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Abstract: Atomic force microscope with applicable types of operation in a liquid 

environment is widely used to scan the contours of biological specimens. The contact mode 

of operation allows a tip to touch a specimen directly but sometimes it damages the 

specimen; thus, a tapping mode of operation may replace the contact mode. The tapping 

mode triggers the cantilever of the microscope approximately at resonance frequencies, and 

so the tip periodically knocks the specimen. It is well known that the cantilever induces extra 

liquid pressure that leads to drift in the resonance frequency. Studies have noted that the 

heights of protein surfaces measured via the tapping mode of an atomic force microscope 

are ~25% smaller than those measured by other methods. This discrepancy may be 

attributable to the induced superficial hydrodynamic pressure, which is worth investigating. 

In this paper, we introduce a semi-analytical method to analyze the pressure distribution of 

various tip geometries. According to our analysis, the maximum hydrodynamic pressure on 

the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a 

cell by several nanometers in compression before the tip taps it. Moreover, the pressure 

calculated on the surface of the specimen is 20 times larger than the pressure without 

considering the tip effect; these results have not been motioned in other papers. Dominating 

factors, such as surface heights of protein surface, mechanical stiffness of protein increasing 

with loading velocity, and radius of tip affecting the local pressure of specimen, are also 

addressed in this study. 
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1. Introduction 

To investigate biological specimens (bio-specimens) in a liquid environment, atomic force 

microscope (AFM) is currently the best tool for measuring surface contours [1,2]. Two techniques 

commonly applied to investigate nano-scalar structures are scanning electron microscopy (SEM) and 

scanning probe microscopy (SPM). However, AFM has greater applicability than SPM for the 

observation of bio-specimens in a liquid environment. Additionally, SEM can be problematic when 

observing specimens containing water, since it must operate in a vacuum chamber. The bio-specimens 

containing water are scattered or smashed when exposed to vacuum. Thus, we pursue an alternative 

technique for AFM of bio-specimens. 

The two basic modes of AFM operation with respect to probing in a liquid environment are the contact 

mode and the tapping mode. In the contact mode, a long or low-stiffness cantilever is equipped to prevent 

damaging bio-specimen in the scanning process [3]. The tapping mode is an advanced technique at which 

the probe tip touches the specimen only at the end of its downward movement. It reduces the contact 

time and the friction forces compared to contact mode AFM. The system measures shifts in amplitude 

or frequency as feedback and control in the scanning process. Compared to contact mode AFM, tapping 

mode AFM is capable of imaging macromolecule surfaces even when the molecules are only weakly 

attached to a substrate. However, the vibrating probe produces pressure and vorticity at the edges 

between the tip and the beam, and these affect the pressure on the specimen. Many studies have discussed 

the dynamics of probes in a liquid environment [1,4], but few have focused on pressure caused by these 

tips. We believe the liquid pressure and vorticity induced by the vibrating tip may deform the geometric 

surface of the specimen, especially when the tip and specimen are close. In this paper, we investigate the 

effects of tips and the pressure on the topography measurement of bio-specimens, such as hexagonally 

packed intermediate (HPI) layer surfaces and extracellular/cytoplasmic purple membrane surfaces. 

A widely adopted method for investigating the hydrodynamics caused by a vibrating probe in liquid 

is the boundary integral formulation, which is a semi-analytical method with a strongly theoretical 

background. Tuck [5] proposed an integral method using infinitely long rigid cylinders with arbitrary 

cross sections to obtain explicit results. The method has subsequently been applied to practical 

applications such as AFM and microelectromechanical systems. Sader et al. [6–8] extended Tuck’s study 

and used it to calculate the hydrodynamic load on an infinitely long rigid beam of zero thickness in a 

viscous fluid. Scherer et al. [9] adopted this and compared these results with the mechanical impedance in 

experiments. Green et al. [10,11] calculated the added liquid-mass by modifying the damping of the liquid 

and considering the normal and torsional modes of AFM so that the frequency shifts of the cantilever 

could be predicted. Alcaraz et al. [12] used a microrheological model to analyze the hydrodynamic drag 

force on the AFM probe and proposed the drag force as a function of tip–specimen distance at low 

Reynolds number. Additionally, the finite element method is helpful for considering the hydrodynamics 

of AFM probes, such as the hydrodynamic loading of the microcantilever [13], the cellular strain 

distributions [14], and the stress at the edge of the specimen [15]. Since researchers have focused on 
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achieving higher resolutions, many papers have focused on the bending mode with higher order terms, 

the torsional mode, the tip jump, and methods for estimating the added mass. However, few studies have 

considered problems from the perspective of the specimen; for example, the added mass loads on the 

specimen when the tip is very close to it. 

The tapping mode has become a widely used technique for scanning bio-specimens. When the tip 

taps the specimen, the system suffers interference from liquid in the small gap between the beam and 

the specimen. At the same time, both the beam and the tip apply pressure to the liquid, and this pressure 

is transferred to the specimen. Generally, the topographies measured by the tapping mode and the contact 

mode is very similar in lateral resolution. However, Möller et al. [16] found that averaged heights of the 

topography of outer HPI layer surfaces and extracellular/cytoplasmic purple membrane surfaces 

measured by the tapping mode were ~25% smaller than those measured by the contact mode. Medalsy 

and Müller [17] found that the mechanical stiffness of a protein and membrane could increase by  

10 times with the loading velocity. Further, it is known that diseases, like cancer, can induce mechanical 

property changes in cells. The property may potentially serve as a useful biomarker in the early detection 

of cancer [18]. Vichare et al. addressed the influence of cell geometry and cell pre-stress on cell stiffness 

measurements [19]. The hydrodynamic pressure may have an impact on the above issues and  

need clarification. 

