
Evolutionary Applications. 2021;14:893–901.     |  893wileyonlinelibrary.com/journal/eva

1  | INTRODUC TION

The major technological breakthroughs made during the last 
20 years allowed the analysis of many biological processes at the 
single- cell level and revolutionized molecular biology. Molecular and 
cellular processes do not occur deterministically. A precise molecular 
process can exhibit a great variability in the sequence of its steps and 
in its final products that generates a very large degree of intercellular 
and intermolecular heterogeneity.

Especially, results obtained on individual cells and molecules 
have invalidated the deterministic view of gene expression. As the 
reactions governing gene expression involve a small number of mol-
ecules, it was previously assumed that they may exhibit random 
fluctuations, a phenomenon often called gene expression noise 

(McAdams & Arkin, 1999). These stochastic fluctuations in gene ex-
pression started to be finely quantified in the early 2000s when the 
rate of protein synthesis was measured in genetically identical cells 
placed in a homogeneous environment (Blake et al., 2003; Elowitz 
et al., 2002; Ozbudak et al., 2002; Raser & O'Shea, 2004). The role 
of molecular interactions within chromatin has been emphasized in 
the generation of this variability. In particular, regulatory proteins as-
sociate probabilistically with chromatin and produce cell- to- cell vari-
ability in gene expression (Voss et al., 2009). Also, evolution due to 
selection arises through variability and heritability of fitness- related 
features, and feedback regulations were shown to be important 
modulators for both variability and phenotypic heritability. Positive 
and negative feedback regulation can affect the level of variability, 
and positive feedback can preserve phenotypic states over many 
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Abstract
Genetic variability, epigenetic variability, and gene expression variability (noise) are 
generally considered independently in their relationship with phenotypic variation. 
However, they appear to be intrinsically interconnected and influence it in combina-
tion. The study of the interplay between genetic and epigenetic variability has the 
longest history. This article rather considers the introduction of gene expression vari-
ability in its relationships with the two others and reviews for the first time experi-
mental evidences over the four relationships connected to gene expression noise. 
They show how introducing this third source of variability complicates the way of 
thinking evolvability and the emergence of biological novelty. Finally, cancer cells are 
proposed to be an ideal model to decipher the dynamic interplay between genetic, 
epigenetic, and gene expression variability when one of them is either experimentally 
increased or therapeutically targeted. This interplay is also discussed in an evolution-
ary perspective in the context of cancer cell drug resistance.
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cell generations (Becskei et al., 2001; Becskei & Serrano, 2000; 
Nevozhay et al., 2009, 2012).

Different sources of gene expression variability have been dis-
tinguished: The intrinsic (allele- specific) variability is actually related 
to the random protein binding events on the gene or mRNA regu-
latory regions, while the extrinsic variability refers to fluctuations 
that originate from sources affecting multiple alleles, thus related to 
the underlying cell state and metabolism of each cell (Elowitz et al., 
2002) (e.g., different number of ribosomes or RNA polymerases, 
different cell size or cell cycle stage, spatial (micro- )environmental 
variability…) [see (Foreman & Wollman, 2020) for a recent demon-
stration of the major role of the extrinsic component in mammalian 
cells]. Thus, the expression level of a protein in a cell population re-
flects the probability of gene expression in each cell (Kaern et al., 
2005). Changes in the mean expression level in the population are 
the consequence of changes in the probability of its expression in 
each cell.

All the major fields of molecular and cellular biology are now 
aware of the necessity to take into account this source of nonge-
netic heterogeneity: This important contributor to phenotypic diver-
sification can have important consequences from developmental to 
evolutionary processes (Ackermann, 2015; Eling et al., 2019; Raj & 
van Oudenaarden, 2008). However, its relationships with other pro-
cesses that produce phenotypic variation by acting at the genetic or 
epigenetic level are only partly deciphered.

