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Abstract: Multi-subunit enzymes are protein biopolymers that are involved in many cellular processes.
The enzyme that carries out the process of transcription of mRNAs is RNA polymerase II (RNAPII),
which is a multi-subunit enzyme in eukaryotes. This protein biopolymer starts the transcription from
specific sites and is positioned by transcription factors, which form a preinitiation complex (PIC)
on gene promoters. To recognize and position the RNAPII and the transcription factors on the gene
promoters are needed specific DNA sequences in the gene promoters, which are named promoter
elements. Those gene promoter elements can vary and therefore several kinds of promoters exist,
however, it appears that all promoters can use a similar pathway for PIC formation. Those pathways
are discussed in this review. The in vitro transcribed mRNA can be used as vaccines to fight infectious
diseases, e.g., in immunotherapy against cancer and in nanotechnology to deliver mRNA for a
missing protein into the cell. We have outlined a procedure to produce an mRNA vaccine against
the SARS-CoV-2 virus, which is the causing agent of the big pandemic, COVID-19, affecting human
beings all over the world. The potential advantages of using eukaryotic RNAPII to synthetize large
transcripts are outlined and discussed. In addition, we suggest a method to cap the mRNA at the 5′

terminus by using enzymes, which might be more effective than cap analogs. Finally, we suggest the
construction of a future multi-talented RNAPII, which would be able to synthetize large mRNA and
cap them in the test tube.

Keywords: protein biopolymer; mRNA; transcription; vaccine; immunotherapy; nanotechnology

1. Introduction

Biopolymers are molecules produced by living organisms, which contain monomeric units that are
covalently linked to form larger structures. There are three classes of biopolymers, classified according
to the monomeric units used to form the structure of the biopolymer; first, the polynucleotides
(DNA and RNA), composed by nucleotides; second, the proteins formed by amino acid residues
covalently bound by peptide bonds; and third, the polysaccharides, which are often linear bonded
polymeric carbohydrate structures.

The DNA molecule is the most important biopolymer carrying all the genetic instructions for the
development, functioning, growth, and reproduction of all known organisms. In addition, all cellular
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organisms use messenger RNA (mRNA) to convey genetic information that direct synthesis of specific
proteins. Proteins are biopolymers, which are able to perform most of the cellular functions in
an organism.

Essentially, transcription of eukaryotic mRNA is the process of copying an RNA, using it as a
template of the DNA, which is carried out by the enzymatic protein biopolymer RNA polymerase II
(RNAPII). The template DNA is a double helix and the RNAPII transcription machinery must recognize
the promoter element on the coding strand (or the mRNA-like strand) and copies the mRNA on the
template strand (Figure 1). The transcription process is mainly carried out in three steps, which are
initiation, elongation, and termination [1].
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Figure 1. Description of the DNA template. The top strand is the coding strand or RNA-like strand, 
while the bottom strand is the template strand. +1 is the transcription start site. 

In this review, we will focus on the function of the eukaryotic enzyme RNAPII, which is a 
complex protein biopolymer able to synthetize the mRNA and the functions of additional protein 
factors required by this enzyme in the process of transcription. We will also focus on the design and 
uses of mRNA-based vaccines, mRNA nanomedicines and on the advantages of using eukaryotic 
RNAPII to synthetize functional mRNA. We proposed an idea of how to make a poly-talented 
eukaryotic RNAPII and a chimeric capping system.  

2. Proteins and Core DNA Promoter Elements Involved in the Transcription Process 

The core of the transcription machinery to synthetize the mRNA is the complex protein 
biopolymer RNAPII, which is composed of about 12 to 14 polypeptides subunits (named Rpb) held 
together mainly by strong hydrophobic interactions [2]. The X-ray crystallographic structure of 
budding yeast RNAPII was solved and revealed four mobile elements termed Core, Clamp, Shelf, 
and Jaw Lobe [3]. Although all the four mobile elements are important for the transcription process, 
perhaps one of the more important is a region in which Rpb1 and Rpb2 form the active center of the 
enzyme [3]. In addition, we need to mention another domain contained in the Rpb1 subunit, which 
is named the C-terminal domain (CTD) and which is a hallmark of eukaryotic RNAPII [4]. The CTD 
is able to act as a platform for the assembly of factors involved in the different transcription steps, 
such as initiation, activation, elongation, termination (including 3′ polyadenylation), and mRNA 
processing, which includes 5′ capping and splicing [5].  

