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Resistance to radiotherapy is the main reason causing treatment failure in locally advanced
rectal cancer. MicroRNAs (miRNAs) have been well demonstrated to regulate cancer
development and progression. However, how miRNAs regulate radiotherapy resistance in
colorectal cancer remains unknown. Herein, we established two human colorectal cancer cell
lines resistant to radiotherapy, named HCT116-R and RKO-R, using the strategy of
fractionated irradiation. The radioresistant phenotypical changes of the two cell lines were
validated by cell viability assay, colony formation assay and apoptosis assay. The miRNA
expression profilings of HCT116-R and RKO-R were determined using RNA-seq analyses,
and further confirmed by quantitative real-time PCR. Multiple miRNAs, including miR-423-5p,
miR-7-5p, miR-522-3p, miR-3184-3p, and miR-3529-3p, were identified with altered
expression in both of the radiotherapy-resistant cells, compared to the parental cells. The
downregulation of miR-423-5p was further validated in the rectal cancer tissues from
radiotherapy-resistant patients. Silencing of miR-423-5p in parental HCT116 and RKO cells
decreased the sensitivity to radiation treatment, and inhibited the radiation-induced apoptosis.
In consistence, overexpression of miR-423-5p in HCT116-R and RKO-R cells partially
rescued their sensitivity to radiotherapy, and promoted the radiation-induced apoptosis.
Bcl-xL (Bcl-2-like protein 1) was predicted to be a potential target gene for miR-423-5p, and
miR-423-5p/Bcl-xL axis could be a critical mediator of radiosensitivity in colorectal cancer
cells. The current finding not only revealed a novel role of miR-423-5p in regulating the
radiosensitivity in colorectal cancer, but also suggestedmiR-423-5p as amolecular candidate
for combination therapy with radiation to treat colorectal cancer.

Keywords: rectal cancer, neoadjuvant radiotherapy, acquired radioresistance, miR-423-5p, apoptosis
INTRODUCTION

Despite tremendous advances in cancer screening and adjuvant treatment, existing research has
recognized approximately 135,430 new cases and 50,260 deaths with colorectal cancer (CRC) in the
United States in 2017 (1, 2). The introduction of preoperative neoadjuvant radiotherapy, followed by
total mesorectal excision (TME) for locally advanced, mid-low rectal cancer has contributed to the
reduction in local recurrence rate and the increase in anus preserving possibility (3, 4). However, due to
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the limited radiotherapeutic efficiency often caused by the
occurrence of resistance to radiation, merely estimated 20% of
rectal cancer patients develop pathological complete regression
before surgery, while the others present with partial remission or
no response, which are more likely to result in poor prognosis (5–7).
Therefore, there is increasing concern about identifying biological
and functional molecular alterations during radiation therapy, in
order to develop new therapeutic strategies and improve
clinical efficiency.

MicroRNAs (miRNAs) are a class of highly conserved small
non-coding RNAs, typically 19–25 nt in length, which function as
negative regulators at the post transcriptional level by binding to the
3’ or 5’ untranslated region (3’ or 5’ UTR) of the target mRNAs,
inducing mRNA degradation or translational silencing (8, 9).
Accumulating evidence has revealed that the aberrant expression
of miRNAs is intimately involved in multiple critical tumor
biological processes, including carcinogenesis, tumor development,
and prognosis of cancer (10–12). Therefore, the dysregulated
expression of miRNAs has been studied and identified in various
cancer types, and miRNA profiles exhibit an important application
prospect for clinical use (13). Notably, the relationship between the
dysregulation of miRNAs and the poor response of cancer cells to
radiotherapy has been recently addressed by researchers. A previous
study has found that lin28-let7 regulatory network plays a role in
the radiosensitivity of human cancer cells by activating K-Ras (14).
The expression of miR-9 and let-7g was reported to enhance the
sensitivity of human lung cancer cells to ionizing radiation by
inhibition of NFkB1 (15). MiR-181a expression confers
radioresistance of cervical cancer by targeting PRKCD, a pro-
apoptotic protein kinase (16). MicroRNA-17-5p enhances the
radiosensitivity of glioma cells through suppression of beclin-1-
mediated autophagy (17). miR-191 modulates radiation resistance
of prostate cancer through interaction with Retinoid X receptor
alpha, RXRA (18). However, it remains to be elucidated the altered
miRNA expression patterns and also their role in inducing
resistance to radiotherapy in colorectal cancer cells.

As the fast development of high throughput approaches,
including microarray technology and RNA-Seq, combined with
bioinformatics, miRNA expression signatures can be successfully
determined, which can help elucidate the underlying molecule
biomarkers and mechanisms of the poor response to
preoperative neoadjuvant radiotherapy (19–21). In the present
study, two acquired radioresistant CRC-derived cell lines were
newly established, including HCT116-R and RKO-R. MiRNA
sequencing experiments combined with bioinformatic analysis
were used to analyze the role of specific miRNAs involved in the
biological processes in terms of resistance to radiotherapy
of CRC.
MATERIALS AND METHODS

Establishment of Acquired Radioresistant
Colorectal Cell Lines
Human CRC cell lines HCT116 and RKO were purchased from
the American Type Culture Collection (ATCC), and were
Frontiers in Oncology | www.frontiersin.org 2
maintained in DMEM (high glucose), supplemented with 10%
FBS and 1% antibiotics under 5% CO2 and a 95% air atmosphere
at 37°C. Then, HCT116 and RKO cells were incubated in 25-cm2

culture flasks. When these cells reached 90% confluence, they
were sub-cultured once. When the new flask reached 50%
confluence again, these cells were irradiated with a 4 Gy dose.
Then, these cells were repeatedly irradiated with 4 Gy until the
total dose of irradiation reached 40 Gy. The acquired
radioresistant cells were cultured for at least three weeks
without irradiation before all assays. The selected radioresistant
cell lines were named as HCT116-R and RKO-R.

