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Abstract
Domain adaptation, as an important branch of transfer learning, can be applied to cope with data insufficiency and high subject
variabilities in motor imagery electroencephalogram (MI-EEG) based brain-computer interfaces. The existing methods generally
focus on aligning data and feature distribution; however, aligning each source domain with the informative samples of the target
domain and seeking the most appropriate source domains to enhance the classification effect has not been considered. In this paper,
we propose a dual alignment-based multi-source domain adaptation framework, denoted DAMSDAF. Based on continuous wavelet
transform, all channels of MI-EEG signals are converted respectively and the generated time-frequency spectrum images are stitched
to construct multi-source domains and target domain. Then, the informative samples close to the decision boundary are found in the
target domain by using entropy, and they are employed to align and reassign each source domain with normalized mutual informa-
tion. Furthermore, a multi-branch deep network (MBDN) is designed, and the maximum mean discrepancy is embedded in each
branch to realign the specific feature distribution. Each branch is separately trained by an aligned source domain, and all the single
branch transfer accuracies are arranged in descending order and utilized for weighted prediction of MBDN. Therefore, the most
suitable number of source domains with top weights can be automatically determined. Extensive experiments are conducted based on
3 public MI-EEG datasets. DAMSDAF achieves the classification accuracies of 92.56%, 69.45% and 89.57%, and the statistical
analysis is performed by the kappa value and t-test. Experimental results show that DAMSDAF significantly improves the transfer
effects compared to the present methods, indicating that dual alignment can sufficiently use the different weighted samples and even
source domains at different levels as well as realizing optimal selection of multi-source domains.
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1 Introduction

Electroencephalogram (EEG) reflects the spontaneous and
rhythmic potential changes generated by neurons in the cere-
bral cortex, which is widely used in emotion recognition [1–3]
and Parkinson’s disease detection [4, 5], especially in brain-
computer interfaces (BCI) [6–8]. Motor imagery EEG (MI-
EEG) based BCI can improve the quality of life for patients
with neurological disabilities by translating brain activity

directly into command signals through electronic devices.
Due to inherent neural activity, concentration level and other
factors, brain signals show high inter-subject variability, and
aligning the data distribution among subjects has become an
important issue in BCI based rehabilitation engineering [9, 10].

The discrepancies among domains can be mitigated by
aligning their data distribution according to the decision
boundary of the target domain. Ibrahim et al. [11, 12] pro-
posed two data alignment methods based on active learning
and instance transfer learning. First, selective informative in-
stance transfer learning (SIITAL) and filter bank common
spatial pattern (SIITALfbcsp) were incorporated to investigate
the effect of subject-specific feature selection [11]. Next, they
proposed an optimal ensemble method to obtain a universal
multi-class information instance transfer learning framework
based on a combination of previous methods for selecting
instance and direct transfer learning [12]. The mentioned
methods selected instances of the source domain by applying
the decision boundary of the target domain, which increased
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the amount of data in the training set and aligned the data
distribution between the source and target domains.
However, relying entirely on active learning to select in-
stances from the source domain might miss the most similar
and effective samples. Wu et al. [13] and Kun et al. [14] used
sample reweighting to avoid class imbalance and align the
distribution between source and target domains, but it still
relied on good initial features. The boosting algorithm can
give higher weight to samples that are difficult to learn by
adding the weight of each sample [15], while the Kullback–
Leibler divergence-based transfer learning algorithm can
avoid the problem that poorer samples instead produce higher
weights [16]. Compared to sample alignment, researchers
have recently focused on feature-level alignment. Yong and
Yu [17] proposed a multi-source fusion transfer learning al-
gorithm with the Takagi–Sugeno–Kang fuzzy system
(MFTL-TSK) for MI classification, which use Riemannian
geometry alignment and balance distribution adaptation to
reduce the difference in feature distribution between different
subjects. Zhang et al. [18] presented the sub-band
target alignment common spatial pattern (SBTACSP) method
for cross-subject classification of MI-EEG, which align the
source domain trails in each sub-band into the target domain
space without changing the distribution of the target domain.

Domain adaptation, as a popular branch of transfer learn-
ing, aims to make the distance between the source and target
domains with different distributions as close as possible
[19–21]. Wang et al. [22] reviewed the recent advances in
domain adaptation and domain generalization, and analyzed
the generalization problem in depth which improved the de-
velopment of machine learning. Recently, an increasing num-
ber of researchers who engage in BCI, have focused on using
domain adaptation to make the most of the available data from
source subjects [23–28]. Chai et al. [23] proposed a novel
subspace alignment auto-encoder to reduce the difference in
data distribution among subjects or sessions, which combined
auto-encoder and subspace alignment in a unified framework
by using nonlinear transformations and maximum mean dis-
crepancy (MMD). The divergences of marginal and condi-
tional probability distributions between the different domains
can be minimized via MMD [24, 25]. Jiang et al. [26] pro-
posed a kernel-based Riemannian manifold domain adapta-
tion framework to align the covariance matrices in the
Riemannian manifold, and minimize the conditional distribu-
tion distance between the source and target domains based on
MMD. Liu et al. [27] proposed a cross-device transfer learn-
ing framework based on alignment and pooling for EEG head-
set domain adaptation, which is accomplished by aligning the
spatial pattern and covariance of the source and target do-
mains to realize effective transfer. Peterson et al. [28] pro-
posed backward optimal transport for domain adaptation to
boost the performance of an already trained classifier by
transforming target samples.