The interplay between genetic, epigenetic, and gene expres-
sion variability is summarized in Figure 1. Comprehensive reviews 
on the relationships between genetic and epigenetic variability 
have been provided elsewhere, especially in the onset of cancer 
hallmarks (Shen & Laird, 2013). For instance, they influence each 
other in cancer cells through genetic modifications of genes coding 
for chromatin modifiers on the one hand and epigenetic modifica-
tions of promoters of genes involved in genetic stability on the other 

hand. The present article rather considers the introduction in this 
interplay of the third category— that is, gene expression variability. 
Each one of the four arrows connected to gene expression variability 
(Figure 1) is examined.

Genetic and epigenetic influences on gene expression variability 
begin to be well characterized (Eling et al., 2019; Sanchez & Golding, 
2013), while the reverse relationships are poorly explored. This ar-
ticle aims for the first time at both giving up- to- date description of 
the formers and highlighting recent works investigating the possible 
consequences of the latters, especially the influence of gene ex-
pression variability over epigenetic variability that just starts to be 
investigated.

2  | INFLUENCE OF GENETIC VARIABILIT Y 
OVER GENE E XPRESSION VARIABILIT Y

The influence of genetic variability over gene expression variability 
is by far the most studied relationship among the four considered 
here. Since the seminal works in the early 2000s on noise in bacteria 
(Elowitz et al., 2002) and yeast (Blake et al., 2003; Raser & O'Shea, 
2004), the genetic determinants and cellular constraints on noisy 
gene expression were well described (Sanchez & Golding, 2013). 
Especially, the influence of genetic variations in gene promoters and 
other cis- elements over the level of noise has been widely studied, 
especially in eukaryotic cells. Studies on the effect of promoter ar-
chitecture identified the main genetic determinants that modulate 
transcriptional burst frequency and size (the average number of 
mRNAs synthesized during a burst of transcription) and thus intrinsic 
noise [for a recent update on the concept of transcriptional bursting, 
see (Tunnacliffe & Chubb, 2020)].

In bacterial cells, it was soon shown that expression noise 
is affected at both the transcriptional and translational levels, 

F I G U R E  1   Interplay between genetic, epigenetic, and gene expression variability. The three sources of biological variability studied here 
are interconnected. Question marks indicate largely unexplored relationships. For each relationship, few examples are given (see the text for 
details and references)
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translational bursts having the largest effect on cell- to- cell variabil-
ity (Ozbudak et al., 2002; Thattai & van Oudenaarden, 2001). On the 
contrary, transcriptional bursting was assumed to be the major de-
terminant in eukaryotic cells (Bar- Even et al., 2006; Blake et al., 2003; 
Newman et al., 2006). High expression variability in prokaryotes re-
sults predominantly from low transcription and efficient translation 
(Ozbudak et al., 2002; Thattai & van Oudenaarden, 2001), with the 
consequence that noise can be reduced by less efficient ribosomal 
binding sites or mutations in the start codon (Ozbudak et al., 2002). 
Nevertheless, later works on Escherichia coli suggested that tran-
scription and translation contribute to expression variability at ap-
proximately the same level in prokaryotes (Guimaraes et al., 2014). 
This was corroborated by a genome- wide study showing that half 
of the E. coli promoters has significant promoter- specific levels of 
noise (Silander et al., 2012). This level can be tuned in these cells by 
changing promoter- specific features such as repressor- binding site 
sequences (Jones et al., 2014).

In Saccharomyces cerevisiae, genes with TATA box- containing 
promoters show higher variability than the other genes (Newman 
et al., 2006; Zaugg & Luscombe, 2012; Zhang et al., 2009) and mu-
tations in TATA box decrease promoter- mediated expression noise 
(Blake et al., 2006; Hornung et al., 2012; Raser & O'Shea, 2004). This 
relationship has also been observed in mammalian genomes (Faure 
et al., 2017; Larsson et al., 2019; Ochiai et al., 2020; Tantale et al., 
2016; Zoller et al., 2015) where genes with TATA elements have 
larger burst sizes and intrinsic variability compared to genes without 
such elements (Larsson et al., 2019; Ochiai et al., 2020), even if other 
works found negligible function of TATA box in regulating expression 
noise in human embryonic cells (Wu et al., 2017).