Irradiation
A 6-megavolt x-ray linear accelerator (Varian, EDGE, USA) was
used to perform irradiation with different doses. The radiation
conditions were as follows: treatment field of 40×40cm, source-
skin distance of 100 cm, and radiation dose rate of 5 Gy/min.

MiRNA Sequencing
HCT116, RKO, HCT116-R, and RKO-R cells were lysed using
Trizol reagent for total RNA collection. Subsequently, miRNA
sequencing was performed using the BGISEQ-500 platform in
BGI (BGI, Shanghai, China) for the four samples, and each
sample had one group. The differential expression of miRNA
between irradiated and nonirradiated cells were identified using
the edgeR package of the R software (version 3.6.2), and BCV=0.2
was used as the cut-off criteria. Subsequently, a heat map of DEMIs
was generated, and quantitative real-time PCR (qRT-PCR) was
performed to validate the expression level of the DEMIs. The GEO
accession number for our miRNA sequencing data is GSE159528.

Microarray Datasets in GEO Database
The microarray datasets from the human clinical biopsy
specimens of rectal tumors were collected from the National
Center for Biotechnology Information Gene Expression
Omnibus database (GEO database). The tissue biopsy
specimens were collected from patients before preoperative
neoadjuvant chemoradiotherapy. Two microarray datasets,
including GSE29298 (21) and GSE68204 (22), were collected
and the relative expression level of miR-423-5p was analyzed in
these microarray datasets. The receiver operating characteristic
(ROC) curves were drawn using the pROC package of R software
(version 3.6.2).

Quantitative Real-Time Polymerase
Chain Reaction
The total RNA was extracted by using Trizol reagent, according
to manufacturer’s protocol (Invitrogen, San Diego, CA, USA).
In order to detect the expression of microRNAs, microRNAs
and U6 were reversely transcribed into cDNA using the
PrimeScript™ RT reagent kit (TaKaRa). PCR amplification
was performed using the SYBR Premix Ex Taq™ (TaKaRa) in
the Real-Time PCR System (Roche, Meylan, France). The 2−DDCt

method was used to calculate the relative miRNA expression, and
U6 served as the internal control gene. The primer sequences are
listed in Supplementary Material: Table S1.
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Transfection
Cells were plated in 6-well plates (3 × 105 cells/well) and transfected
with miR-423-5p mimic (RiboBio, miR-20004748-1-5, China) and
mimic negative control (RiboBio, MIMAT0000295, China), or
inhibitors (RiboBio, miR-10004748-1-5, China) and inhibitor
negative control (RiboBio, MIMAT0000295, China) using
Lipofectamine 2000 reagent (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA), according to manufacturer’s instructions.
After transfection for 48 h, these cells were harvested for further
experiments. Quantitative real-time PCR was used to determine the
efficiency of transfection.

Cell Viability Assay
The cell viability was evaluated by CCK-8 assay according to
manufacturer’s protocol. These cells were seeded and incubated
in 96-well plates. After 24 h of incubation, these cells were
subjected to 2, 4, or 6 Gy irradiation. After 24, 48, and 72 h
postirradiation, 10 ml of the CCK-8 solution (Cell Counting Kit-
8; Cellor Lab, 02432300, China) was added, and cells were
incubated for three h. The optical density value was
determined using a microplate reader at 450 nm.

Colony Formation Assay
Cells were seeded in triplicate in a 12-well plate. After 24 h of
incubation, cells were exposed to 0, 2, 4, and 6 Gy (500 cells per
well). After seven days of incubation, these cells were fixed and
stained with crystal violet, and the colonies were counted. Plating
efficiency (PE) = (number of colonies counted/number of cells
plated) × 100%. Surviving fraction (SF) = (plating efficiency of
treated/plating efficiency of untreated sample) × 100%. The
survival curve was derived from a multi-target single-hit
model: SF = 1 − (1 − e−

D
D0 )N : SF2 is defined as the surviving

fraction at 2 Gy. D0 is defined as the mean lethal dose. Dq

represents the repair of non-lethal injury, and a higher Dq value
means that a higher dose is required to cause the death of cells.
SER, sensitization enhancement ratio. The SER was measured
according to the multi-target single-hit model. SER is defined as
the ratio of Dq in the control group to Dq in the experimental
group. SER>1 indicates radiosensitization.

Western Blot
The lysates extracted from the cells were prepared at 48 h after 4
Gy irradiation. These cells were lysed on ice in RIPA buffer with
1% PMSF (Beyotime, Shanghai, China). The protein
concentration was determined by BCA protein assay
(Beyotime, Shanghai, China). Next, 40 mg of cell lysates were
resolved on 10% SDS-PAGE. Then, the protein was transferred
onto the PVDF membrane (Millipore, Temecula, CA, USA), and
the PVDF membrane was sealed by 5% dry milk in TBST. Then,
the main antibodies against Bcl-xL, Bcl-2, Caspase 3 and
GAPDH (1:1000; Santa Cruz biotechnology, Santa Cruz, CA,
USA) were used to detect the membrane at 4°C for 12 h.