In recent years, deep transfer learning based on domain ad-
aptation has shown the advantage of a high recognition rate
[29–31], particularly regarding MI-EEG based BCI rehabilita-
tion systems [32–38]. Jeon et al. [32] devised a multi-path
network framework for MI classification, which realized do-
main adaptation by adapting samples of other subjects and
using the gradient reversal layer to update network parameters
and improve the network performance. In the same year, they
proposed a new domain adaptation method to minimize the
distributional discrepancy among subjects by estimating mutu-
al information of subjects in high-level and low-level represen-
tation [33]. Moreover, the domain discriminator has gained
increasing attention because it can learn deep representations
and reduce the discrepancies between domains [34, 35]. Zhao
et al. [36] proposed an end-to-end deep domain adaptation
method for MI tasks, and the feature distribution shift among
domains is matched by the domain discriminator with an ad-
versarial learning strategy. Wei et al. [37] proposed a separate-
common-separate network with MMD (SCSN-MMD) for in-
dividual subjects and aligned the extracted feature of separate
deep feature extractors through the common fully connected
layers. Zheng et al. [38] designed a new deep network includ-
ing an adaptive layer into the full connection layer by minimiz-
ing the local MMD and the prediction error to achieve better
intra-subject classification. Previous studies have shown the
effectiveness of domain adaptation in BCI. However, due to
the individual differences and BCI illiteracy, the data distribu-
tion of the source domain is different from that of the target
domain, resulting in a discrepant auxiliary of the different
source domains to the target domain. In addition, it may cause
unreasonable use of existing data and insignificant improve-
ment in model performance to extract common domain invari-
ant representations for all source domains or select only one
source domain for transfer learning. Therefore, domain adapta-
tion can solve the problem of differences among domains, and
it is particularly necessary to use the knowledge of multiple
source domains sufficiently and reduce the data distributional
discrepancy of multi-source domains and target domain in BCI.

In this paper, a dual alignment-based multi-source domain
adaptation framework (DAMSDAF) is proposed by aligning
each pair of source and target domains to realize the transfer
learning of multiple source domains. First, each source do-
main is pre-aligned by assigning weights, which are the nor-
malized mutual information (NMI) between the informative
sample of the target domain and each sample of the source
domain. Second, a multi-branch deep network (MBDN) is
designed based on MMD and weighted prediction to align
the source and target domains in common feature space.
Finally, MBDN with a sequential selection algorithm accom-
plishes domain-specific data distribution alignment and
achieves the optimal transfer effect of multi-source domains.

The main contributions of the work in this paper are sum-
marized as follows:
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1. We propose a dual alignment approach to reduce the dis-
tribution discrepancies between the source and target do-
mains. To the best of our knowledge, this work is the first
to combine weight assignment-based sample-level do-
main adaptation and MMD-based feature-level domain
adaptation for MI-EEG classification.

2. We introduce a multi-branch deep network (MBDN) to
align each pair of source and target domains in a specific
space, and ensure that each source domain has maximum
auxiliary to the target domain via weighted prediction.
MBDN is combined with a sequential selection algorithm
to select optimal multiple source domains, realizing multi-
source transfer learning.

3. We validate that the data distribution is different among
different subjects based on the marginal distribution,
which means that different subjects can be treated as dif-
ferent domains.

4. Extensive experiments show that the proposed model
achieves excellent results in MI-EEG classification, and
the performance of DAMSDAF is analyzed based on ac-
curacy, confusion matrices, kappa value, and paired t-test.

The rest of this paper is organized as follows: The related
work is introduced in Section 2. In Section 3, the details of the
materials and method are described. Section 4 presents the
weight of the source domain, the selection of sub-neural net-
work architecture and data visualization. Section 5 describes
the experimental evaluation results, comparison of the related
work and statistical analysis to validate the effectiveness of
our method. Section 6 discusses the results, advantages and
limitations. Finally, conclusions are drawn and future work is
discussed in Section 7.

2 Related work

This section introduces some basic concepts of transfer learn-
ing, entropy and maximum mean discrepancy, and state-of-
the-art domain adaptation approaches inMI-EEG based BCIs,
which motivated the proposed DAMSDAF.

Considering that a large number of symbols and abbrevia-
tions are involved in this paper, we provide a unified explana-
tion in Table 1, and the corresponding descriptions are pro-
vided when they first appear in the text, while the abbrevia-
tions of the compared methods are described in the corre-
sponding position.

2.1 Transfer learning

Transfer learning is a new machine learning methodology that
can solve problems in related but different domains by using
existing knowledge [19, 20]. We define transfer learning as
follows.

