the inflammasome.

Themodeling studies described here are not intended to serve as
a comprehensive description of each mutation’s mechanism but
rather to examine the effects of selectedmutations located in critical
regions of NLPR3 and tease apart the potential mechanism(s)
playing a role in disease. The findings support the hypothesis that
some of the mutations may result in enhanced activity or a greater
propensity to activate inflammasome formation. However, this
does not preclude additional mechanisms or additional indirect
effects of the other mutations responsible for the observed clinical
phenotypes. For example, mutations in the hinge region or LRR
may result in loss of regulatory inhibition or constitutive activation
of NLRP3. Future studies will delve further into the molecular
mechanics of additional mutations not described here.

While only two of the PYR mutations we identified were from
MWS, the remaining PYR mutants from undefined CAPS and
undefined NLRP3-AID may either be undiagnosed MWS or
share clinical manifestations with MWS. If true, the mutation-
enhanced NLRP3-ASC interactions may be specific to MWS or
MWS-like cases. So far, our analysis only identified mutation-
enhanced NLRP3-NLRP3 interactions in two CINCA/NOMID
mutations, but more mutants may enhance these interactions
under dynamic conditions. Additional studies are necessary to
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evaluate this possibility. Further, these mechanisms may be
specific to CAPS, given some evidence that JIA and non-CAPS
NLRP3-AID do not exhibit similar redox remodeling as CAPS
(20). To that end, other non-CAPS AID such as Bechet’s and
PFAPA may have unique remodeling, and thus further study is
needed to clarify which mechanisms differentiate not only CAPS
but each NLRP3-AID.

In summary, in the current paper, we identified structurally
stabilizing interactions ofNLRP3,which enhanceATPbinding and
are likely to lower the activation threshold for inflammasome
formation and activity observed in CAPS. Another potential
mechanism we identified in CAPS pathogenesis is enhancing
various protein-protein interactions between NLRP3 oligomers or
between NLRP3 and ASC in the assembled inflammasome
complex. These enhanced interactions can favor the formation
and/or stability of the complex as a whole andmay ultimately result
in a greater propensity for inflammasome activation. Although our
modeling efforts did not identify a functional role for all of the
identified mutations, it is possible that under dynamic conditions,
these mutationsmay have an indirect effect of the protein structure
that likewise results in gain-of-function or impaired negative
regulation of the inflammasome. Further MD studies are
necessary to parse out the structural and functional implications
of the othermutations not assessed in the current study, particularly
those localized to the hinge and LRRdomains, andwill be a focus of
future research efforts.
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