Apoptosis Assay
Annexin-V-FITC/PI staining and flow cytometry were used to
detect the apoptotic cells. These cells were subjected to 0 or 4 Gy
irradiation after 24 h of incubation. After 48 h postirradiation,
Frontiers in Oncology | www.frontiersin.org 3
the cells were collected with trypsin, and mixed with the
supernatant that contained non-adherent cells. Then, these
cells were washed with PBS (Lonza). Cells were stained with
annexin V-FITC and PI (BestBio, BB-4101, China). Then, these
cells were analyzed by flow cytometry (BD Biosciences), and the
apoptotic cells were detected and analyzed using the CellQuest
software (BD Biosciences). For analyzing the results, only the
early apoptosis rates of cells were counted.

Luciferase Reporter Assay
The wild type (WT) Bcl-xL 3’UTR and mutated type (MT)
Bcl-xL 3’UTR were amplified and cloned into pGL3-reporter
luciferase vector (Genomeditech, Shanghai, China). 293T cells
were seeded for 24 h in 12-well plates (1 × 105 cells/well) in an
antibiotic-free medium. After 24 h, WT(MUT) pGL3-reporter
luciferase vector and miR-control or miR-423-5p mimics were
co-transfected using Lipofectamine 2000 reagent (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA) and cultured
for 48 h. Then luciferase activities were measured using the Dual-
Luciferase Reporter Assay System (Promega, Madison, WI,
USA), according to the protocol provided by the manufacturer.

Tumor Regression Grading
The pathological tumor response to neoadjuvant radiotherapy was
determined by 5-grade tumor regression grading (TRG) after
postoperative histological examinations. The radiotherapy response
scores were assigned according to the TRG classification of Mandard
(23). According to this criterion, we divided the patients into two
groups: responders (TRG 1-2) and non-responders (TRG 3-5).

Statistical Analysis
The data from two groups were analyzed by student’s t-test,
while one-way analysis of variance was used to compare the
quantitative data in case of more than two groups. The results
were presented as mean ± standard deviation (± SD). All
statistical analyses were carried out using the SPSS 24.0 version
statistical package (SPSS, Chicago, IL, USA). The survival curves
in the colony formation assays was drawn using the GraphPad
Prism 7 software (San Diego, CA, USA), and the level of
significance was P<0.05.
RESULTS

Establishment and Validation of
Radioresistant Colorectal Cancer
Cell Lines
Two acquired radioresistant CRC-derived cell lines, HCT116-R
and RKO-R, were established from human colorectal cancer cell
lines (HCT116 and RKO). The radiosensitivity of the four
colorectal cancer cell lines were determined by CCK-8 assay.
Under normal growth conditions, HCT116-R cells grew faster
than HCT116 cells (P < 0.01, Figure 1A). HCT116-R and RKO-
R cells exhibited increased proliferation rates compared to their
parental colorectal cancer cells HCT116 and RKO, when exposed
to 2, 4, and 6 Gy for two incubation times (24 and 48 h) (Figures
1A, B). Furthermore, cell growth curves of the two acquired
January 2021 | Volume 10 | Article 582239
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radioresistant cells increased according to relative cell viability by
radiation treatment in a dose-dependent manner, when
compared to their parental cells (P < 0.01, Figures 1C, D). The
colony formation assay is regarded as a canonical standard to
detect the radiosensitivity. In order to further validate the
radioresistant phenotype of HCT116-R and RKO-R cell lines,
we analyzed the survival fraction (SF) of the four colorectal
cancer cell lines by colon formation assay according to the multi-
target single-hit model. HCT116-R and RKO-R cells exhibited an
obviously increased survival at 2, 4, and 6 Gy doses, when
compared to their parental cells (Figures 2A–D). SF2 (survival
fraction at 2 Gy), D0 values (the mean lethal dose), Dq (quasi-
threshold dose) and N (extrapolation number) were analyzed to
reflect the radiosensitivity of each cell line, according to multi-
target single-hit model (Table 1). The SF2, D0, Dq and N values
of the two acquired radioresistant CRC cells (SF2 = 0.73 ± 0.04
for HCT116-R, SF2 = 0.71 ± 0.01 for RKO-R) were higher than
their parental cell lines (SF2 = 0.33 ± 0.02 for HCT116, SF2 = 0.39
± 0.03 for RKO), indicating that HCT116-R and RKO-R were
more resistant to radiation than their parental cells.

In order to estimate the effect of radiotherapy on apoptosis in
HCT116, RKO, HCT116-R and RKO-R cells, the apoptosis assay
was performed by Annexin V-FITC and Propidium Iodide
staining and flow cytometry at 48 h after the cells exposed to
different doses of irradiation (0 or 4 Gy). There was no significant
difference observed in the percentage of apoptosis between the
radioresistant and parental cells without irradiation (P>0.05,
Supplementary Figures S1A–D). While after irradiation of 4
Gy, a significant decrease in the percentage of apoptosis
was observed in HCT116-R cells (2.73% ± 0.25%) compared
to HCT116 cells (5.27% ± 0.15%), and also in RKO-R cells
(2.0% ± 0.3%) compared to RKO (4.97% ± 0.35%) (P<0.01,
Frontiers in Oncology | www.frontiersin.org 4
Figures 2E–H). Apoptosis-related molecules Bcl-2 and Caspase-
3 were measured by western blot analysis. The cells were
collected at 48 h after different doses of irradiation (0 Gy and 4
Gy). As shown in Figure 2I, the expression of pro-apoptotic
protein Caspase-3 decreased, and the expression of anti-
apoptotic protein Bcl-2 increased in radioresistant cells
HCT116-R and RKO-R after 4 Gy of irradiation. However, the
expression of caspase 3 and Bcl-2 exhibited no significant
difference between radioresistant and parental CRC cells
without irradiation (Supplementary Figure S1E). Taken
together, these results indicated that radiation-induced
apoptosis significantly decreased in radioresistant cells, which
may account for the enhanced radioresistance.