Definition 1 Given a source domain DS, learning task TS,
target domain DT, and learning task TT, transfer learning is
dedicated to using the knowledge in DS and TS to help im-
prove the learning of the target prediction function fT(⋅) inDT.
Here, DS ≠ DT and/or TS ≠ TT.

In the above definition, where the source domain DS ¼
XS;PS Xð Þf g and target domain DT ¼ XT;PT Xð Þf g, X is

the feature space, P(X) is the marginal probability distribution
and X ¼ x1f ; x2;⋯; xng∈X , learning task TS ¼ YS; f S ⋅ð Þf g
and TT ¼ YT; f T ⋅ð Þf g, Y is the label space. Thus, the condi-
tion that the two domains are different implies that either
XS≠XT, PS(X) ≠ PT(X),YS≠YT or/and fS(⋅) ≠ fT(⋅). Based
on the different situations between the source and target do-
mains and tasks, transfer learning can be categorized into three
settings: inductive transfer learning, transductive transfer
learning, and unsupervised transfer learning [19]. In this pa-
per, we only consider the condition of PS(X) ≠ PT(X) in the
MI-EEG domain adaptation.

2.2 Sample-level domain adaptation

Domain adaptation is a field associated with machine learning
and transfer learning, which has the same feature space be-
tween the source and target domains but different distribu-
tions, i.e., a subcategory of transfer learning [39, 40].
Table 2 shows the distinction among usual machine learning,
transfer learning and domain adaptation.

The main goal of domain adaptation is to minimize the
distribution difference between the source and target domains.
Sample-level domain adaptation learns a set of model param-
eters by weighting each sample in the source or selecting the
samples with similar distributions, so that the distribution of
the source domain approximates the distribution of the target
domain [11–16]. Entropy is used as the measurement to select
uncertain samples that have more informativeness to learn the
decision boundary than other samples [12]. The calculation
formula of the entropy is as follows:

Hn ið Þ ¼ − ∑
c¼1

nc

P ycjxið ÞlogbP ycjxið Þ; i ¼ 1; 2;⋯;N ð1Þ

where N is the total number of samples, nc is the number of
classes, P (yc | xi) is the probability of samples xi being in class
yc, b is the base of the logarithm used and b = 2, and the
samples were transferred that have entropy equal to or greater
than 0.29228. Similarly, the normalized entropy is applied to
find informative samples from the source to the target domain
[11] using:

NHn ¼ Hn−min Hnð Þ
max Hnð Þ−min Hnð Þ ð2Þ

where min(Hn) and max(Hn) are the minimum and maximum
of all entropy values, respectively. Therefore, the normalized
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entropy value of the sample is in the range of [0.0, 1.0], and
the samples having normalized entropy in [0.5,1.0] are
transferred.

Sample reweighting is widely applied to achieve distribu-
tion adaptation for sample importance and the number of sam-
ples of different classes between source and target domains.
Kun et al. [14] proposed augmentation-based source-free ad-
aptation (ASFA) to assign different weights to the samples by
using the entropy of the rescaled probability with Laplace
smoothing. Wu et al. [15] proposed a weighted adaptation
regularization algorithm for online and offline, which made
distributions of difference classes more consistent between the
source and target domain by weighting samples, and the ith
sample in the source and target domains as follows:

ws;i ¼ 1; xi∈Ds;1

n1= n−n1ð Þ; xi∈Ds;2

�
ð3Þ

wt;i ¼ 1; xi∈Dt;1

m1= m−m1ð Þ; xi∈Dt;2

�
ð4Þ

whereDs, c = {xi| xi ∈ Ds ∧ yi = c, i = 1, ⋯, n}andDt, c =
{xj| xj ∈ Dt ∧ yj = c, j = n + 1, ⋯, n + ml} are the set of
samples in class c of the source domain and target domain,
respectively, nc is the number of elements in Ds, c, and mc is
the number of elements in Dt, c.

2.3 Feature-level domain adaptation

Feature-level domain adaptation maps samples from different
domains to the same feature space and minimizes distribution
discrepancies, which has received extensive attention and de-
veloped well [23–26]. MMD [37, 38] is the most frequently
used metric distance in domain adaptation, which estimates
the discrepancy between two distributions P and Q in a repro-
ducing kernel Hilbert space (RKHS). Formally, MMD is de-
fined by

DH P;Qð Þ≜ ΕX ϕ xS
� �� �

−EY ϕ xT
� �� ��� ��2

H ð5Þ

whereH is the RKHS endowed with a characteristic kernel k,
ϕ(⋅) is the feature map that maps the original samples to
RKHS, kernel k means k(xS, xT) = 〈ϕ(xS), ϕ(xT)〉, and 〈⋅, ⋅〉
is the inner product of vectors.