The transcription initiation process carried out by core RNAPII requires an additional set of 
protein factors [1]. That set of protein factors, named General Transcription Factors (named TFIIs and 
GTFs), includes the TFIIA (Transcription Factor IIA), TFIIB (Transcription Factor IIB), TBP (TATA 
binding protein), TFIIE (Transcription Factor IIE), TFIIF (Transcription Factor IIF), and TFIIH 
(Transcription Factor IIH) (Table 1) [1]. Although they do not form part of the core RNAPII itself, 
they do perform essential functions during the transcription initiation process and during the 
transcription elongation step. One of the first steps during the transcription initiation process of 
mRNA is the recognition of a sequence element in the gene promoter by a TFII [6]. There are several 
sequence elements found in core promoter elements including the TATA element (TBP binding site), 
BRE (B recognition element), INR (initiator element), DPE (downstream promoter element), and the 
Homology D box element (HomolD-box) found in all promoters of ribosomal proteins encoding 

Figure 1. Description of the DNA template. The top strand is the coding strand or RNA-like strand,
while the bottom strand is the template strand. +1 is the transcription start site.

In this review, we will focus on the function of the eukaryotic enzyme RNAPII, which is a complex
protein biopolymer able to synthetize the mRNA and the functions of additional protein factors
required by this enzyme in the process of transcription. We will also focus on the design and uses of
mRNA-based vaccines, mRNA nanomedicines and on the advantages of using eukaryotic RNAPII to
synthetize functional mRNA. We proposed an idea of how to make a poly-talented eukaryotic RNAPII
and a chimeric capping system.

2. Proteins and Core DNA Promoter Elements Involved in the Transcription Process

The core of the transcription machinery to synthetize the mRNA is the complex protein biopolymer
RNAPII, which is composed of about 12 to 14 polypeptides subunits (named Rpb) held together
mainly by strong hydrophobic interactions [2]. The X-ray crystallographic structure of budding yeast
RNAPII was solved and revealed four mobile elements termed Core, Clamp, Shelf, and Jaw Lobe [3].
Although all the four mobile elements are important for the transcription process, perhaps one of
the more important is a region in which Rpb1 and Rpb2 form the active center of the enzyme [3].
In addition, we need to mention another domain contained in the Rpb1 subunit, which is named
the C-terminal domain (CTD) and which is a hallmark of eukaryotic RNAPII [4]. The CTD is able
to act as a platform for the assembly of factors involved in the different transcription steps, such as
initiation, activation, elongation, termination (including 3′ polyadenylation), and mRNA processing,
which includes 5′ capping and splicing [5].

The transcription initiation process carried out by core RNAPII requires an additional set of protein
factors [1]. That set of protein factors, named General Transcription Factors (named TFIIs and GTFs),
includes the TFIIA (Transcription Factor IIA), TFIIB (Transcription Factor IIB), TBP (TATA binding
protein), TFIIE (Transcription Factor IIE), TFIIF (Transcription Factor IIF), and TFIIH (Transcription
Factor IIH) (Table 1) [1]. Although they do not form part of the core RNAPII itself, they do perform
essential functions during the transcription initiation process and during the transcription elongation
step. One of the first steps during the transcription initiation process of mRNA is the recognition
of a sequence element in the gene promoter by a TFII [6]. There are several sequence elements
found in core promoter elements including the TATA element (TBP binding site), BRE (B recognition
element), INR (initiator element), DPE (downstream promoter element), and the Homology D box
element (HomolD-box) found in all promoters of ribosomal proteins encoding genes (RPGs) in fission
yeast [6–8]. Afterwards, we will compare the promoter recognition of the TATA element and the
HomolD-box element of the RPGs. Once a TFII is able to recognize a promoter element by using a low
affinity DNA-protein interaction, several other ordered protein-protein interactions are produced in
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between the TFIIs to bridge and position the core RNAPII to produce a preinitiation complex (PIC),
which is ready to initiate transcription when all four ribonucleotides triphosphate are added [1,8].
This PIC is a large protein biopolymer with a molecular weight of about 3 M Da [1]. During the
last decade, the X-ray crystallographic structures of several PICs containing different arrangement of
RNAPII, TFIIs (GTFs) and coactivators have been solved and they are reviewed in reference [9].

Table 1. RNAPII, TFIIs (GTFs) and mediators.