MiRNA Expression Signature in the
Radioresistant Colorectal Cancer Cells
In order to analyze differentially expressed miRNAs (DEMIs),
RNA-seqs were conducted on the parental and acquired
radioresistant colorectal cancer cell lines (HCT116, RKO,
HCT116-R, and RKO-R). The heat map from hierarchical
clustering of 1,559 miRNA expression profilings is shown in
Figure 3A. Compared with HCT116, a total of 59 DEMIs were
determined, including 35 upregulated and 24 downregulated
DEMIs in HCT116-R. Meanwhile, compared with RKO, a total
of 80 DEMIs were identified, including 33 upregulated and 47
downregulated DEMIs in RKO-R (Figure 3B). Six DEMIs were
identified when taking the intersection of DEMIs in the two pairs
of cell lines (Figures 3C, D), including three upregulated
miRNAs (miRNA-3184-3p, miRNA-3529-3p and miRNA-522-
3p) and three downregulated miRNAs (miRNA-7-5p, miRNA-
423-5p and miRNA-122-5p). The heatmap of the expression of
the six miRNAs is shown in Figure 3E.
A

B

DC

FIGURE 1 | Validation of radioresistant colorectal cancer cell lines by CCK-8 assay. (A) HCT116-R cells grew faster than HCT116 cells under normal growth
conditions. (A, B) When exposed to 2, 4, and 6 Gy, HCT116-R and RKO-R cells had increased proliferation rates, when compared to their parental colorectal
cancer cells (HCT116 and RKO), according to the relative cell number for two incubation times (24 and 48 h). (C, D) In a dose-dependent manner, the cell growth
curves of the two acquired radioresistant cells increased according to the relative cell viability, when compared to their parental cells at 48 h postirradiation. The
results were shown as the mean ± SD for at least three independent experiments. *P < 0.05, **P < 0.01, n.s. means no significance.
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Downregulation of miR-423-5p in the
Radioresistant Colorectal Cancer Cells
and Rectal Cancer Tissues From
Radiotherapy-Resistant Patients
The results of qRT-PCR verified that five of the six miRNA
expression patterns were consistent with the miRNA sequencing
analysis. The expression level of miR-423-5p and miR-7-5p
Frontiers in Oncology | www.frontiersin.org 5
specifically decreased in the acquired radioresistant colorectal
cancer cells, while miRNA-522-3p, miRNA-3184-3p, and
miRNA-3529-3p expression specifically increased. In this
study, we selected miR-423-5p as the candidate miRNA, as
among the five miRNAs, miR-423-5p expression exhibited the
most downregulated in radioresistant cells compared to their
parental counterparts verified by qRT-PCR (Figures 4A, B),
A B

D

E F

G IH

C

FIGURE 2 | Validation of radioresistant colorectal cancer cell lines by colony formation assay and apoptosis assay. (A, B) The colony formation ability of the four
colorectal cancer cell lines were detected at different irradiation doses (0, 2, 4, and 6 Gy). (C, D) The survival fraction of HCT116-R and RKO-R, when compared to
their parental cells, were obtained from the results of the colony formation assay. (E–H) The apoptotic changes in the four colorectal cancer cell lines were detected
at 48 h after 4 Gy irradiation. (I) Western blot was performed to detect the expression of pre-apoptosis protein Caspase-3 and anti-apoptotic protein Bcl-2 in the
four colorectal cancer cell lines. P, parental cells. R, radioresistant cells. The results were shown as the mean ± SD for at least three independent experiments.
**P < 0.01.
TABLE 1 | Radiobiological parameters in the acquired radioresistant and parental colorectal cancer cells.

Parameters HCT116 HCT116-R RKO RKO-R

SF2 0.33 0.73 0.39 0.71
D0 1.64 2.43 1.9 2.62
Dq 0.23 1.85 0.27 1.78
N 1.15 2.14 1.15 1.97
J
anuary 2021 | Volume 10 | Article
SF2, surviving fraction at 2 Gy; D0, mean lethal dose; Dq, quasi-threshold dose; N, extrapolation number.
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which was approximately 3-fold and 2.7-fold decrease in
HCT116-R and RKO-R, respectively (P<0.01).

In order to further validate miRNA sequencing results, the
microarray data of two different independent cohorts from the
GEO database (GSE29298 and GSE68204) was analyzed.
The radiotherapy response scores were assigned according to
TRG 1-5 (23). Patients were divided into two groups: responders
(TRG 1-2) and non-responders (TRG 3-5). Because of the limited
types of miRNAs in the two miRNAmicroarrays, only miR-423-5p
expression level was available to be compared from responders to
non-responders, which revealed that non-responders with TRG 3-5
had a significantly lower miR-423-5p expression level than
responders with TRG 1-2 (P<0.05, left panel of Figures 4C, D).
The ROC analysis was generated to indicate the potential value of
miR-423-5p as a predictive candidate of response to neoadjuvant
Frontiers in Oncology | www.frontiersin.org 6
chemo-radiotherapy. In GSE29298, the AUC value for miR-423-5p
was 0.695 (95% CI, 0.483–0.863) (right panel of Figure 4C). In
GSE68204, the AUC value was 0.678 (95% CI, 0.487–0.829) (right
panel of Figure 4D). The results lend a degree of credibility for the
predictive power of miR-423-5p to distinguish patients from
responders to non-responders.
Knockdown of miR-423-5p in Colorectal
Cancer Cells Decreased Their Sensitivity
to Radiation
The results of miRNA sequencing illustrated that miR-423-5p
was down-regulated in radioresistant cells, HCT116-R and
RKO-R, as compared to parental HCT116 and RKO cells. In
order to determine whether miR-423-5p participated in the
A