In deep learning, the computed MMD between the source
and target domains in the feature extractors is added to the loss
function. Wei et al. [37] designed a separate-common-
separate network by separating the feature extractor of the
convolutional neural network for subjects, including three ful-
ly connected layers to extract common features of all subjects
in the feature space. Furthermore, they computed MMD for
each of the three layers cross-subject to increase the

Table 1 Notations used in this paper

Notations Descriptions Notations Descriptions

Abbreviations ASD Aligned source domain MBDN Multi-branch deep network
BCI Brain-computer interface MI Motor imagery
CWT Continuous wavelet transform MMD Maximum mean discrepancy
DAMSDAF Dual alignment-based multi-source domain adaptation framework NMI Normalized mutual information
DASSDAF Dual alignment-based single-source domain adaptation framework RKHS Reproducing kernel Hillbert space
EEG Electroencephalogram WA Weighted average
JS Jensen-Shannon divergence WSD Weighted source domain

Symbols C(⋅) Classifier Rsl Sample size of lth ASD
D Domain Si Source subject ibDH ⋅ð Þ Distance of MMD SSka the kth ASDs in the same dataset
DTT Training set of the target domain TS Target domain
F(⋅), Q(⋅) Feature extractor Wl Classifier’ weight
H(⋅) Entropy Wl

Sample Sample’s weight
I(⋅,⋅) Mutual information x, y Samples/ label
L ⋅; ⋅ð Þ Loss function χ, y Feature/label space
M Number of ASD γ Adaptation factor
P(⋅) Distribution t Value of test statistic

Table 2 Distinction among usual
machine learning, transfer
learning and domain adaptation

Learning paradigms Conditions

PS(X) and PT(X) TS and TT

Machine learning Same Same
Transfer learning Inductive transfer learning Same Different

Transductive transfer learning Different Same
Unsupervised transfer learning Different Different

Domain adaptation Sample-level domain adaptation Different Same
Feature-level domain adaptation Different Same
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significance of deeper layers, where the MMD loss is a
weighted average MMD of each of the three layers and aver-
aging weights are 1/6, 1/3 and 1/2, respectively. Zheng et al.
[38] aggregated the same class of EEG data byminimizing the
local MMD between different domains, and the form of the
local MMD is as follows:

DH P;Qð Þ ¼ 1

C
∑
C

c¼1
∑ωSc

i ϕ xS
� �

−∑ωTc
i ϕ xT

� ��� ��2
H ð6Þ

where ∑ωSc
i ¼ 1, ∑ωTc

i ¼ 1, and ωc represents the proportion
of experimental data belonging to class c. Then, the local
MMD loss obtained by the adaptive layer, which is after the
full connection layer of the deep network, was added to the
total loss function to train the model. In the specific calcula-
tion process of the abovementioned MMD distance, the cor-
responding x was replaced by the activation function value in
the full connection. In this work, we demonstrate a novel
MBDN, which embeds MMD in each branch to align each
pair of source and target domains and improve the perfor-
mance of the model.

3 Materials and method

This section introduces the proposed DAMSDAF in detail.
Figure 1 shows the flowchart of DAMSDAF. First, the raw
MI-EEG signal is transformed to acquire time-frequency spec-
trum images based on a continuous wavelet transform.
Second, each source domain is weighted by assigning the
NMI, which is obtained with the informative samples of the
target domain, and the weighted source domain (WSD) is
transferred to the training set of the target domain (DTT ) to
form the aligned source domain (ASD). Third, domain-
specific distribution alignment is achieved via MMD, and
the sub-classifiers are weighted with the single branch transfer
accuracy of the validation set to obtain the prediction of the
test set of the target domain. Finally, the sequential selection
algorithm with MBDN is used to realize the multi-sources’
optimization and enhance the transfer effect of the multi-
source domains to the target domain.

3.1 Datasets source and preprocessing

We used three public MI datasets to evaluate the performance
of DAMSDAF. The details of these datasets are given below.

Dataset 1 (Dataset 2b from BCI Competition IV [41]): This
dataset was recorded from 9 healthy subjects. Each subject
performed MI of the left and right hands, which was made
up of the 3 EEG channels (C3, Cz and C4) and 3 EOG chan-
nels, and the sampling rate was 250 Hz. For each subject, 5
sessions were provided and each session consisted of 120, 140
or 160 9 s trials. The first three sessions were set as the training

set, whereas the remaining two sessions were set as the testing
set. The 3 s–7 s signals of each trial from the 3-channel EEG
data were chosen for subsequent experimental study.

Dataset 2 (Dataset 2a from BCI Competition IV [42]): This
dataset consisted of 9 healthy subjects, each subject performed
four different mental tasks of MI of feet, left hand, right hand
and tongue. 22 channels (Ag/AgCl) were used for EEG signal
recording and 3 channels were used for EOG recording. Both
the EEG and EOG channels were sampled at 250 Hz. Each
subject completed training and an evaluation session. In each
session, a subject performed 72 trials per class, which was 288
in total. We only used the 3-channel EEG data (C3, Cz and
C4), and the 3 s–6 s signal of each trial was extracted as the
experimental data in this paper.