To quantify the pressure on the surface of the specimen, we focus on the interaction between the tip 

and the specimen. We use the semi-analytical method to obtain the pressure and the vorticity. Here, the 

pressures and vorticity are considered only before the tip contacts the specimen. We consider four tip 

shapes: a cone—shaped tip, a bell—shaped tip, a sharp tip, and a sine-shaped tip. The results show that 

the tip causes deformation before the tip makes contact with the specimen. Furthermore, the maximum 

magnitude of pressure is around 0.5 Pa, which is sufficiently large to deform a specimen’s height by 

several nanometers. Moreover, the pressure calculated on the surface of the specimen is 20 times larger 

than the pressure without considering the tip effect. The model without considering the tip effect is 

widely studied in many papers currently [6–11]. 

2. Mathematical Model 

In this paper, we modified the boundary integral method from that studied by Sader et al. [6], and we 

added the contribution of the presence of a tip in the original model. We make the following six 

assumptions: (i) a two-dimensional model is considered; (ii) the amplitude of oscillation is small 

compared with the characteristic lengths of the cantilever; (iii) the fluid is incompressible; (iv) the 

surfaces on the tip, the cantilever, and the specimen are no-slip; (v) the surface of the specimen is 

considered a plane when compared with the characteristic scales of the tips; and (vi) the thickness of the 

cantilever is small when compared with its width. Since the amplitude of the tapping mode of AFM is 

necessarily small, the assumption that the fluid is incompressible is natural and provides a wavelength 

of vibration exceeding the cantilever’s characteristic length scales. In addition, the nonlinear convective 

inertial effects in the fluid are negligible, and so only the linearized unsteady Navier-Stokes equation 

needs to be considered. 

A beam oscillating with small amplitude in liquid has a Fourier-transformed unsteady  

Navier-Stokes equation: 
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−iωρu = −∇P + η∇2u (1)

∇ ⋅u = 0 (2)

where u(y,z|ω) is the velocity field with two components (v,w), P(y,z|ω) is the pressure, ρ is the density 

of liquid, ω is the angular velocity, and η is the viscosity. The Fourier transform of a function with 

respect to time t is given by x̂(ω ) = x(t)eiω t

−∞

∞

 dt . We introduce a stream function ψ(y,z|ω) so the fluid 

velocity is defined by v(y,z|ω) = ∂ψ(y,z|ω)/∂z and in the y and z direction, respectively. Application of 

Green’s integral theorem results in the following integral representation of the stream function for the 

unsteady Stokes equations:
 

  

ψ ( y ',z ' |ω ) =
C [ψ ( y, z |ω )Gn( y, z | y ',z ') −ψ n( y, z |ω )Ω(y,z | y',z')

−ζ Ψn( y, z | y ', z ') + P Ψ l ( y,z | y ', z) / η]dl
 (3)

where ζ (y,z |ω ) = −∇2ψ (y,z |ω ) is the component of vorticity in the x direction, and the subscript n 

denotes differentiation normal to the boundary of C, out of the flow field while the subscript l denotes 

differentiation along C. Furthermore, G(y,z|y′,z′) is the Green’s function for the Laplace equation; 

Ω(y,z|y′,z′) is the Green’s function for the Helmholtz equation; Ψ(y,z|y′,z′) is the Green’s function for 

Equation (1). Detailed derivation of Equation (3) can be referred to Tuck [5] and Sader et al. [6]. Note 

that the two unknown quantities in Equation (3) are ζ(y,z|ω) and P(y,z|ω). When the cantilever is 

immersed in the fluid, the path of integration in Equation (3) describes a cross section of the system. It 

is appropriate to use the two-dimensional free-space Green’s functions as follows: 

G( y,z | y ',z ') = [log R] / 2π  (4)

Ω( y, z | y ', z ') = −K
0
(σ R) / 2π  (5)

Ψ( y, z | y ', z ') = −[log R + K
0
(σ R)] / 2πσ 2  (6)

in which   R = ( y − y ')2 + (z − z ')2  and K0 is the modified Bessel function of the third kind. 

In the present model, which includes the cantilever, tip, and specimen, we are interested in the 

hydrodynamic loading on the tip to the specimen. The integration path of a cross section of the system 

is shown in Figure 1a. For a cantilever with low thickness, it is apparent that the contour of integration 

is composed of three parts: the beam (beam top Cb+ and beam bottom Cb−), the surface of the tip (tip 

right Cs+ and tip left Cs−), and the planar specimen surface Cw. Since the surfaces of the tip and specimen 

are assumed to be no-slip, the terms ψ and ψn are zero. Equation (3) becomes: 

ψ = [−ζ wΨ
n

+ 1

η
PwΨ

l
]

cw dl + [−ζ b+Ψ
n

+ 1

η
Pb+Ψ

l
]

cb+ dl + [−ζ b−Ψ
n

+ 1

η
Pb−Ψ

l
]

cb− dl

+ [−ζ s+Ψ
n

+ 1

η
Ps+Ψ

l
]

cs+ dl + [−ζ s−Ψ
n

+ 1

η
Ps−Ψ

l
]

cs− dl

 (7)

in which (ζw, ζb+, ζb−, ζs+, and ζs−) and (Pw, Pb+, Pb−, Ps+, and Ps−) are the vorticity and the pressures, 

respectively, on the surface of the specimen, the beam top, the beam bottom, the tip right, and the tip 

left. The paths Cw, Cb+, and Cb− follow the global coordinate system (y,z) and the paths Cs+ and Cs− 

should be transformed to local coordinate systems (ys+,zs+) and (ys−,zs−), as shown in Figure 1b. The path 
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along the surface of the specimen is assumed to be infinite when compared with the tip scale, and so Cw 

extends from y = −∞ to y = ∞. On Cw, we have the differentiations dl = −dy, ∂/∂l = −∂/∂y, and  