Transcription factor (TF)- binding sites strength, number, and 
position also have an influence (Sanchez et al., 2013; Sanchez & 
Golding, 2013): For instance, promoters with more TF- binding 
sites exhibit higher expression variability (Sharon et al., 2014; To & 
Maheshri, 2010), which might due to the stochasticity of TF bind-
ing and falling off (Sanchez et al., 2013). Moreover, noise increases 
when a repressor- binding site is moved closer to the TATA box within 
a promoter in yeast (Murphy et al., 2007). Recent works showed 
that the presence of several transcription regulators in promoters 
is positively correlated with burst size, while those bound to en-
hancers are poorly correlated (Ochiai et al., 2020), suggesting that 
burst size is primarily controlled at the core promoter level. On the 
contrary, distal enhancers mainly control burst frequency and thus 
noise (Bartman et al., 2016; Fukaya et al., 2016; Larson et al., 2013; 
Larsson et al., 2019; Ochiai et al., 2020).

Finally, other effects of local sequence architecture should be 
highlighted. Especially, transcriptional variability decreases with 
the number of transcriptional start sites (TSSs) and the presence 
of CpG islands in gene promoter, TSS, and gene body (Faure et al., 
2017). Other works showed that CpG island size is negatively cor-
related with expression noise (Morgan & Marioni, 2018). Similarly, 
polynucleosome- disfavoring sequences in promoters confer lower 
transcriptional variability (Sharon et al., 2014). Indeed, according to 
the simplest model of promoter activation with two alternative— OFF 

(silenced) and ON (initiated)— states (Tunnacliffe & Chubb, 2020), 
switching between ON and OFF states should reflect chromatin 
remodeling (Golding & Cox, 2006), with nucleosome- binding sites 
generating transient open states leading to transcriptional burst-
ing, which generates more variability in gene expression (Sanchez & 
Golding, 2013) (see below).

Given these multiple influences of cis- elements, genetic vari-
ations are expected to modulate transcriptional variability. For in-
stance, the mutational effects on mean and noise of a large number 
of natural yeast promoter variants were revealed (Liu et al., 2015; 
Metzger et al., 2015). Especially, promoter mutations increasing 
noise appear to be under purifying selection (Metzger et al., 2015). 
As suggested by previous works on synthetic promoters (Blake et al., 
2006), promoter engineering toward such enhancement can be 
highly beneficial in stressful conditions (Liu et al., 2018). Later works 
with mutant alleles of the TDH3 promoter in yeast indeed demon-
strated the fitness effects of modifications of gene expression vari-
ability through genetic variation (Duveau et al., 2018). The fitness 
effect of mutations in 33 yeast promoters was also used to more 
globally study the fitness landscape of mean- noise expression space 
(Schmiedel et al., 2019). It revealed that enhanced variability is det-
rimental for many genes in normal conditions (while this would not 
be necessarily the case in stressful conditions). It also showed the 
importance of considering the interplay between genetic and gene 
expression variability in the understanding of the mechanisms that 
shape variation in cis- regulatory sequences.

3  | INFLUENCE OF EPIGENETIC 
VARIABILIT Y OVER GENE E XPRESSION 
VARIABILIT Y

Epigenetic mechanisms have also strong effects on gene expression 
variability. Mutations in chromatin remodelers clearly affect this phe-
nomenon in yeast (Weinberger et al., 2012). Among the cis- elements 
mentioned above, several impact chromatin properties, especially 
nucleosome occupancy. Promoters with nucleosome- binding sites al-
ternate between silenced or open states. Their transient opening and 
reclosing leads to transcriptional bursting events of variable duration 
and frequency, generating cell- to- cell variability in gene expression 
(Sanchez & Golding, 2013). Especially, nucleosome density around 
TSSs influences burst frequency (Brown et al., 2013; Dey et al., 2015) 
and expression noise (Small et al., 2014; Tirosh & Barkai, 2008). This is 
why promoters with polynucleosome- disfavoring sequences exhibit 
less noise: Their presence produces higher burst frequencies and 
thus leads to lower cell- to- cell heterogeneity (Sharon et al., 2014).