Dataset 3 (Dataset III from BCI competition II [43]): This
dataset was recorded from a healthy female, 25 y subject, and
it was made up of left- and right-hand MI-EEG. 3 channels
(C3, Cz and C4) with a sampling frequency of 128 Hz were
applied to record EEG signals. There are 280 trials of 9 s
length in the dataset, in which the training and testing sets
were both 140 times. For each EEG trial, the MI tasks with
a duration between 3 s and 9 s were used for the experiment.

In the specific experimental process, the results of
datasets 1 and 2 are calculated using the leave one subject
out (LOSO) validation method, i.e., nine subjects in
datasets 1 and 2 are successively taken as the target sub-
ject, and the remaining eight subjects are taken as multiple
source subjects. In addition, the experiment is also studied
on cross-dataset transfer learning, where nine subjects of
dataset 1 are used as multiple source subjects and one sub-
ject of dataset 3 was taken as the target subject. After pre-
processing, the trials of the target subject are split into
training, validation and test sets. For the target subject,
the training set is the training set marked in the datasets,
the validation set contains the first half trials of the testing
set marked, and the last half trials of the testing set marked
from the test set. In addition, the training set marked in the
datasets is used as the trials of the source subject.

3.2 Time-frequency spectrum image generation
based on CWT

The variation in energy is often caused by the potential activ-
ity of the contralateral cortex and ipsilateral cortex during MI,
and this phenomenon is not clearly reflected in the time do-
main. To describe the features in a better form, CWT is used to
transform the time series signals into two-dimensional images.
First, CWT is applied to MI-EEG signals of each channel, and
the bandwidth parameter and center frequency of the complex
Morlet wavelet are kept at 3, in which the frequency spectrum
corresponding to the 0–32 Hz frequency band is extracted as
the feature representation of MI-EEG in the time and frequen-
cy domains. Then, the images of the C3, Cz and C4 channels
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are vertically stacked into a new image, which is resized to
224 × 224 to form time-frequency spectrum images and con-
struct multi-source domains and the target domain. The de-
tailed conversion process of the raw MI-EEG signal to time-
frequency spectrum images is shown in Fig. 2.

3.3 Align the source and target domains based on
weight assignment

The data distribution of the source domain directly affects the
transfer effect, and the distance between the source and target
domains can be narrowed by weighting the source domain.
Figure 3 shows the weighted alignment process for the source
and target domains. First, the decision boundary of DTT is
obtained by using pre-trained ResNet50, and the informative
samples are selected from DTT based on entropy. Then, NMI

is calculated between informative samples and time-frequency
spectrum images of the source domain and is assigned to the
source domain as weights, and ASD is formed of WSD and
DTT .
According to the active learning method, the samples close

to the decision boundary have the most uncertainty, while the
uncertain samples have more information than others to learn
the decision boundary, which can accelerate the learning pro-
cess of the model. Therefore, the informative samples near the
decision boundary of DTT are selected according to the nor-
malized entropy by Formula (2), which can quantify the in-
formation carried by samples, and the time-frequency spec-
trum images with high entropy values are selected as informa-
tive samples.

Then, the weight assignment for time-frequency spectrum
images of the source domain is accomplished based on NMI.

Fig. 1 Flowchart of DAMSDAF
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In probability and information theory, the mutual information
of two random variables is a measure of the mutual depen-
dence between the two variables.

Definition 2 Let (X, Y) be a pair of random variables with
values in the space X × Y. If their joint distribution is ρ(x,
y) and the marginal distributions are ρ(x) and ρ(y), the mutual
information of two jointly discrete random variables X and Y is
calculated as a double sum:

I X ; Yð Þ ¼ ∑
x∈X

∑
y∈Y

ρ x; yð Þlog ρ x; yð Þ
ρ xð Þρ yð Þ ð7Þ

The normalized variant of the mutual information [44] is
given by

NMI X ; Yð Þ ¼ 2
I X ; Yð Þ

H Xð Þ þ H Yð Þ ð8Þ

where H(X) and H(Y) are the marginal entropies of random
variables X and Y, respectively. In this paper, Formula 4 is
used to calculate the NMI value between time-frequency spec-
trum images of the source domain and informative samples,
which are assigned for the time-frequency spectrum images of
the source domain as weights. Then, WSD is transferred to

Fig. 2 The conversion process of
raw EEG signals to time-
frequency spectrum images based
on CWT. The raw EEG signals of
the C3, Cz and C4 channels are
transformed into two-dimensional
images by CWT, and the 0–32 Hz
frequency band is extracted as
feature images, which are verti-
cally stacked and resized to 224
× 224 to form time-frequency
spectrum images. Si denotes the
source subject, i = 1, 2,⋯, N, T
denotes the target subject

Fig. 3 Schematic diagram of the weighted alignment process for the source and target domains
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DTT and constitutes ASD, which not only increases the num-
ber of training samples but also aligns the data distribution in
different domains and lays the foundation for the next work.