∂/∂n = −∂/∂z. In Figure 1b, the path Cb+ extends from y = −b/2 to y = b/2, and the path Cb− separates into 

two parts: (1) Cbl− from y = −b/2 to y = −a/2 and (2) Cbr- from y = +a/2 to y = b/2. We have the 

differentiations dl = dy, ∂/∂l = ∂/∂y, and ∂/∂n = ∂/∂z on Cb−, and dl = −dy, ∂/∂l = −∂/∂y, and  

∂/∂n = −∂/∂z on Cb+. Furthermore, for the Cs+ path, the transformation follows y = ys+cosθ − zs+sinθ and  

z = ys+cosθ + zs+sinθ + ht, where ht is the shortest distance from the top of the tip to the specimen. The 

integration along ys+ is from ys+ = 0 to ys+ = d, where d is the inclined length of the tip. We have the 

differentiations dl = dys+, ∂/∂l = ∂/∂ys+, and ∂/∂n = ∂/∂zs+ on Cs+. For the Cs− path, the transformation 

follows y = ys−cosα − zs−sinα and z = ys−cosα + zs−sinα + ht. The integration along ys− is from ys− = 0 to 

ys− = d. We have the differentiations dl = −dys−, ∂/∂l = −∂/∂ys−, and ∂/∂n = −∂/∂zs− on Cs+. With the 

above, Equation (7) can be rewritten as: 

  

ψ = ζ wΨ
z

− 1

η
PwΨ

y









−∞

∞

 dy + ζ b+Ψ
z

− 1

η
Pb+Ψ

y









− b

2

b
2 dy + −ζ bl−Ψ

z
+ 1

η
Pbl−Ψ

y









− b

2

− a

 dy

+ −ζ br−Ψ
z
+ 1

η
Pbr−Ψ

y









a

b
2 dy + −ζ s+Ψ

zs+
+ 1

η
Ps+Ψ

ys+









0

d

 dy
s+ + ζ s−Ψ

zs−
− 1

η
Ps−Ψ

ys−









0

d

 dy
s−

 (8)

Differentiating Equation (8) with respect to to z' and y' yields the velocity components v and w. This 

allows us to evaluate each integral equation at the specimen surface (z' = 0), the beam surfaces  

(z' = h0 and z' = h1, where h0 and h1 are the locations of the beam top and beam bottom), and the tip surfaces 
(   z '

s+ = h
t
+ y '

s+ sinθ  and z '
s+ = h

t
+ y '

s+ sinθ ). The 12 coupled integral equations for the velocity 

components v and w are listed in Appendix A. Although we only consider the bending mode, Equation (8) 

can be adapted to any AFM operating mode, such as the bending mode or the torsional mode. 

 

(a) (b) 

Figure 1. Cross sections of the system: (a) the integral path of the semi-analytical method 

and the global coordinate system and (b) the local coordinate system of the tip component. 

The normal displacements on the surfaces of the beam and the tip are assumed to be a constant, 

W(y′|ω) = W0, and the displacement on the surface of the specimen is assumed to be zero. There are  

12 boundary conditions. For the horizontal velocities on the surfaces, the following must be satisfied: 
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v( y ',0 |ω ) = 0 for − ∞ ≤ ′y ≤ ∞
v( y ',h

0
|ω ) = 0 for − b / 2 ≤ ′y ≤ b / 2

v( ′y ,h
1

|ω ) = 0 for − b / 2 ≤ ′y ≤ −a / 2

v( y′ ,h
1

|ω ) = 0 for a / 2 ≤ ′y ≤ b / 2

v( y '
s− ,h

t
+ y '

s− sinθ |ω ) = 0 for 0 ≤ ′y
s− ≤ d

v( y 's+ ,ht + y 's+ sinθ |ω ) = 0 for 0 ≤ ′ys+ ≤ d

 (9)

For the vertical velocities on the surfaces, the following must be satisfied: 

w( y '0 |ω ) = 0 for − ∞ ≤ ′y ≤ ∞
w( y ',h

0
|ω ) = W

0
for − b / 2 ≤ ′y ≤ b / 2

w( ′y
L
,h

1
|ω ) = W

0
for − b / 2 ≤ ′y ≤ −a / 2

w( y
R
′ ,h

1
|ω ) = W

0
for a / 2 ≤ ′y ≤ b / 2

w( y '
s− ,h

t
+ y '

s− sinθ |ω ) = W
0

for 0 ≤ ′y
s− ≤ d

w( y 's+ ,ht + y 's+ sinθ |ω ) = W0 for 0 ≤ ′ys+ ≤ d

 (10)

From Equations (A1) to (A12) in the Appendix, Equations (9) and (10) can be simplified to a  

matrix notation: 

A·X = F (11)

in which: 

 (12)

X = ζ w Pw ζ b+ Pb+ ζ bl− Pbl− ζ br− Pbr− ζ s+ Ps+ ζ s− Ps−{ }T

 (13)

F = 0 0 0 W
0

0 W
0

0 W
0

0 W
0

0 W
0{ }T

 (14)

In addition, following Tuck’s dimensionless definition [5], the dimensionless length is ξ = 2y/b, the 

dimensionless pressure is P = b / (2ηW
0
)P , and the dimensionless vorticity is ζ = (b / 2W

0
)ζ . 