B

D

E

C

FIGURE 3 | miRNA expression signature in the radioresistant colorectal cancer cells as compared to parental cells. (A) The heatmap from the hierarchical clustering
of 1,559 miRNAs expression patterns in the four colorectal cancer cell lines was shown. (B) The number of differentially expressed miRNAs (DEMIs) between
HCT116 compared to HCT116-R, and RKO compared to RKO-R, were analyzed. (C, D) The Venn diagrams display the six DEMIs by taking the intersection of the
DEMIs between acquired radioresistant and parental colorectal cancer cells, including three upregulated miRNAs (miRNA-3184-3p, miRNA-3529-3p and miRNA-
522-3p) and three downregulated miRNAs (miRNA-7-5p, miRNA-423-5p and miRNA-122-5p) in radioresistant cells. (E) The heatmap displays the expression
patterns of the six DEMIs.
January 2021 | Volume 10 | Article 582239
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regulation of the sensitivity to radiation, HCT116 and RKO
cells were transfected with miR-423-5p inhibitor or inhibitor
control. The expression level of miR-423-5p was determined by
qRT-PCR (Figure 5A). After transfection, the miR-423-5p
expression level was reduced by 4.3-fold and 3.5-fold in
HCT116 and RKO cells. The cell viability of HCT116 and
RKO cells was determined by CCK-8 assay (Figure 5B). The
results revealed that the proliferation rates of HCT116 and RKO
cells were significantly increased by miR-423-5p knockdown at
4 Gy radiation for two incubation times (24 and 48 h). In
addition, we identified the effect of miR-423-5p on colony
formation (Figures 5C, D). HCT116 and RKO cells with
knockdown of miR-423-5p had a significantly increased
survival when exposed to various doses of radiation, as
compared to the control cells (Figures 5E, F). The SF2, D0,
Dq, N and SER values were calculated according to the multi-
target single-hit model, as shown in Table 2. The values of SF2,
D0, Dq and N increased after knockdown of miR-423-5p,
indicating the decreased radiosensitivity of HCT116 and RKO
cells (SF2 changed from 0.34 ± 0.01 to 0.59 ± 0.02 and SER =
0.25 for HCT116 cells, SF2 changed from 0.38 ± 0.01 to 0.56 ±
0.02 and SER = 0.29 for RKO cells). These results showed that
after knockdown of miR-423-5p, HCT116 and RKO cells
exhibited more resistant to radiation than their counterparts.

In order to evaluate the role of miR-423-5p in radiotherapy-
induced apoptosis in colorectal cancer cells, we assessed the
apoptosis rates at 48 h after 4 Gy irradiation. The results revealed
that after knockdown of miR-423-5p, the apoptotic rates reduced
from 5.93% ± 0.25% to 1.50% ± 0.10% in HCT116 cells (Figures
5G, I), and from 6.17% ± 0.75% to 3.67% ± 0.46% in RKO cells
Frontiers in Oncology | www.frontiersin.org 7
(Figures 5H, J). These results illustrated that knockdown of
miR-423-5p promoted radioresistance by attenuating the
radiation-induced apoptosis in HCT116 and RKO cells.
Overexpression of miR-423-5p in
Radioresistant Colorectal Cancer Cells
Rescued Their Radiation Sensitivity
In order to further determine whether miR-423-5p modulated
radiation response of radioresistant cells, HCT116-R and RKO-R
cells were transfected with miR-423-5p mimic or mimic control.
After transfection, qRT-PCR confirmed thatmiR-423-5p expression
level was increased by 27.1-fold and 29.9-fold in HCT116-R and
RKO-R cells (Figure 6A). The proliferation rates of HCT116-R and
RKO-R cell lines were determined by CCK-8 assay (Figure 6B). The
results revealed that the proliferation rates of HCT116-R and RKO-
R cells were significantly reduced by miR-423-5p overexpression for
two incubation times (24 and 48 h). In addition, we identified the
effect of miR-423-5p on colony formation. HCT116-R and RKO-R
cells with overexpression of miR-423-5p had an obviously decreased
colony survival fraction following various kinds of single-dose
irradiation, as compared to control cells (Figures 6C–F). The SF2,
D0, Dq, N and SER values are shown in Table 2. The values of SF2,
D0, Dq andNdecreased after overexpressingmiR-423-5p, indicating
the increased radiosensitivity of HCT116-R and RKO-R cells
(SF2 changed from 0.73 ± 0.03 to 0.50 ± 0.02 and SER = 2.46
for HCT116-R cells, SF2 changed from 0.73 ± 0.02 to 0.58 ± 0.14
and SER = 1.59 for RKO-R cells). These results showed
that overexpression of miR-423-5p partially rescued their
radiosensitivity in HCT116-R and RKO-R cells.
A B