3.4 Domain-specific distribution alignment and
weighted prediction

The specific features of each source domain are different, and
the adaptability among domains can be increased by minimiz-
ing the distance between each pair of ASDs and the target
domain. First, multiple ASDs (SSl ; l ¼ 1; 2;⋯;M ) and target
domain (TS) are input into the shared network to extract the
common potential representations, which are respectively fed
into the sub-neural network to extract domain-specific fea-
tures. Then, the domain-specific features extracted from the
source and target domains are aligned via MMD. Finally, the
test set of the target domain is classified by weighted predic-
tion based on the MBDN. The detailed architecture of the
MBDN is shown in Fig. 4.

The MBDN consists of three parts: a shared network, sub-
neural networks and sub-classifiers. For details, a pre-trained
ResNet50 based on ImageNet is used as the shared network
F(⋅) to extract the common potential representations of all
domains; then, the common features are fed into the unshared
lth sub-neural network Ql(⋅) ; thus, each pair of ASD and
target domain are mapped into a specific feature space to
obtain domain-specific features Ql(F(Xsl) )and Ql(F(Xt) ),
where Xsl is the lth source domain and Xt is the target domain.
The structure of sub-neural network is shown in the blue dot-
ted box in Fig. 5. The sub-classifier Cl(⋅) is a softmax classi-
fier, which is shown in the last light purple block in Fig. 5. The
number of neurons is equal to that of types of MI tasks in the
target domain. In addition, a batch normalization layer is ap-
plied after each convolutional layer to speed up the training
process, and a dropout layer is applied in each sub-network to
prevent overfitting (dropout = 0.5). In this work, the shared
network can also be obtained by fine-tuning the models of
other ResNet. The specific training process of the MBDN is
to fine-tune all convolutional and pooling layers of the shared

network to learn the common representations for all domains,
while the sub-neural networks are trained from scratch with
each ASD to learn domain-specific representations, which can
improve the generalization ability of the proposed model.

To achieve the data distribution alignment of each pair of
source and target domains in a specific space,MMD is applied
as the estimation of the inter-domain discrepancy in this paper.
According to Formula (5),MMDdefines the distance between
ASD and the target domain.

bDH P;Qð Þ ¼ 1

Rsl
∑

x j∈Ds

ϕ xlj
� 	

−
1

Rt
∑

xi∈Dt

ϕ xti
� ������

�����
2

H

¼ 1

Rsl
2 ∑

j;i¼1

Rsl

k xlj; x
l
j

� 	
−

2

RslRt
∑

Rsl ;Rt

j;i¼1
k xlj; x

t
i

� 	
þ 1

Rt
2 ∑

j;i¼1

Rt

k xti; x
t
i

� �" #1
2
ð9Þ

where xlj∈X Sl and xti∈X t, ϕ(⋅) is feature mapping, i.e., mapping

the original samples to RKHS, k is the characteristic kernel,
and Rt and Rsl are the sample sizes of the target domain and lth
source domain, respectively. For domain adaptation of multi-
ple source domains, the MMD loss is reformulated as:

LMMD ¼ 1

M
∑
M

l¼1
DH

�
Ql

�
F X slð Þ;Ql F X tð Þð Þ ð10Þ

For the lth source domain, the domain-specific invariant
features, which are obtained through the lth sub-neural net-
work, are received by Cl(⋅). For each classifier, the cross en-
tropy is used as the classification loss, and the formula is:

LC ¼ ∑
M

l¼1
Wl

Sample J Cl Ql F xlj
� 	� 	� 	

; ylj
� 	

ð11Þ

where Wl
Sample and ylj∈YSl are the sample weight and label of

the lth ASD, respectively.

Wl
Sample ¼

NMI value; xlg∈WSDl; g∈1; 2;⋯; n
1; xTr ∈DTT ; r∈nþ 1; nþ 2;⋯; nþ m

�
ð12Þ

where n and m are the number of samples in WSDl and DTT ,
respectively, and n + m = Rsl. Then, the loss of DAMSDAF

Fig. 4 Architecture of multi-
branch deep network
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consists of MMD loss and classification loss. The MBDN can
accurately classify the ASD data by minimizing classification
loss and aligning domain-specific features by minimizing
MMD loss. The total loss is formulated as follows:

LTotal ¼ LC þ γLMMD ð13Þ

To suppress noisy activations at the early stages of training,
instead of fixing the adaptation factor γ, as the strategy pro-
posed in [45], we gradually change it from 0 to 1 by a pro-
gressive schedule:

γ ¼ 2

1þ exp −θ⋅ζð Þ −1 ð14Þ

where θ = 10 is fixed throughout the experiments, ζ = δ/U is
the training progress linearly changing from 0 to 1,δ = 1, 2,
⋯, U, and U is the number of training iterations. This pro-
gressive strategy stabilizes parameter sensitivity for
DAMSDAF.