Furthermore, the Reynolds number of the flow is defined as Re(ω) = ρωb2/4η, which describes the 

relative importance of the linear inertial and viscous terms in the unsteady Stokes equation. In addition, 

for a beam undergoing normal oscillations in a viscous fluid, the general form of the hydrodynamic force 

(Fourier–transformed) per unit length in the z direction is given by: 

Fz (ω ) = −πiρωb2W0Γ
n(ω ) / 4  (15)

in which the function Γn—a complex-valued function whose real and imaginary parts are proportional 

to the inertial and viscous loading—is defined by: 

Γn(ω ) = i

π Re(ω )
ΔP( y)dy

−b/2

b/2

  (16)
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and ΔP is the difference in pressure between the top and bottom of the beam. 

3. Numerical Results 

We select four different tip types to examine the geometric effects of the tips. These are the sharp 

model, the sine model, the cone model, and the bell model; their geometric properties are listed in  

Table 1. The sharp model and the cone model are typical models in commercial products, while the sine 

and bell models simulate the blunt tips after the tips are overused. The two key perspectives we consider 

are the vorticity and pressure induced by the effect of the tip shapes and by the tip–specimen distance. 

Table 1. The different types of tip geometry. 

Tip Types Appearance 

Cone shape (3 singularities)  

tz y h= ± +  
 

Bell shape (2 singularities)  
22

0
2 2

0

( )
1

( / 2) ( )t

z hy

a h h

−
+ =

−
 

 

Sharp shape (1 singularity)  

[ ] ( )2 22( / 2) ( / 2) ta y a z h= + + −  
 

Sine shape  
1.5 , siny t z t

t

= + π =
−π ≤ ≤ π

 
 

When a tip is close to a specimen, the geometry of the tip dominates the degree of vorticity and 

pressure distribution over the surfaces. Figure 2 shows the normalized vorticity on the surface of the 

cantilever and the specimen, and Figure 3 shows the normalized vorticity on the tip. Here, the gap 

between the tip and the specimen is small, ht/a = 0.1. The tip is (h1 − ht)/a = 2.0 in height and a/b = 0.2 

in width, and the Reynolds number is Re = 1 at low oscillation frequency or on a narrow cantilever. The 

fluid between the cantilever and the specimen may flow in a horizontal direction when the cantilever 

vibrates vertically. Thus, the streamline becomes intermingled, increasing the vorticity. In Figure 2, the 

results from the four tip models are similar, and large vorticity occurs near the corners. In Figure 3, we 

find a dramatic change when we compare the distribution from the sine model to that of the bell model. 

The vorticity of the sine model is much less than that of the bell model because the geometric curve of 

the sine tip has one inflection point and two concaves, and so the vorticity distribution along the tip has 

positive and negative parts. In addition, when we compare the bell model with the cone model, the angle 

between the tip base and the cantilever dominates the value of the vorticity. The cone model has a large 

angle, reducing the vorticity. Moreover, the sharp model has large vorticity at its tip end. 
  



Sensors 2015, 15 18388 

 

 

 

(a) (b) 

 

(c) (d) 

Figure 2. The normalized vorticity in real part over the surfaces of the cantilever and  

the specimen caused by various tip shapes: (a) the sharp model; (b) the sine-shaped model; 

(c) the cone-shaped model; and (d) the bell-shaped model. 

 

(a) (b) 

 

(c) (d) 

Figure 3. The normalized vorticity in real part over the surfaces of the tips: (a) the sharp 

model; (b) the sine-shaped model; (c) the cone-shaped model; and (d) the bell-shaped model. 

The tapping mode AFM with the stationary approach can be understood as thermodynamic cycles. 

Energy is transferred from a mechanical reservoir (cantilever oscillation) to a thermal reservoir  
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(bulk specimen, tip, and surrounding liquid). Then, the energy dissipated per tapping cycle can be 

considered as the net energy density integrated over the interaction area. The normalized pressure 

distributions on the surfaces of the cantilever, the tip, and the specimen are shown in Figures 4 and 5. 

The results show that the sharp tip applies less pressure to the specimen. On average, the major region 

where the energy transferred from the tip in to the bulk specimen is three times the tip base width (~3a), 

excluding the sharp model. The maximum pressure on the specimen, as shown in Figure 4, is ~ 500P = , 

which may deform an erythrocyte, for example, thus reducing the measurement resolution. Accordingly, 

  P = (2ηW
0
)P / b, and we define  η = 1×10−3, so that we have P = W0/b. From these figures, the pressure 

is distributed evenly over 60% of the dimensionless width of the cantilever. Janovjak et al. [20] presented 

an approach for estimating the hydrodynamic effects, thereby allowing an evaluation of AFM force 

measurements recorded over an extended range of pulling speeds. Here, we compare our results with 

their study. The width of the cantilever b = 18 μm, and so 60% of the width is 10.8 μm. Thus, the main 

pressure area is A = 116.64 μm2. Then, the force is F = PA = W0A/b = 6.48W0 pN, and the unit of W0 is 

μm/s. This result agrees with the drag forces measured by AFM cantilevers, as shown in Figure 2a of 

study [20]. 