First, as high nucleosome occupancies are associated with TATA 
elements and highly variable genes (Tirosh & Barkai, 2008), the pres-
ence of a TATA box is expected to impact expression through the nu-
cleosome architecture favored by this element. Indeed, a qualitative 
model for nucleosome positioning in yeast showed that nucleosome 
positioning in TATA- containing promoters increases transcriptional 
variability (Zaugg & Luscombe, 2012). Similarly, promoters containing 
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both TATA boxes and nucleosome- occupied TF- binding sites exhibit 
such high expression noise (Field et al., 2008). On the contrary, in 
human embryonic cells, TSS- proximal nucleosome occupancy is only 
weakly correlated with expression variability (Wu et al., 2017).

Epigenetic modifications can also influence cell- to- cell expres-
sion variability. In gene bodies, DNA methylation at CpG dinucle-
otides suppresses transcriptional noise (Huh et al., 2013). Histone 
modifications also impact this phenomenon through chromatin ac-
cessibility (Wu et al., 2017), with promoter- proximal modifications 
being associated with increased noise (H3K27me3, H3K4me1, and 
H3K9me3) and modifications in gene bodies being associated with 
decreased noise (H3K36me3, H3K4me3, and H3K9ac) (Faure et al., 
2017). Intriguingly, gene body histone marks determine more gene 
expression variability than promoter sequence features (Faure et al., 
2017). Mechanistically, the promoter histone- acetylation level di-
rectly influences burst frequency for many genes, while burst size 
is less impacted (Nicolas et al., 2018). H3K27ac and H3K9ac are es-
pecially highly correlated with burst frequency (Nicolas et al., 2018).

Previous works showed that some bivalent promoters with 
both the repressive H3K27me3 mark (catalyzed by the Polycomb 
Repressive Complex 2 [PRC- 2]) and the activation- associated 
H3K4me3 mark especially display high variability in mouse embry-
onic stem cells that might be caused by switching between the re-
pressed and active states (Kar et al., 2017). In fact, Polycomb could 
modulate bursting and enhance switching between ON and OFF 
states in this subset of genes (Kar et al., 2017). Finally, more recent 
works showed that promoter binding of PRC- 2- related factors influ-
ence bursting and have effects on specific genes (Ochiai et al., 2020). 
On the other hand, the effects of PRC2- related factors bound on 
promoter are opposite from those on gene body (Ochiai et al., 2020).

Single- cell nucleosome mapping revealed cell- to- cell variation in 
nucleosome occupancy during induction of the PHO5 gene in yeast, 
and a small fraction of cells that exhibit nucleosome- free regions at 
the promoter even in nonstressed environments (Small et al., 2014), 
suggesting that nucleosome positioning heterogeneity contributes 
to gene expression variability independently of the promoter se-
quence. Indeed, this nucleosome promoter variation was proposed 
to arise stochastically and to be a source of gene expression variabil-
ity (Brown & Boeger, 2014). Also, single- cell chromatin accessibility 
studies showed a link between accessibility and expression hetero-
geneity (Buenrostro et al., 2015). Especially, improved accessibility 
of the promoter for the transcription machinery during initiation 
thanks to increased eviction or sliding of the nucleosomes probably 
reduces expression noise during induction (Rawal et al., 2018).