TFII Polypeptide Composition Function

TBP 1 Recognize TATA elements and INR

TFIIB 1 Bridges TBP and RNAPII-TFIIF

TFIIF 3 a Helps to recruit RNAPII to the PIC

TFIIE 2 Stabilizes RNAPII-TFIIF to the PIC

TFIIH 10 Kinase and helicase activities

Core
RNAPII 12–14 Synthesis of the mRNA

Mediator 24 b Target of regulatory factors
Bridge the PIC with activator factors

Rrn7 1 In S. pombe, this transcription factor recognizes the
HomolD-box of RPG promoters

a Budding yeast has an extra subunit, which is not essential. In most of the eukaryotic organisms studied, TFIIF has
only two subunits; b The mediator from budding yeast has 24 subunits, however, the mediator from other organisms
might have more than 24 subunits.

The classical pathway described of PIC formation is on core promoters that contain a TATA
element and are described in Figure 2. Core promoters containing a TATA element are bound by TBP,
which follows the binding of TFIIB [1]. Once TFIIB is incorporated into the complex, it follows the
binding of core RNAPII-TFIIF, followed by TFIIE and TFIIH, respectively (Figure 2) [1]. For those
core promoters which do not contain a TATA element (almost 70%), for example those containing
an INR element, TBP in combination with another TFII could be able to recognize this element
(Figure 3) (Maldonado, Edio; unpublished results). Afterwards, the PIC formation is identical to
those containing a TATA element (Figure 3). The gene promoters of RPGs in fission yeast contain a
Homology D box element and this element is recognized by a protein factor named Rrn7, which is
related to TFIIB. Once that this protein factor recognizes the HomolD-box element, a dimer TPB-TFIIB
is able to recognize it. Afterwards, the pathway of PIC formation is exactly as the PIC formation on
TATA-containing promoters (Figure 4) [10].

The PIC formed on those promoters containing TATA, INR or HomolD-box elements in which
only TFIIs and core RNAPII are involved can only specify basal or non-regulated transcription.
Transcriptional activation carried out by specific regulatory factors that bind specific sequences
upstream of the transcriptional start site often needs another multiprotein complex, besides the TFIIs
and core RNAPII. This complex is named the mediator (Table 1) and was first identified in yeast and
soon after in higher eukaryotes [11,12]. In yeast, it is composed of about 24 subunits called Meds,
which can serve as regulatory factor targets [1,11,12]. In agreement with this notion, the Med subunits
can bridge the specific regulatory factors with the PIC composed by the TFIIs and core RNAPII [1,11,12].
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of promoters is the binding of TBP to the TATA element (I), which follows the binding of TFIIB 
through interactions with TBP and the promoter near to the transcription start site (II). After the 
binding of TFIIB, the complex RNAPII-TFIIF is assembled into the complex (III), which follows the 
binding of TFIIE and TFIIH to form a PIC on the promoter (IV). Only the top strand of the promoter 
is shown in the figure for didactic purposes, but the PIC is formed on the double stranded promoter. 
This is also valid for Figures 3 and 4. 

 

 

Figure 2. PIC formation on TATA-containing promoters. The first step of PIC formation on this kind of
promoters is the binding of TBP to the TATA element (I), which follows the binding of TFIIB through
interactions with TBP and the promoter near to the transcription start site (II). After the binding of
TFIIB, the complex RNAPII-TFIIF is assembled into the complex (III), which follows the binding of
TFIIE and TFIIH to form a PIC on the promoter (IV). Only the top strand of the promoter is shown in
the figure for didactic purposes, but the PIC is formed on the double stranded promoter. This is also
valid for Figures 3 and 4.
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Figure 3. PIC formation on an INR-containing promoter. In those promoters that contain an INR, the
complex TBP-TFIIB binds to this element (I) and after the complex RNAPII-TFIIF enters the complex
(II), which follows the binding of TFIIE and TFIIH to complete the PIC formation (III). This model of
PIC formation has not been published yet, but we have determined this pathway using pure RNAPII
and recombinant factors from fission yeast and the nmt1 promoter in which the TATA box was deleted.
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Figure 4. PIC formation on HomolD-box-containing promoters. In the first step of PIC formation,
the transcription factor Rrn7 binds to the HomolD-box (I), which in turn is able to recruit the TBP-TFIIB
complex (II). After TBP-TFIIB are recruited to the complex, it follows the binding of RNAPII-TFIIF (III),
and then the TFIIE and TFIIH are recruited to the complex to form the complete PIC (IV).