DC

FIGURE 4 | Downregulation of miR-423-5p in the radioresistant colorectal cancer cells and rectal cancer tissues from radiotherapy-resistant patients.
(A, B) Quantitative RT-PCR was carried out to validate the expression level of the six DEMIs in the four colorectal cancer cell lines. (C, D) The expression of
miR-423-5p was lower in non-responders (TRG 3-5) than responders (TRG 1-2) with rectal cancer (GSE29298 and GSE68204) (left panel). The receiver
operating characteristic (ROC) analysis showed the sensitivity and specificity of miR-423-5p expression to discriminate responders with non-responders
(right panel). The results were shown as the mean ± SD. The independent experiments were performed for at least three times. *P < 0.05, **P < 0.01, n.s.
means no significance.
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In order to evaluate the role of miR-423-5p in radiotherapy-
induced apoptosis in radioresistant colorectal cancer cells, we
assessed the apoptosis rates at 48 h after 4 Gy irradiation. The
results revealed that after overexpressing miR-423-5p, the
apoptotic rates significantly increased from 2.25% ± 0.07% to
10.40% ± 0.20% in HCT116-R cells (Figures 6G, I), and from
2.05% ± 0.07% to 6.67% ± 0.15% in RKO-R cells (Figures 6H,
J). Taken together, these results demonstrated that
overexpressing miR-423-5p rescued the radiation sensitivity
by promoting the radiation-induced apoptosis in HCT116-R
and RKO-R cells.
Frontiers in Oncology | www.frontiersin.org 8
MiR-423-5p Mediated Radiation-Induced
Apoptosis by Regulating the Expression
of Apoptosis-Related Proteins
To investigate whether miR-423-5p regulated radiation-induced
apoptosis by regulating apoptosis-related proteins, the
expression level of pro-apoptosis protein caspase 3, anti-
apoptosis protein Bcl-2 and Bcl-xL were evaluated by western
blot assay. After knockdown of miR-423-5p, the expression of
caspase 3 decreased, whereas Bcl-2 and Bcl-xL expression
increased in HCT116 and RKO cells at 48 h after 4 Gy
irradiation (Figure 7A). In addition, overexpressing miR-423-
A B

D

E F

G

I

H

J

C

FIGURE 5 | Knockdown of miR-423-5p in HCT116 and RKO cells decreased their sensitivity to radiation. (A) MiR-423-5p inhibitor or inhibitor control were
successfully transfected in HCT116 and RKO cells. (B) The cell proliferation rates were determined according to relative cell number in HCT116 and RKO cells after
knockdown of miR-423-5p for two incubation times (24 and 48 h), after exposed to 4 Gy irradiation. (C, D) The representative images of colony formation in
HCT116 and RKO cells treated with 0, 2, 4, and 6 Gy irradiation. (E, F) The survival fraction of HCT116 and RKO cells treated with radiation (SER = 0.25 for
HCT116 cells, SER = 0.29 for RKO cells). (G, H) The representative images of apoptosis in HCT116 and RKO when knockdown of miR-423-5p at 48 h after 4 Gy
irradiation. (I, J) The radiation-induced apoptosis was significantly decreased after knockdown of miR-423-5p in HCT116 and RKO cells. SER, sensitization
enhancement ratio. The results were shown as the mean ± SD for at least three independent experiments. *P < 0.05, **P < 0.01.
January 2021 | Volume 10 | Article 582239

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shang et al. MIR-423-5p Regulates Colorectal Cancer Radioresistance
5p increased the expression of caspase 3 and decreased the
expression of Bcl-2 and Bcl-xL in HCT116-R and RKO-R cells
at 48 h after 4 Gy irradiation (Figure 7B).

MiRNA-binding predicting tools (Starbase and TargetScan)
were used to predict miR-423-5p targeted mRNAs related to
apoptosis. We found that Bcl-xL 3’UTR contained a predicted
binding site for miR-423-5p. A luciferase reporter assay was
performed to confirm whether Bcl-xL mRNA is a direct target of
miR-423-5p (Figures 7C, D). The wild type 3′UTR fragments of
Frontiers in Oncology | www.frontiersin.org 9
Bcl-xL were cloned into a luciferase reporter vector. Co-
transfection with the WT luciferase reporter vector and miR-
423-5p mimic into 293T cells resulted in a significant decrease in
luciferase activity. While the luciferase activity was restored
when co-transfected MUT luciferase reporter vector with miR-
423 mimic. These results suggest that Bcl-xL is a direct target of
miR-423-5p, and miR-423-5p enhances the radiosensitivity by
promoting radiation-induced apoptosis through targeting
Bcl-xL.
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FIGURE 6 | Overexpression of miR-423-5p in HCT116-R and RKO-R cells rescued their radiation sensitivity. (A) MiR-423-5p mimic or mimic control were
successfully transfected in HCT116-R and RKO-R cells. (B) The cell proliferation rates were determined according to relative cell number in HCT116-R and RKO-R
cells after overexpressing miR-423-5p for two incubation times (24 and 48 h), after exposed to 4 Gy irradiation. (C, D) The representative images of colony formation
in HCT116-R and RKO-R cells treated with 0, 2, 4, and 6 Gy irradiation. (E, F) The survival fraction of HCT116-R and RKO-R cells treated with radiation (SER 2.46
for HCT116-R cells, SER = 1.59 for RKO-R cells). (G, H) The representative images of apoptosis in HCT116-R and RKO-R when overexpressing miR-423-5p at
48 h after 4 Gy irradiation. (I, J) The radiation-induced apoptosis significantly increased after overexpressing miR-423-5p in HCT116-R and RKO-R cells. SER,
sensitization enhancement ratio. The results were shown as the mean ± SD for at least three independent experiments. *P<0.05, **P < 0.01.
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DISCUSSION

At present, neoadjuvant chemoradiotherapy (nCRT) combined
with TME surgery for local advanced rectal cancer has been
performed as a prevalent and standard therapeutic strategy.
Nevertheless, the response to neoadjuvant radiotherapy varies
greatly from complete response to complete resistance.
Radioresistance remains as a major obstacle that always leads
to tumor recurrence and poor prognosis (4–7). It is crucial to
conduct comprehensive studies to identify the key molecules
predisposing radioresistance. In order to elucidate the underlying
molecular mechanisms of resistant to radiotherapy, different
acquired radioresistant cell models were established, including
nasopharyngeal carcinoma cell lines CNE-2 (24), hepatocellular
carcinoma cell lines HepG2, cervical adenocarcinoma cell lines
Hela (25). In CRC, according to the previous research, HCT116
and RKO cells were proven to be relatively sensitive to
irradiation (26, 27). Therefore, the two cell lines were the
Frontiers in Oncology | www.frontiersin.org 10
preferred choice to develop radioresistant colorectal cancer cell
models in this study.