 

(a) (b) 

 

(c) (d) 

Figure 4. The normalized pressure in real part over the surfaces of the cantilever caused by 

various tip shapes: (a) the sharp model; (b) the sine-shaped model; (c) the cone-shaped 

model; and (d) the bell-shaped model. 

According to   P =~ 500 in Figure 4, we assume W0 =1 and b = 2, so that P = ~0.5 Pa. If we give a 

typical cantilever b = 50 μm, and then the force is F = 0.45 nN. To determine how much the tip affects 
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a specimen without tapping, we simply apply the equation of Hertz model  dz = [3F / (4 Rc E*)]2/3  

to calculate the hydrodynamic indentation depth. Here, we assume the radius of curvature  

of the pressure is Rc = 15 μm. Additionally, the relative Young’s modulus E* is defined as  

1/E* = (1− γ1
2)/E1 + (1 − γ2

2)/E2 ≅ (1 − γ1
2)/E1 for E1 << E2. Here E1, E2, γ1, and γ2 are the Young’s 

moduli and Poisson ratios for the specimen and the tip, respectively. Note that E2 for the tip is  

~150 GPa (a Si3N4 tip) greater than that of the bio-specimen E1 = 4.4 kPa (using the example of an 

erythrocyte) and γ1 is 0.49. As a result, the E* = 5.79 kPa, and the hydrodynamic indentation depth of 

the erythrocyte is calculated to be 61 nm. Further, Möller et al. [16] measured the averaged heights of 

the topography of the extracellular purple membrane surfaces measured from the tapping mode and 

found that there were ~25% smaller than those measured by the contact mode. This example provides 

an opportunity to discuss the indentation depth. In the case study, the stiffness of the membrane is  

k = 1 N/m [17]; the height difference of the maximum protrusion over the lipid bilayer is  

h = 0.5 nm [16]; the tip radius is assumed to be r = 2 nm; and the Reynolds number is assumed to be  

Re = 1. Thus, E1 is approximately 39.8 MPa (E1 = k*h/πr2), and the indentation depth of the membrane 

is 0.134 nm. This rough estimation could be applied to explain why the heights of membranes measured 

by the tapping mode are ~0.1 nm smaller than those measured by the contact mode in the study of  

Möller et al. 

 

(a) (b) 

 

(c) (d) 

Figure 5. The normalized pressure in real part over the surfaces of the tips: (a) the sharp 

model, (b) the sine-shaped model; (c) the cone-shaped model; and (d) the bell-shaped model. 
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Medalsy and Müller [17] showed that the stiffness of the membrane depends on the tip velocity. 

Higher tip velocity increases the membrane stiffness. This phenomenon has been observed on 

extracellular/cytoplasmic purple membrane surfaces. The hydrodynamic effect changes the apparent 

AFM stiffness, and the hydrodynamic force is linearly proportional to the tip velocity. Therefore, the 

hydrodynamic force could be obtained by multiplying the pressure P by the contact area Ac, i.e., 

  FD
= (2ηA

c
P / b)W

0
. In the determination of the membrane biomechanical properties, the overall 

mechanical stiffness, ktotal, consists of a structural attribution to the protein membrane kPM and an 

electrostatic attribution to the electrostatic double layer repulsion kEL.  

ktotal = kPM kEL / (kPM + kEL ) (17)

However, the apparent force should include the hydrodynamic force from the AFM cantilever  

force FAFM:  

FAFM = FD + ktotalΔ = 2ηPW0Ac / b + kPM kEL / (kPM + kEL )Δ (18)

where Δ is the indentation. To study the effective cell stiffness, a uniform radial pre-stress is prescribed 

throughout the cytoplasm, normally 0.5 kPa. The simultaneous equilibration indentation process of the 

AFM tip generally considers both pre-stress and AFM indentation force [19]. Here, the authors claim 

that the hydrodynamic pressure needs to be considered in the simultaneous equilibration. 

 

(a) (b) 

 

(c) (d) 

Figure 6. The normalized pressure in real part over the surface of the specimen by a cone 

tip with various tip–specimen distances (a) ht/a = 1.0; (b) ht/a = 0.5; (c) ht/a = 0.03; and  

(d) ht/a = 0.01. 
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In addition, AFM is a promising approach to measuring mechanisms involved in deterioration and 

refurbishment of the endothelial glycocalyx. Recently, AFM indentation was used detect the thickness 

and stiffness of a glycocalyx. The tip velocity is generally ~1 μm/s, and the hydrodynamic force is 

calculated as 6.8 pN (using our previous result F = 6.48W0 pN). This force is the pre-stress force applied 

to the glycocalyx before the tip contacts it, and the indentation depth is roughly obtained as 17.9 nm  

(the endothelial glycocalyx stiffness is 0.38 pN/nm [21]). The indentation depth is around 4% of the 

thickness of glycocalyx. The vorticity describes the maximum spinning motion of the glycocalyx in the 

area 0.1 < |y/b| < 0.4. When the tip is downward, the shear force induced by the vorticity bends the 

glycocalyx in the direction away from the tip, and the force is too small to damage the glycocalyx. 

For the pressure according to various tip–specimen distances, the cone-shaped tip causes a rapid 

change of pressure on the surface of the specimen. To indicate the contribution from the tip, the solid 

line in Figure 6 shows that the specimen bears considerable pressure inside the region −0.5 ≤ y/b ≤ 0.5, 

and the pressure drops markedly at y/b = ±0.1, which is the region containing the tip. On the other hand, 

the dashed line shows the pressure resulting from the cantilever without the tip. Obviously, the dramatic 

changes in the non-uniform pressure may deform the surface of a specimen. Regardless of distance, the 

pressure of the cantilever with the tip (solid lines) is around 20 times larger than that of the cantilever 

without considering the tip as shown in figure (dashed lines). This is the key contribution of our paper, 

particularly compared with previous studies [6–11], which did not consider the tip effect. 