3. mRNA as a Tool for RNA-Based Vaccines

The conventional vaccination is one of the major breakthrough in modern Medicine, which have
reduced the incidence of infectious diseases such as measles and completely eradicating others such
as smallpox. However, conventional vaccination has not been effective against another infectious
diseases such as influenza or other emerging diseases such as those caused by Zika and Ebola viruses.
Nowadays, we are facing a devasting pandemic all around the world caused by the SARS-CoV-2
virus which causes the COVID-19 disease. This pandemic has caused millions of infected people
and several thousands of deaths. Additionally, this pandemic is devasting the economies of most
of the countries. mRNA-based vaccines could have a great impact to fight this virus, since mRNA
vaccines are faster and cheaper to produce than conventional vaccines. In addition, this process can
be standardized and scaled to allow a quick response to this pandemic. Besides, an mRNA-based
vaccine is safer both for the personal that produces it and for the patient, since it does not use highly
infectious viruses. Taken altogether, we suggest a strategy (Figure 5) to develop an mRNA-based
vaccine against SARS-CoV-2 by targeting the spike S protein (S protein) which binds to membrane
ACE2 (angiotensin-converting enzyme 2) receptors. ACE2 receptors can be found in several organs
such as lungs, heart, kidneys and the gastrointestinal tract, which are the SARS-CoV-2 targets.
We could expect that once the mRNA encoding the S protein is delivered into the myocytes of the
muscle, it will be translated and secreted and taken up by macrophages, dendritic cells and other cells
of the immune system to be presented to T and B cells. Once a B cell response is mounted, the resulting
antibodies could block the binding of the virus to the ACE2 receptors and thus prevent the virus to
enter to the target cells. In addition, activated T cytotoxic cells can help to destroy the invading virus
(Figure 5).
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Figure 5. Schematic procedure to produce an mRNA vaccine against SARS-CoV-2. From the analysis
of the amino acid sequence of the S protein an antigenic region can be predicted. Whenever possible,
a region of the S protein which is less prone to mutations should be selected. The amino acid sequence
of the selected region can be back translated to DNA nucleotide sequence and it can be chemically
synthetized according to the codon usage. Afterwards, this DNA sequence can be cloned into a DNA
plasmid vector, as described in Figure 6, and used for in vitro transcription (IVT) by using a RNA
polymerase to produce an mRNA that can be 5′ capped to be fully functional. This mRNA can be
coated with lipid nanoparticles and delivered to the myocytes to be translated by the cell ribosomes.
The resulting antigens will be secreted and take up by macrophages and dendritic cells, which will
process and present the antigen to the immune system cells to activate both humoral (antibodies)
and cellular (cytotoxic) immune responses.
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Figure 6. Schematic representation of a plasmid DNA template used to produce an mRNA-based
vaccine. This template contains the basic elements to produce a functional mRNA. A promoter is
needed for the RNA polymerase to start transcription at the +1 site. The 5′ UTR is added to enhance
the translation and the stability of the mRNA and the ORF contains the coding sequence of the antigen,
which could be synthetized according to the codon usage to enhance the translation process. Finally,
a poly T of at least 200 nucleotides is needed to produce a poly A tail on the mRNA. After, the template
is transcribed (in vitro transcription, IVT) using RNA polymerase and ribonucleotides to produce an
mRNA, which should be 5′ capped to produce a functional mRNA to be used as vaccine.

Messenger RNA can be used in Biotechnology and Medicine as RNA vaccines against infectious
diseases and also in cancer immunotherapy to deliver multiple antigens with one immunization [13,14].
RNA vaccines might have several advantages over DNA-based vaccines, since they only need to reach
the cytoplasm, are more immunogenic and do not possesses oncogenic potential via integration into
the host genome [13,14].

Typically, RNA-based vaccine consists in a functional mRNA encoding an antigen, which is
delivered into the cellular cytoplasm of target cells where it can be translated via poly-some
formation [15]. There are different non-viral strategies for the delivery of mRNA-based vaccines,
including naked mRNA vaccines, gene gun delivery method, protamine condensation of the mRNA,
adjuvants and encapsulated mRNA-based vaccines. The strategy of using naked mRNA vaccines
uses only mRNA formulated in a buffer and injected directly into the individual [16]. The gene gun
delivery is an alternative method of mRNA delivery directly into the cell cytoplasm [17]. Specifically,
it is a nanotechnology method in which the mRNA is coated onto gold particles, which are then
accelerated toward a stopping plate by a helium pulse and penetrated into the cytoplasm of target
cells [17]. Another method to improve mRNA stability is incubating it with protamine and inject this
protamine-protected mRNA into the individual [18]. Additionally, the mRNA can be injected with
molecules such us poly I:C RNA and CpG- containing motif molecules [19]. Lastly, another method,
based on nanotechnology, has been used to deliver mRNA-based vaccines. Nanoparticles of cationic
liposomes have been used to protect and deliver mRNA vaccines into the individuals [20,21].