In the present research, we established two acquired
radioresistant human colorectal cancer cell lines (HCT116-R
and RKO-R), which resulted from chronically exposing
HCT116 and RKO cell lines to fractioned radiation.
Compared with parental colorectal cancer cells (HCT116 and
RKO), the key strength of the established cell model is that
it originates from the same source, allowing for avoiding
potential confounding factors, such as genetic background
and inherent radiosensitivity variation (28). HCT116-R
and RKO-R cells displayed increased proliferation rates
and enhanced colony forming ability following various
kinds of single-dose irradiation compared to their parental
cell lines, which indicated that they expressed radioresistant
phenotypical changes.

Irradiation could trigger apoptosis, and various signaling
molecules, such as Bcl-2 family and caspase 3, are involved in
A B

DC

FIGURE 7 | MiR-423-5p mediated radiation-induced apoptosis by regulating the expression of apoptosis-related proteins (A) The western blot assay showed that
the expression of caspase 3 decreased and the expression of Bcl-2 and Bcl-xL increased in HCT116 and RKO when knockdown of miR-423-5p at 48 h after 4 Gy
irradiation. (B) The western blot assay revealed that the expression of caspase 3 increased and the expression of Bcl-2 and Bcl-xL decreased in HCT116-R and
RKO-R when overexpressing miR-423-5p at 48 h after 4 Gy irradiation. (C) Wild type (WT) and mutant (MUT) 3’-UTR binding sites for miR-423-5p are shown.
(D) The relative luciferase activity was measured in 293T cells co-transfected WT or MUT pGL3-reporter luciferase vector with miR-control or miR-423-5p-control.
The results were shown as the mean ± SD for at least three independent experiments. **P < 0.01, n.s. means no significance.
TABLE 2 | Radiobiological parameters after knockdown and overexpressing of miR-423-5p.

Parameters HCT116 RKO HCT116-R RKO-R

NC miR-423-5p inhibitor NC miR-423-5p inhibitor NC miR-423-5p mimic NC miR-423-5p mimic

SF2 0.34 0.59 0.38 0.56 0.73 0.5 0.73 0.58
D0 1.63 2.1 1.83 2.38 2.68 2.14 2.51 2.1
Dq 0.32 1.26 0.28 0.95 1.77 0.72 2 1.26
N 1.21 1.82 1.17 1.49 1.93 1.4 2.22 1.82
SER 0.25 0.29 2.46 1.59
January 2021
 | Volume
SF2, surviving fraction at 2 Gy; D0, mean lethal dose; Dq, quasi-threshold dose; N, extrapolation number; SER, sensitization enhancement ratio. SER=Dq in the control group/Dq in the
experimental group. SER>1 indicates radiosensitization.
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regulating apoptosis signaling pathways (29–31). Dysregulation of
apoptosis often occurs contributing to radioresistance in tumor cells
(32). In this research, we detected that the apoptosis rates decreased
in HCT116-R and RKO-R, accompanied with the decreased
expression of caspase 3 and increased expression of Bcl-2, when
combined with radiotherapy, as compared to their parental cells.
This indicates that there is a correlation between resistance to
radiotherapy and reduced apoptosis in these acquired
radioresistant cell lines. The reduced radiation-induced apoptosis
probably contributes to resistance to radiation in the present
established HCT116-R and RKO-R cells.

Accumulated evidence has been provided to show that miRNAs
have emerged as important functional regulators involved in
radiotherapy resistance. In our present research, miRNA
sequencing was performed to identify differentially expressed
miRNA candidates in our newly established radioresistant human
colorectal cancer cells, when compared to their parental colorectal
cells. Six miRNAs (miR-7-5p, miR-423-5p, miR-122-5p, miR-3184-
3p, miR-3529-3p, and miR-522-3p) were screened as potential
candidates. MiR-423-5p was identified as a pivotal miRNA that
was the most obviously downregulated miRNA in the acquired
radioresistant colorectal cancer cells validated by qRT-PCR, which
suggested that miR-423-5p potentially regulated radiosensitivity of
these cells. Previous studies have revealed that miR-423-5p
participated in carcinogenesis, tumor progression, drug resistance
and prognosis in various cancer types. For instance, in lung
adenocarcinoma, miR-423-5p can be downregulated by lncRNA
LOXL1-AS1 and thereby facilitated tumor progression (33).
LncRNA NR2F1-AS1 regulated miR-423-5p/SOX12 to promote
proliferation and invasion in papillary thyroid carcinoma (34). In
prostate cancer, inhibition of miR-423-5p suppressed tumor
progression through targeting GRIM-19 (35). MiR-423-5p
functioned as oncogene, contributing to malignant phenotypes
and chemoresistance to temozolomide in glioblastomas (36). It
was previously reported that the plasma level of miR-423-5p was a
potential biomarker for diagnosis of colorectal cancer (37).
However, the biological role of miR-423-5p in tumorigenesis and
radiosensitivity in terms of CRC remains unclear.