Because each sub-classifier has a different prediction for
the test set of the target domain, directly averaging the output

of all sub-classifiers does not always yield the expected re-
sults. Hence, the optimal decision probability of the target
domain is obtained by weighting multiple sub-classifiers:

Pc
T xtð Þ ¼ ∑

M

l¼1
Wl*Pl

c xtð Þ ð15Þ

where Pl
c is the probability generated by the lth sub-classifier

for class c and Wl is the weight for the corresponding sub-
classifier. The weight Wl is given as follows:

Wl ¼ AccSl

∑
M

l¼1
AccSl

ð16Þ

where AccSl is the classification accuracy of the validation set
of the lth single-source to target transfers, which is obtained by
using the dual alignment-based single-source domain adapta-
tion framework (DASSDAF), and the output probability is
optimized by assigning weights for each sub-classifier. The
procedure of domain-specific distribution alignment and
weighted prediction is summarized in Algorithm 1.

Fig. 5 Architecture of sub-neural
network and sub-classifier
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3.5 Sequential selection of multiple source domains

Multiple source domains with preferable transfer effects
are selected for simultaneous transmission which can
ensure all transferred source domains are positively
transferred to the target domain. The sequential selec-
tion algorithm for multi-source domains transfer learning
is shown in Algorithm 2, which is an improvement of
the sequential forward floating-point search algorithm,
where Acc denotes the classification accuracy. In each

loop, an ASD is successively added to the current sub-
set as long as the resulting subset is superior to the
previously evaluated, and the process continues until
the classification accuracy of the target domain no lon-
ger increases. To reduce the computational cost, the
classification accuracies of all single-source to target
transfers are obtained by applying DASSDAF and ar-
ranged in descending order (ASD1, ⋯, ASDN). Then,
the corresponding ASD is added in turn to form the
optimal multi-source domains.

Algorithm 2 Sequential selection of multiple source domains
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4 Experiment

Three public MI datasets were used to evaluate the proposed
DAMSDAF in our experiments. All experiments were carried
out with the same software (Spyder, Windows 10) and hard-
ware (a Hewlett-Packard computer, equipped with an Intel(R)
Core (TM) i7–9700 CPU @ 3.00 GHz, an NVIDIA GeForce
RTX 2070 GPU).

4.1 Correlation between domains

To verify that the two domains are different in cross-
dataset transfer learning, Jensen–Shannon divergence
(JS) is used to measure the difference between the data

distribution of the source domain and target domain based
on the marginal distributions PS(X) and PT(X), which is
symmetric and suitable for measuring differences in data
distribution between domains. It is defined by

JS PS Xð Þ‖PT Xð Þ
� 	

¼ 1

2
DKL PS Xð Þ‖M

� 	

þ 1

2
DKL PT Xð Þ‖M

� 	
ð17Þ

whereDKL(PS(X)‖M)/DKL(PT(X)‖M) is the Kullback–Leibler di-
vergence andM = (PS(X) + PT(X))/2. The value of JS is in the
range of [0.0, 1.0], where 0 indicates that the distribution of data
between domains is perfectly identical. Figure 6 shows the JS
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Fig. 6 JS of the target and source
domains on cross-dataset transfer
learning. Si is one of nine source
domains from dataset 1, andDT is
the target domain from dataset 3

(a) Subject 1

(b) Subject 2

Fig. 7 Weights of different
source domains. The blue bars
represent the NMI values of the
time-frequency spectrum images
generated by trials; they are dis-
crepant with each other as well as
between different source domains
(a) Subject 1 (b) Subject 2
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between different source and target domains on cross-dataset
transfer learning, where Si is the ith source domain, i = 1, 2,
⋯, 9, and DT is the target domain. The results show that JS
between different source and target domains is larger than 0.3,
demonstrating that the distribution of data between domains is
actually different.

4.2 Weight assignment of the source domain

To maximize the auxiliary of the source domain to the target
domain, the source domain is weighted and aligned based on
the NMI. First, the informative samples of DTT are selected
according to Formula (2), and then the NMI between the time-
frequency spectrum images of the source domain and infor-
mative samples is calculated by Formula (8). Figure 7 shows
the obtained NMI of Subjects 1 and 2 when Subject 9 is the
target subject in dataset 1, where Fig. 7a and b are the NMI of
Subjects 1 and 2, respectively. For example, in Fig. 7a, there is
a significant difference among NMI of different time-
frequency spectrum images. The 46th sample has the maxi-
mum NMI of 0.5979, indicating that it is the most relevant to
informative samples and conducive to decision-making of the
target subject. The 82nd sample has the minimum NMI of
0.0769, which has a low relevance with informative samples
and provides little help to the decision-making of the target
subject. In addition, the weights between different source do-
mains are also different. As seen from the right hand, the 23rd
sample has the maximum NMI of 0.5550 in Subject 1, while
the 129th sample has the maximum NMI of 0.5343 in Subject
2, and the average NMI of Subjects 1 and 2 are 0.3350 and
0.3023, respectively, which shows that different source do-
mains have different correlations to the target domain. The
other two datasets are processed in the same way. Therefore,
each time-frequency spectrum image of the source domain is
weighted and transferred to DTT to form an ASD.