The mRNA-based vaccines can be used to immunize against infectious diseases and several types
of cancer [22]. Immunization against the Zika virus and against the rabies virus with mRNA-based
vaccines are only two cases where this immunization procedure shows promising results [22–24].
Both mRNA-based vaccines were delivered by using nanoparticles of cationic liposomes in mice. The
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vaccines provided protection against lethal doses of virus in those immunized mice [22–24]. On the
other hand, mRNA-based vaccines have been used to immunize against several types of cancer [13,14].
This strategy relies on the generation of a host immune response against specific tumor-associated
antigens by the cytotoxic T cells, which are able to recognize and kill tumor cells. Once the mRNA-based
vaccine is delivered into the cytoplasm of antigen presenting cells (mainly macrophages), the resulting
antigen is presented together with MHC class I molecules to CD4+ T cells, activating a cellular response
that leads to the destruction of the tumor cells. Additionally, the mRNA can act as an adjuvant
and provide costimulatory signals via toll-like receptors. To illustrate this strategy, we describe two
examples. An mRNA-based vaccine against malignant melanoma was developed using the injection of
naked mRNA encoding melanoma-associated antigen [25]. In addition, another mRNA-based vaccine
was developed against triple-negative breast cancer by delivering mRNAs encoding tumor-associated
antigens into cationic liposomes [26].

4. Other Uses of mRNA as Nanomedicines

The mRNA also has other applications in nanomedicine, including protein replacement, gene
editing, regenerative medicine and monoclonal antibody production. The application of mRNA for
protein replacement therapies is intended for the supplementation of proteins that are not expressed
or not functional and also for the expression of foreign proteins that are able to activate or inhibit
cellular pathways. These therapies have been mainly used to target diseases in organs such heart, lung,
and liver. For example, diseases such as hemophilia B, cystic fibrosis or Fabry disease are the subject of
clinical trials [27–29]. On the other hand, gene editing is a new therapeutic option to treat a variety of
genetic diseases and this technology uses programmable nucleases, which are able to perform a double
stranded break at specific target locations of the genome in the presence of a guide RNA that directs
the nuclease to the target sequences (CRISPR/Cas9). The gene editing nuclease can be delivered, as the
mRNA form together with the guide RNA, and it has achieved greater editing efficiency [30]. The goal
of regenerative medicine is to replace or repair cells which have been injured or lost and restore the
normal function of damaged organs. The regeneration process requires functional proteins including
cytokines, transcription and growth factors which control cell growth, cell differentiation, and cell
migration, which can be delivered in the mRNA form into cells. One example of this is the generation
of insulin secreting B-cells for type 1 diabetes [31]. In addition, passive immunization with mRNA
encoding monoclonal antibodies is gaining great biomedical interest. In small rodents, the injection of
mRNA encoding monoclonal antibodies have demonstrated the production of antibody titers [32].

5. Basic Elements to Design an mRNA-Based Vaccine

A keen awareness of mRNA biology is vital at the time of developing an mRNA-based vaccine.
Most, if not all, of eukaryotic mRNAs are composed of a coding region (ORF) flanked by a 5′ and 3′

untranslated regions (UTR), a 5′ 7-methylguanosine triphosphate (m7G) cap and also a 3′poly (A) tail
(Figure 6). It would also be important to back-translate the amino acid sequence of the ORF to DNA
sequence and use the optimal codon usage and chemically synthetize a DNA template to produce an
mRNA which could be more stable and a better template for translation. All of those elements are
critical for mRNA stability and translation. Although, the poly (A) tail and the UTR can be included
into the DNA template used for transcription, the m7G must be capped with cap analogues, which is
not 100% efficient, and thus a portion of the mRNA transcripts are not capped at all [21]. The resulting
uncapped mRNA cannot be efficiently translated and thus the mRNA serving as templates for protein
translation is much less. To circumvent this, we would suggest an enzymatic approach using the
human methyltransferase and capping enzymes (Figure 7), both of them first cloned and expressed
in our laboratories [33,34]. However, both enzymes have not been expressed in scale for commercial
purposes, thus hampering this approach.
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Figure 7. Outline of a procedure to produce a functional mRNA using eukaryotic RNAPII.
The plasmid DNA template contains a super core promoter (SCP) and an upstream GAL4 binding
site. Transcription starts at the +1 site, which is followed by an UTR (untranslated region) and an ORF
containing the coding region to produce the polypeptide chain. A poly T tail is included in the template
to produce a poly adenylated mRNA. The template is mixed with a highly active whole cell extract
(WCE) from fission yeast, plus GAL4-VP16 activator and subjected to ultracentrifugation through a
glycerol gradient (5–15%). Afterwards, those templates containing a fully assembled PIC are selected
and used for transcription by adding ribonucleotides, together with methyltransferase and capping
enzymes (capping system) plus the necessary precursors to form a m7G cap. The produced mRNA can
be used as an mRNA vaccine.