Finally, the chromatin influence on gene expression variability is re-
vealed by various works showing that changing the location of a gene 
changes its level of noise in S. cerevisiae (Becskei et al., 2005), Candida 
albicans (Anderson et al., 2014), or chicken cells (Vinuelas et al., 2013). 
Expression mean and variability are uncorrelated across genomic lo-
cations in mammalian cells (Dey et al., 2015). In these cells, genomic 
locations displaying higher expression noise are associated with more 
repressed chromatin, thereby indicating that the level of noise is influ-
enced by the chromatin environment (Dey et al., 2015).

4  | INFLUENCE OF GENE E XPRESSION 
VARIABILIT Y OVER GENETIC VARIABILIT Y

The impact of gene expression variability on cellular response to 
DNA damage and mutagenesis has been more recently studied, 
mainly in bacterial cells. These investigations were possible thanks 
to the development of single- molecule imaging methods to analyze 
bacterial DNA– repair processes (Ghodke et al., 2018; Robert et al., 
2019; Uphoff & Sherratt, 2017). A pioneering work monitored how 
expression variation of the Ada protein impacts the response to DNA 
alkylation damage in E. coli (Uphoff et al., 2016). The initial expression 
level of Ada determines the induction times of the damage response 
at the single- cell level, producing cell- to- cell heterogeneity in DNA 
repair in the population, especially with cells that do not respond for 
generations because no Ada proteins are initially expressed (Uphoff 
et al., 2016). Thus, this subpopulation accumulates foci of the DNA 
mismatch recognition protein MutS which was used as a marker for 
labeling nascent mutations (Uphoff et al., 2016). This observation led 
the authors to conclude that heterogeneity in mutation rate exists at 
the single- cell level in E. coli and that nongenetic variation in protein 
abundances can lead to genetic heterogeneity. These results were 
next confirmed in a study showing that the different rates at which 
the mismatches stochastically arise in single cells depend upon both 
the preexisting levels of DNA damage- processing proteins and the 
cell's ability to up- regulate its own repair responses (Uphoff, 2018).

Concomitant works finely quantified mutation rates (Robert 
et al., 2018) and spontaneous DNA replication errors (Woo et al., 
2018) in single E. coli cells, while not connecting it to expression 
variability of genes involved in DNA transactions. Several molecular 
processes can be evoked to explain cell- to- cell variation in mutagen-
esis: stochastic events in DNA damage and repair, heterogeneous 
expression of DNA repair genes or variation in other cellular pro-
cesses influencing DNA repair such as cell cycle or cell growth rate 
[for a comprehensive review, see (Vincent & Uphoff, 2020)]. Thus, 
gene expression variability is only one of the parameters that can 
generate intercellular variation in mutation rate.

Besides DNA repair activity in bacteria, heterogeneity in homol-
ogous recombination (HR) rate in relationship with gene expression 
variability was also studied with another experimental approach 
using cell sorting in S. cerevisiae (Liu et al., 2019). Here, genes im-
pacting HR either directly through their involvement in the pathway 
(RAD52) or indirectly through their involvement in DNA replication 
(RAD27) were fused to a fluorescent marker that allowed to sort cells 
with extreme expression levels in the population. By using a strain 
harboring an intrachromosomal HR substrate, it was possible to 
demonstrate the existence of a high heterogeneity in HR rate among 
yeast cells, with low Rad52 or Rad27 levels being associated with 
lower HR rate (Liu et al., 2019). Effects of cell cycle heterogeneity 
and heterogeneity in DNA damage between the subpopulations 
were excluded so as to conclude that HR rate heterogeneity is di-
rectly caused by gene expression noise. By sorting more subpop-
ulations than the two extreme ones, Rad27 levels were shown to 
nonlinearly scale with HR activity. This observation has important 
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consequences because it means that the total amount of HR does 
not depend only on the averaged Rad27 expression: Doubling the 
mean Rad27 expression would not lead to a doubling of HR rate, and 
slight modifications of its mean expression level could generate high 
variation in HR activity.