The expression level of miR-423-5p was further investigated in
the microarray data of two different independent cohorts from the
GEO database (GSE29298 and GSE68204). Consistent with our
results in colorectal cancer cells, miR-423-5p expression level was
significantly lower in non-responders with TRG 3-5 compared to
responders with TRG 1-2, suggesting its potential role in regulating
radiosensitivity in CRC. ROC analysis revealed that the AUC values
for miR-423-5p were 0.695 (GSE29298) and 0.678 (GSE68204).
The results lend a degree of credibility for the predictive value of
miR-423-5p in discriminating between radiosensitive and
radioresistant CRC patients. However, the overall predictive
power of the marker is not high enough. This is mainly due to
the low number of clinical samples, or it indicated a strategy to
combine miR-423-5p and other biomarkers to obtain a stronger
power to predict radioresistant CRC patients. Further stratification
analysis based on large sample size should be explored in the future.

We preliminary investigated the potential role of miR-423-5p
in radioresistance in colorectal cancer cells. After knockdown of
Frontiers in Oncology | www.frontiersin.org 11
miR-423-5p in relatively radiosensitive cells (HCT116 and
RKO), the proliferation rates increased within 48 h after 4 Gy
irradiation. Meanwhile, after overexpressing miR-423-5p in the
acquired radioresistant cells (HCT116-R and RKO-R), the
proliferation rates significantly decreased. In the further
investigation, parental colorectal cancer cells exhibited an
enhanced colony formation ability after knockdown of miR-
423-5p with different doses of radiation, while overexpressing
miR-423-5p resensitized the acquired radioresistant colorectal
cancer cells, which exhibited decreased colony formation ability.
These results demonstrated that knockdown of miR-423-5p in
colorectal cancer cells decreased their sensitivity to radiation, and
overexpression of miR-423-5p in radioresistant colorectal cancer
cells rescued their radiation sensitivity.

Pro-apoptosis and anti-apoptosis signals have been previously
shown to be involved in alteration of radiosensitivity of malignant
cells (33, 34). It has been reported that miRNAs play a role in the
radiosensitivity of cancer cells by regulating radiation-induced
apoptosis (32, 35, 36). In the present study, results identified that
miR-423-5p could enhance radiation sensitivity of CRC cells by
enhancing radiation-induced apoptosis through upregulating
caspase 3 expression and downregulating the expression of Bcl-2
and Bcl-xL. MiR-423-5p may be a pro-apoptosis factor in the
presence of radiation. Notably, however, Lin et al. (37) reported
that inhibition of miR-423-5p suppressed PC3 cell proliferation,
promoted PC3 cell apoptosis, and decreased anti-apoptosis protein
Bcl-2 expression through targeting GRIM-19. Since it was done in a
prostate cancer cell lines, and identified GRIM-19 as a target gene,
we think the cell apoptosis-regulating function of miR-423-5p may
be tumor type-specific and rely on the downstream target gene.

To determine the potential mechanism of miR-423-5p in
radioresistance of CRC, the target gene of miR-423-5p related to
apoptosis was predicted using the online miRNA-binding
prediction tools (Starbase and TargetScan) and luciferase
reporter assay. The results confirmed that Bcl-xL is a direct
target gene for miR-423-5p. Bcl-xL, an apoptotic protein, belongs
to Bcl-2 protein family. Previous studies have identified that
targeting Bcl-xL gene sensitize mesothelioma cells to
chemotherapy (38, 39). Genomic alterations in Bcl-xL
contribute to drug sensitivity in gastric cancer (40). Targeting
Bcl-xL modulates doxorubicin resistance in Osteosarcoma
cells by miR-184 (16). A recent study firstly showed that
inhibiting Bcl-xL promotes mitochondrial outer membrane
permeabilization (MOMP) in response to irradiation and lead
to potent radiosensitization of malignant pleural mesothelioma
(MPM) cells by Bcl-xL inhibitor A1331852 (41). Therefore, our
present research suggested that elevated miR-423-5p expression
level directly suppressed the expression of Bcl-xL, which would
sensitized CRC cells to radiation therapy.

The limitation of the present research was that our results were
based on colorectal cancer cell lines that may not completely
reflect the physiological events in vivo. Clearly, clinical studies with
large sample size should be conducted in the future. Further
experiments are required to focus on the effect of miR-423-5p
on CRC progression and the potential biological mechanisms
involved in resistance to radiotherapy. Notwithstanding these
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limitations, this is the first report to demonstrate the correlation
between the expression level of miR-423-5p and resistance to
radiotherapy in colorectal cancer, and this research has firstly
identified miR-423-5p as a potential predictive biomarker and
therapeutic candidate for radioresistance in colorectal cancer.

In summary, we established two acquired radioresistant CRC
cell lines (HCT116-R and RKO-R). The present research
demonstrated that miR-423-5p was significantly downregulated
in the acquired radioresistant CRC cells and also in pretreatment
biopsy tissue samples of radio-therapy resistant patients with
rectal cancer. Silencing of miR-423-5p conferred radioresistance
and reduced radiation-induced apoptosis in colorectal cancer
cells (HCT116 and RKO), while overexpression of miR-423-5p
resensitized the acquired radioresistant CRC cells (HCT116-R
and RKO-R), and promoted the radiation-induced apoptosis.
Bcl-xL is a potential target gene of miR-423-5p and miR-423-5p
can be a critical mediator of radiosensitivity in colorectal cancer
cells by targeting Bcl-xL. However, further studies are clearly
required to elucidate the mechanisms underlying miR-423-5p
regulation involved in the radiosensitivity of CRC.
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