To analyze the effect of the tip radius on the pressure, we calculate the pressure and vorticity 

distributions on the surface of the specimen. Here, the tip–specimen distance is fixed as a reference,  

ht = a/1000 (where a is the tip width, and we assume a = 10 μm and b = 50 μm), and the radii of the tip 

are a/200, a/400, a/1000, and a/5000 (i.e., 50 nm, 25 nm, 10 nm, and 2 nm, as typically used).  

The pressure along the beam width b on the surface is demonstrated in Figure 7a. When Figure 7a is 

compared with Figure 6c,d, it is obvious that the central influence area shrinks (from |y/b| < 0.1 to  

|y/b| < 1/200) with decreasing tip–specimen distance (from ht/a = 0.03 to ht/a = 0.001). However, the 
pressure difference ,max ,minR R RP P PΔ = −  in the central influence area increases (from ΔPR  = 200–1700) 

with the same decreasing tip–specimen distance. There exists a region where the pressure changes 

rapidly from positive to negative (|y/b| < 1/16). The vorticity distribution also shows the rapid change in 

this region, where the fluid in both sides of the tip may flow in opposite directions when the tip vibrates 

vertically. When we consider the effects of various tip radii, the results shown in Figure 7b indicate small 

changes of the hydrodynamic pressure in this narrow region (−1/200 < y/a < 1/200). The vorticity 

distribution shown in Figure 7d demonstrates zero vorticity in the region (−1/400 < y/a < 1/400) for various 

tip radii. 

Moreover, oscillating modes are useful for investigating the viscous properties of materials. In this 

study, the oscillating frequencies are incorporated into the Reynolds number [Re(ω) = ρωb2/4η]. Note 

that η is the viscosity of the surrounding material. In this study, the normalized hydrodynamic forces Γn 

against the Reynolds numbers are demonstrated in Figure 8, in which ht/a = 0.1. Four different types of 

tips are compared, and the results shows that three tips produce a rapid change in 1 < Re < 6, excluding 

the sharp tip which also has a small pressure on the tip as shown in Figure 5a. Note that the first mode 

of a typical bio-cantilever is in the region, 1 < Re < 20, where Γn changes rapidly. 



Sensors 2015, 15 18393 

 

 

 

(a) (b) 

(c) (d) 

Figure 7. The normalized pressure and vorticity in real part over the surface of the specimen 

by a cone tip at a constant tip height ht/a = 0.001 (a) pressure in global region;  

(b) pressure in local region with various tip radii; (c) vorticity in global region; and  

(d) vorticity in local region with various tip radii. 

 

Figure 8. Normalized hydrodynamic force in real part per unit length for normal oscillation. 

4. Conclusions 

In a liquid environment, an AFM probe operating in the tapping mode affects the system not only by 

shifting the resonance frequency of the cantilever but also by the tip itself inducing hydrodynamic 

pressure on the specimen. We used a semi-analytical method to analyze the pressure and vorticity 

distribution caused by various tip geometries. The results show that the geometric curvature of the tip 

leads to dramatic changes in vorticity and pressure on the tip surface. When the tip moves near the 

specimen, the pressure on the surface of the specimen changes rapidly. At a height of ht/a = 0.1, the 
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hydrodynamic pressure induced by the cone-shaped tip and applied to the specimen surface is ~0.5 Pa, 

which may pre-compress an erythrocyte cell by 61 nm and an extracellular membrane by 0.134 nm. The 

tip velocity also affects the stiffness of a membrane, and the apparent force of AFM may reduce the 

hydrodynamic force. When the tip nears the specimen at ht/a<0.03, the pressure on the surface of the 

specimen changes rapidly; when ht/a = 0.001, the hydrodynamic pressure can be considered a 

concentrated pressure applied to the specimen in region −1/32 < y/b < 1/32. Regardless of the  

tip–specimen distance, the pressure of the cantilever with the tip is around 20 times larger than that of 

the cantilever without considering the tip. Furthermore, the radius of the tip does not affect the 

hydrodynamic pressure in the case where the specimen is assumed to be planar. 
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(a) For the observation points located at Cw, the velocities in the y and z directions are respectively: 
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(b) For the observation points are located at Cb+, the velocities in the y and z directions  

are respectively: 
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(c) For the observation points located at Cbl−, the velocities in the y and z directions are respectively: 
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(d) For the observation points located at Cbr−, the velocities in the y and z directions are respectively: 
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+ ζ s+Ψ
zs+ ys+

' ( y
s+ ,0 | y

s+
' ,h

1
) − 1

η
ps+Ψ

ys+ ys+
' ( y

s+ ,0 | y
s+
' ,h

1
)









dy

s+
' × (−sinθ )

0

d



+ ζ s−Ψ
zs−zs−

' ( y
s− ,0 | y

s−
' ,h

1
) − 1

η
ps−Ψ

ys−zs−
' ( y

s+ ,0 | y
s−
' ,h

1
)









dz

s−
'

0

d

 × cosα

+ −ζ s−Ψ
zs− ys−

' ( y
s− ,0 | y

s−
' ,h

1
) + 1

η
ps−Ψ

ys− ys−
' ( y

s+ ,0 | y
s−
' ,h

1
)









dy

s−
'