Thus, subpopulations with increased mutation or HR rates are 
expected to improve whole population adaptability in changing 
environments because they constitute a reservoir of increased ge-
netic variability, with important evolutionary consequences (Matic, 
2019; Woo et al., 2018). The presence of subpopulations of cells 
with enhanced mutagenesis could be particularly important when 
several mutations are required for adaptation to new environments 
(Alexander et al., 2017). Gene expression variability has a clear role 
in the appearance of this heterogeneity and modifying noise in the 
expression of genes involved in the DNA transaction processes 
could allow tuning the mutation and/or recombination rates and 
have consequences in terms of evolvability in fluctuating environ-
ments (Capp, 2010).

5  | INFLUENCE OF GENE E XPRESSION 
VARIABILIT Y OVER EPIGENETIC 
VARIABILIT Y

Almost nothing is known about the influence of gene expression 
variability over epigenetic variability. The possible influence of noise 
in the expression of epigenetic regulators on chromatin modification 
activity in S. cerevisiae was recently explored by analyzing the well- 
known histone modifier of the Sirtuin family Sir2 and epigenetic si-
lencing at subtelomeres (Liu et al., 2020). Like for RAD52 and RAD27 
in the HR context, SIR2 was fused to a fluorescent marker allowing to 
sort cells with extreme expression levels in a strain containing a sub-
telomeric URA3 silencing substrate. No difference in silencing activ-
ity was observed, probably because Sir2 is not limiting for silencing 
subtelomeric URA3 (Liu et al., 2020). Nevertheless, this might not be 
true for other reporter genes and other genomic locations. Finally, 
other chromatin remodelers and epigenetic events should be tested.

6  | APPLIED QUESTIONS IN THE 
CONTE X T OF ONCOGENESIS

Neoplasms are characterized by a global increase in cellular stochas-
ticity and intra- tumoral heterogeneity (ITH), with higher epigenetic 
and gene expression variability compared to normal cells (Jenkinson 
et al., 2017). Together with their well- known genetic instability, 
these features of cancer cells constitute an ideal model to decipher 
their interplay. The level of genetic ITH was found to be positively 
correlated with the level of epigenetic ITH in leukemia (Landau et al., 
2014; Oakes et al., 2014) or aggressive prostate cancer (Brocks et al., 
2014), among others (Mazor et al., 2016). In addition to this corre-
lation, promoters with high methylation ITH in leukemia were also 
associated with high cell- to- cell expression heterogeneity of the 

corresponding gene (Landau et al., 2014), suggesting that genetic, 
epigenetic, and gene expression ITHs are mostly correlated. They 
probably contribute concomitantly to cancer cell evolvability and to 
the increase of phenotypic diversity in cancer cell populations during 
progression. Their interplay in oncogenesis deserves to be investi-
gated in an evolutionary perspective, especially how they dynami-
cally interact and change when the rate of appearance of genetic, 
epigenetic, or gene expression diversity is modified.

Therefore, it should be interesting to see how the two other 
types of variability dynamically evolve when the third is experimen-
tally enhanced. The approach that consists in studying cancerous 
phenotypes arising upon artificially imposed gene expression noise, 
using noise- controlling genetic devices, methods, or chemicals 
(Guinn et al., 2020), is certainly relevant in this context for studying 
the influence of gene expression variability over the others. Would 
cell populations follow distinct evolutionary trajectories mainly 
based on the one that has been increased, or would they converge 
in all cases toward similar states relying on the same mixture of ge-
netic, epigenetic, and gene expression variability? On the contrary, 
would targeting one of them be somehow compensated by an in-
crease in the other types of variability, and which targeting would 
be more efficient in decreasing cellular stochasticity and acquiring 
phenotypic stability? Answering these questions might open new 
therapeutic perspectives on rational combinations of genetic- , epi-
genetic- , and/or gene expression- based strategies able to counter-
act the still underunderstood power of cellular evolvability (Payne 
& Wagner, 2019).