6. Advantages of Using Eukaryotic RNAPII to Synthetize mRNA

Usually, the mRNA is synthetized “in vitro” using bacteriophage RNA polymerases, which are
highly actives. However, these RNA polymerases can only synthetize an mRNA up to 5 Kb long.
Eukaryotic RNAPII is able to synthetize mRNAs over 50 Kb or longer. In addition, RNAPII is less error
prone than bacteriophage RNA polymerases, which is important to avoid mutations or the creation of
stop codons.

By the present, all TFIIs necessary for transcription are cloned and expressed and it is possible to
purify core RNAPII, thus allowing us synthesize mRNA in a test tube with all proteins of eukaryotic
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origin. Recently, Fujiwara and Murakami have reported a method to assemble large amounts of
PIC using purified TFIIs and RNAPII from budding yeast [35]. Those PICs were assembled and
purified further using glycerol gradient sedimentation [35]. We have also been attempting to assemble
PICs from fission yeast by using whole cell extracts, which contain a full set of TFIIs, RNAPII and
regulatory factors (Maldonado, E., unpublished results). For those experiments we used a DNA
template containing a super core promoter (SCP) based on the work of Gershon and collaborators [36]
and we added a GAL4 binding site upstream of the TATA box to allow strong in vitro transcription
activation by the powerful GAL4-VP16 chimeric transcription factor. Those PICs have been assembled
and further purified by the use of glycerol gradient sedimentation (Figure 7). The isolated PICs are
highly active in transcription initiation and elongation and RNAs of more than 2 Kb long can be
obtained. We think that by the use of similar methods it is possible to obtain large amounts of in vitro
transcribed mRNA using eukaryotic RNAPII. Moreover, eukaryotic methyltransferase and capping
enzymes can be added to the in vitro reaction together with precursors for the m7G. This point is very
important since it has demonstrated that capping is a co-transcriptional process [33,34].

In the near future, we could image that a multitalented recombinant polypeptide of eukaryotic
origin would be able to recognize the promoter in the DNA template and perform the elongation of the
mRNA chain. To engineer this multitalented polypeptide, we must know all fundamental and necessary
domains in each of the individual subunits of core RNAPII and TFIIs involved in the recognition of the
promoter and in the function of transcription elongation. Moreover, another polypeptide containing
methyltransferase and capping activities could be engineered to add the m7G cap on all the mRNAs to
produce a template 100% efficient for translation. This would be an important advance on protein
biopolymers able to synthesize mRNA for uses in mRNA-based vaccines.

7. Conclusions

In this review, we have described the PIC formation process on eukaryotic TATA-containing
promoters and additionally the PIC complex formation on two eukaryotic non-TATA promoters,
such as HomolD box and INR-containing promoters, in which the mechanisms of PIC formation are
not fully understood yet.

A strategy is outlined to develop an mRNA-based vaccine to fight the SARS-CoV-2 virus, which is
causing the devasting COVID-19 disease at the present-days. In addition, we reviewed the main
applications of the mRNA-based nanomedicines and their potential therapeutic uses. Some of the
mRNA-based vaccines have moved forward to clinical trials. In the case any mRNA-based vaccines
were successful; these processes will be streamlined to establish a large scale-production platform and
in near future mRNA vaccines will be used in humans and animals as well.

The main problems facing in vitro transcription of mRNA is the 5′ capping of the transcribed
mRNA and the size of the transcript that can synthetize a viral RNAP. We have suggested an in vitro
system using eukaryotic RNAPII, which is able to synthetize longer transcripts of up to 50 Kb long.
The in vitro transcription setup is highly active and includes the capping system, which can synthetize
the m7G cap in a co-transcriptional manner and makes the whole process more effective. Since,
the in vitro transcription system used is rather simple, the functional mRNA product can be easily
purified and used as a vaccine.
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