0

d

 × (−sinα )
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and: 
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w( y ',h
1

|ω ) =

−ζ wΨ
zy '

( y,0 | y ',h
1
) + 1

η
pwΨ

yy '
( y,0 | y ',h

1
)









∞

−∞

 dy

+ −ζ b+Ψ
zy '

( y,h
0

| y ',h
1
) + 1

η
pb+Ψ

yy '
( y,h

0
| y ',h

1
)









dy

− b
2

b
2

+ ζ bl−Ψ
zy '

( y,h
1

| y ',h
1
) − 1

η
pbl−Ψ

yy '
( y,h

1
| y ',h

1
)









dy

− b
2

− a
2

+ ζ br−Ψ
zy '

( y,h
1

| y ',h
1
) − 1

η
pbr−Ψ

yy '
( y,h

1
| y ',h

1
)









dy

a
2

b
2

+ −ζ s+Ψ
zs+zs+

' ( y
s+ ,0 | y

s+
' ,h

1
) + 1

η
ps+Ψ

ys+zs+
' ( y

s+ ,0 | y
s+
' ,h

1
)









dz

s+
'

0

d

 × sinθ

+ ζ s+Ψ
zs+ ys+

' ( y
s+ ,0 | y

s+
' ,h

1
) − 1

η
ps+Ψ

ys+ ys+
' ( y

s+ ,0 | y
s+
' ,h

1
)









dy

s+
' × cosθ

0

d



+ ζ s−Ψ
zs−zs−

' ( y
s− ,0 | y

s−
' ,h

1
) − 1

η
ps−Ψ

ys−zs−
' ( y

s− ,0 | y
s−
' ,h

1
)









dz

s−
'

0

d

 × sinα

+ −ζ s−Ψ
zs− ys−

' ( y
s− ,0 | y

s−
' ,h

1
) + 1

η
ps−Ψ

ys− ys−
' ( y

s− ,0 | y
s−
' ,h

1
)









dy

s−
'

0

d

 × cosα

 
(A8)

(e) For the observation points located at Cs+, the velocities in the y and z directions are respectively: 

v( y
s+
' ,h

t
+ y

s+
' × sinθ |ω ) =

ζ wΨ zz ' ( y,0 | ys+
' ,ht + ys+

' × sinθ ) − 1

η
pwΨ yz ' ( y,0 | ys+

' ,ht + ys+
' × sinθ )









∞

−∞

 dy

+ ζ b+Ψ zz ' ( y,h0 | ys+
' ,ht + ys+

' × sinθ ) − 1

η
pb+Ψ yz ' ( y,h0 | ys+

' ,ht + ys+
' × sinθ )









dy

− b
2

b
2

+ −ζ bl−Ψ
zz '

( y,h
1

| y
s+
' ,h

t
+ y

s+
' × sinθ ) + 1

η
pbl−Ψ

yz '
( y,h

1
| y

s+
' ,h

t
+ y

s+
' × sinθ )









dy

− b
2

− a
2

+ −ζ br−Ψ
zz '

( y,h
1

| y
s+
' ,h

t
+ y

s+
' × sinθ ) + 1

η
pbr−Ψ

yz '
( y,h

1
| y

s+
' , h

t
+ y

s+
' × sinθ )









dy

a
2

b
2

+ −ζ s+Ψ
zs+zs+

' ( y
s+ ,0 | 0,0) + 1

η
ps+Ψ

ys+zs+
' ( y

s+ ,0 | 0,0)








dz

s+
'

0

d

 × cosθ

+ ζ s+Ψ
zs+ ys+

' ( y
s+ ,0 | 0,0) − 1

η
ps+Ψ

ys+ ys+
' ( y

s+ ,0 | 0,0)








dy

s+
' × (−sinθ )

0

d



+ ζ s−Ψ
zs−zs−

' ( y
s− ,0 | 0,0) − 1

η
ps−Ψ

ys−zs−
' ( y

s− ,0 | 0,0)








dz

s−
'

0

d

 × cosα

+ −ζ s−Ψ
zs− ys−

' ( y
s− ,0 | 0,0) + 1

η
ps−Ψ

ys− ys−
' ( y

s− ,0 | 0,0)








dy

s−
'

0

d

 × (−sinα )

 
(A9)

and: 
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w( y
s+
' ,h

t
+ y

s+
' × sinθ |ω ) =

−ζ wΨ zz ' ( y,0 | ys+
' ,ht + ys+

' × sinθ ) + 1

η
pwΨ yz ' ( y,0 | ys+

' ,ht + ys+
' × sinθ )









∞

−∞

 dy

+ −ζ b+Ψ zy ' ( y,h0 | ys+
' ,ht + ys+

' × sinθ ) + 1

η
pb+Ψ yy ' ( y,h0 | ys+

' ,ht + ys+
' × sinθ )









dy

− b
2

b
2

+ ζ bl−Ψ
zy '

( y,h
1

| y
s+
' ,h

t
+ y

s+
' × sinθ ) − 1

η
pbl−Ψ

yy '
( y,h

1
| y

s+
' ,h

t
+ y

s+
' × sinθ )









dy

− b
2

− a
2

+ ζ br−Ψ
zy '