Finally, studying this interplay in oncogenesis is especially inter-
esting in the context of drug resistance. The interplay between ge-
netic and nongenetic phenomena has already been highlighted in the 
appearance of resistant cells (Bell & Gilan, 2020; Salgia & Kulkarni, 
2018). A recent work explicitly studied the complex interplay among 
genetic, epigenetic, and stochastic sources of ITH in the context of 
drug resistance and showed that in almost all clonal sublines, drug- 
response variability is due to epigenetic rather than genetic differ-
ences (Hayford et al., 2020). Nongenetic heterogeneity in diverse 
epigenetic and gene expression processes now appears to be a major 
contributor in the appearance of persistent cancer cells, which con-
stitute a rare subpopulation that can survive cancer drug treatment 
and constitute a major cause of treatment failure (Shen et al., 2020). 
For instance, the rare and transient transcription of a number of re-
sistance markers at high levels in a very small percentage of single 
melanoma cells is at the origin of a resistance phenomenon due to 
transcriptional variability, which is followed by epigenetic “repro-
gramming” in these cells converting this transient transcriptional 
state to a stably resistant state (Shaffer et al., 2017). These groups 
of genes co- fluctuate in “coordinated rare- cell expression programs” 
and are heritable for several generations but ultimately transient 
(Shaffer et al., 2020). A prominent role of gene expression variabil-
ity in the emergence of resistant cells was also found among estro-
gen receptor- positive breast cancers (Hinohara et al., 2018). When 
gene expression stochasticity and transcriptomic and phenotypic 
heterogeneity were decreased through the inhibition of the activity 
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of members of the KDM5 demethylase family, resistance to endo-
crine therapies was reduced because less cells acquire resistance 
(Hinohara et al., 2018).

Cells surviving through nongenetic mechanisms can then give rise 
to genetic resistance upon continuous anticancer treatment (Hata 
et al., 2016; Ramirez et al., 2016; S. Shen et al., 2019). Thus, tuning 
these nongenetic mechanisms and the level of diversity that they gen-
erate could impact the evolution of drug resistance in mammalian cells. 
Such a modulation of gene expression variability was recently used 
to study whether high or low expression noise of specific resistance 
proteins and network circuits can generate stable resistance by ac-
quisition of mutations within the circuits (Farquhar et al., 2019). Only 
cells with the low noise gene circuit mutated to stably adapt, showing 
the relevance of studying this interplay and its implications in cancer 
treatments with known regulatory mechanisms of resistance (Farquhar 
et al., 2019). The works mentioned above showing that higher noise 
can promote survival for cell populations via mutagenesis could appear 
contradictory with the Farquhar et al's study, but the low versus high 
noise circuit in the latter drives the expression of the gene that confers 
resistance, not directly genes involved in DNA maintenance as in the 
formers. Thus, adaptation by mutations would be favored when noise 
in the expression of genes involved in DNA maintenance is higher and 
when noise in the expression of genes involved in therapeutic resis-
tance is lower. Studies on the interplay between genetic, epigenetic, 
and expression variability, and the role of noise in evolutionary tra-
jectories, could be particularly challenging in cancer cell populations 
because of the many disrupted regulatory levels and the high levels of 
instability that characterize cancer cells, but the importance of these 
phenomena in this context also shows their high applicability.

7  | CONCLUSION

The interplay between genetic, epigenetic, and gene expression 
variability adds layers of complexity in the generation of phenotypic 
variation. These three sources of biological variability are gener-
ally considered independently in their relationship with phenotypic 
variation while they appear to be intrinsically interconnected and 
influence it in combination. Future works will be needed to decipher 
still largely unexplored influences, especially how epigenetic mecha-
nisms might be impacted by expression variability of chromatin re-
modelers, and to apply these concepts in the context of complex and 
fluctuating environments such as the ones found in oncogenesis.
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