( y,h
1

| y
s+
' ,h

t
+ y

s+
' × sinθ ) − 1

η
pbr−Ψ

yy '
( y,h

1
| y

s+
' ,h

t
+ y

s+
' × sinθ )









dy

a
2

b
2

+ −ζ s+Ψ
zs+zs+

' ( y
s+ ,0 | 0,0) + 1

η
ps+Ψ

ys+zs+
' ( y

s+ ,0 | 0,0)








dz

s+
'

0

d

 × sinθ

+ ζ s+Ψ
zs+ ys+

' ( y
s+ ,0 | 0,0) − 1

η
ps+Ψ

ys+ ys+
' ( y

s+ ,0 | 0,0)








dy

s+
' × cosθ

0

d



+ ζ s−Ψ
zs−zs−

' ( y
s− ,0 | 0,0) − 1

η
ps−Ψ

ys−zs−
' ( y

s− ,0 | 0,0)








dz

s−
'

0

d

 × sinα

+ −ζ s−Ψ
zs− ys−

' ( y
s− ,0 | 0,0) + 1

η
ps−Ψ

ys− ys−
' ( y

s− ,0 | 0,0)








dy

s−
'

0

d

 × cosα

 
(A10)

(f) For the observation points located at Cs−, the velocities in the y and z directions are respectively: 

v(h
t
+ y

s−
' × sin(α − 90) |ω ) =

ζ wΨ zz ' ( y,0 | ys−
' ,ht + ys−

' × sin(α − 90)) − 1

η
pwΨ yz ' ( y,0 | ys−

' ,ht + ys−
' × sin(α − 90))









∞

−∞

 dy

+ ζ b+Ψ zz ' ( y,h0 | ys−
' ,ht + ys−

' × sin(α − 90)) − 1

η
pb+Ψ yz ' ( y,h0 | ys−

' ,ht + ys−
' × sin(α − 90))









dy

− b
2

b
2

+ −ζ bl−Ψ
zz '

( y,h
1

| y
s−
' ,h

t
+ y

s−
' × sin(α − 90)) + 1

η
pbl−Ψ

yz '
( y,h

1
| y

s−
' ,h

t
+ y

s−
' × sin(α − 90))









dy

− b
2

− a
2

+ −ζ br−Ψ
zz '

( y,h
1

| y
s−
' ,h

t
+ y

s−
' × sin(α − 90)) + 1

η
pbr−Ψ

yz '
( y,h

1
| y

s−
' , h

t
+ y

s−
' × sin(α − 90))









dy

a
2

b
2

+ −ζ s+Ψ
zs+zs+

' ( y
s+ ,0 | 0,0) + 1

η
ps+Ψ

ys+zs+
' ( y

s+ ,0 | 0,0)








dz

s+
'

0

d

 × cosθ

+ ζ s+Ψ
zs+ ys+

' ( y
s+ ,0 | 0,0) − 1

η
ps+Ψ

ys+ ys+
' ( y

s+ ,0 | 0,0)








dy

s+
' × (−sinθ )

0

d



+ ζ s−Ψ
zs−zs−

' ( y
s− ,0 | 0,0) − 1

η
ps−Ψ

ys−zs−
' ( y

s− ,0 | 0,0)








dz

s−
'

0

d

 × cosα

+ −ζ s−Ψ
zs− ys−

' ( y
s− ,0 | 0,0) + 1

η
ps−Ψ

ys− ys−
' ( y

s− ,0 | 0,0)








dy

s−
'

0

d

 × (−sinα )

 
(A11)

and: 
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w(h
t
+ y

s−
' × sin(α − 90) |ω ) =

−ζ wΨ zy ' ( y,0 | ys−
' ,ht + ys−

' × sin(α − 90)) + 1

η
pwΨ yy ' ( y,0 | ys−

' ,ht + ys−
' × sin(α − 90))









∞

−∞

 dy

+ −ζ b+Ψ zy ' ( y,h0 | y
s−
' , ht + y

s−
' × sin(α − 90)) + 1

η
pb+

Ψ yy ' ( y,h0 | ys−
' ,ht + ys−

' × sin(α − 90))








dy

− b
2

b
2

+ ζ bl−Ψ
zy '

( y,h
1

| y
s−
' ,h

t
+ y

s−
' × sin(α − 90)) − 1

η
pbl−Ψ

yy '
( y,h

1
| y

s−
' , h

t
+ y

s−
' × sin(α − 90))









dy

− b
2

− a
2

+ ζ br−Ψ
zy '

( y,h
1

| y
s−
' ,h

t
+ y

s−
' × sin(α − 90)) − 1

η
pbr−Ψ

yy '
( y,h

1
| y

s−
' ,h

t
+ y

s−
' × sin(α − 90))









dy

a
2

b
2

+ −ζ s+Ψ
zs+zs+

' ( y
s+ ,0 | 0,0) + 1

η
ps+Ψ

ys+zs+
' ( y

s+ ,0 | 0,0)








dz

s+
'

0

d

 × sinθ

+ ζ s+Ψ
zs+ ys+

' ( y
s+ ,0 | 0,0) − 1

η
ps+Ψ

ys+ ys+
' ( y

s+ ,0 | 0,0)








dy

s+
' × cosθ

0

d



+ ζ s−Ψ
zs−zs−

' ( y
s− ,0 | 0,0) − 1

η
ps−Ψ

ys−zs−
' ( y

s− ,0 | 0,0)








dz

s−
'

0

d

 × sinα

+ −ζ s−Ψ
zs− ys−

' ( y
s− ,0 | 0,0) + 1

η
ps−Ψ

ys− ys−
' ( y

s− ,0 | 0,0)








dy

s−
'

0

d

 × cosα

 
(A12)
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