4.3 Determination of sub-neural network architecture

In this paper, MBDN is a modified network based on
ResNet50. Due to the great difference between time-
frequency spectrum images and ImageNet, pre-trained
ResNet 50 with ImageNet has difficulty accurately extracting
MI-EEG features. Although a sub-neural network can be
trained from scratch, it is not necessarily the most suitable
model for MI-EEG classification. Therefore, the same struc-
ture (conv (1 × 1), conv (3 × 3), conv (1 × 1)) is called the
bottleneck, and the structure of sub-neural network is opti-
mized by changing the number of bottlenecks. The batch size
is set as 24 and the number of training iterations U is set to
10,000. Since the sub-neural networks and sub-classifiers are
trained from scratch, the learning rate is set to 10 times that of
the other fine-tuned layers. In addition, stochastic gradient
descent with 0.9 momenta is used as the optimizer, and the
learning rate annealing strategy is as follows [45]:

ϑp ¼ ϑ0

1þ η� ζð Þα ð18Þ

where ϑ0 = 0.01, η = 10 and α = 0.75, which are optimized
to promote convergence and low error on the source domain.

Figure 8 shows the average accuracies obtained by the
MBDN with different structures on 3 datasets, where
DAMSDAFi, i = 1, 2, 3, represents the number of bottlenecks
in the sub-neural network of the MBDN. DAMSDAF1
achieved the lowest classification accuracy on the 3 datasets,
and the gap between DAMSDAF2 and DAMSDAF3 is very
marginal on dataset 1, but there is a significant difference on
datasets 2 and 3, while the results of 3 datasets all achieved the
highest when the sub-neural network structure is
DAMSDAF2, indicating that the structure of DAMSDAF2 is
optimal, and the detailed architecture of sub-neural network is
shown in Fig. 5.

Fig. 8 Classification accuracies of DAMSDAF with different structures
on 3 datasets

Fig. 9 t-SNE visualization of the common features when the first eight
subjects and last one subject were used as the source domains and target
domain respectively in dataset 1.
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4.4 Visualization

To visually show how the data distribution between the source
and target subject was aligned by DAMSDAF, t-stochastic
neighbor embedding (t-SNE) was used for data visualization.
Fig. 9 shows the common features that were extracted from
nine subjects (Si, i = 1, 2, ⋯, 9) in dataset 1 by using the
shared network and normalized, in which S9 was set as the
target domain, and the part labeled data of S9 and weighted Sn,
n = 1, 2, ⋯, 8 were set as the multiple ASDs. The blue dots
represent class 1 and the green triangles represent class 2 in
ASDs, red dots represent class 1, and red triangles represent
class 2 in the target domain. It can be seen that the distribu-
tions of the target domain and ASDs are quite different.

Next, the domain-specific features, which were extract-
ed via MBDN, are visualized in Fig. 10. In each subplot,
the blue dots represent class 1 and the green triangles rep-
resent class 2 in the optimal source domain (S4), while the
red dots represent class 1 and the red triangles represent

class 2 in the target domain (S9), where all data have been
normalized. For the data before dual alignment, dots and
triangles are indistinguishable, and the source and target
domains are very dispersive. After dual alignment, the
source and target domains overlap, and the data distribu-
tion is clearly visible. By comparing Figs. 9 and 10, it can
be seen that samples from the same class in each pair of
source and target domains are close, which verifies the
effectiveness of DAMSDAF in aligning the data distribu-
tion and benefits for subsequent classification.

5 Results and analysis

In this section, the classification performance and robustness
of DAMSDAF are verified by presenting the results obtained
on datasets 1, 2 and 3. Table 3 summarizes the classification
accuracies and kappa values of single-source and multi-source
to target transfers on three datasets, where Avg denotes the

Fig. 10 t-SNE visualization of the
data distributions before and after
dual alignment on transferring the
optimal source domain (S4) to the
target domain (S9) in dataset 1 (a)
Before dual alignment (b) After
dual alignment.

Table 3 Classification accuracies (%) and kappa values (accuracy/kappa value) of single-source and multi-source to target transfers on three datasets

Target subject Single-source to target transfers Multi-source to target transfers

Inter-subject Cross-dataset Inter-subject Cross-dataset

Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3

TS1 79.25/0.5850 72.84/0.6379 79.80/0.5960 90.25/0.8050 75.35/0.6713 89.57/0.7914

TS2 65.92/0.3185 51.40/0.3520 – 87.56/0.7512 54.51/0.3935 –

TS3 77.00/0.5400 81.63/0.7551 – 88.94/0.7788 83.40/0.7787 –

TS4 97.27/0.9454 42.26/0.2302 – 97.50/0.9500 45.50/0.2733 –

TS5 92.99/0.8597 48.10/0.3080 – 93.25/0.8650 52.43/0.3657 –

TS6 88.24/0.7649 56.53/0.4204 – 93.06/0.8612 58.33/0.4444 –

TS7 94.41/0.8882 79.57/0.7277 – 95.94/0.9188 83.06/0.7741 –

TS8 93.00/0.8600 83.74/0.7832 – 94.82/0.8964 86.60/0.8213 –

TS9 86.50/0.7300 83.28/0.7771 – 91.75/0.8350 85.83/0.8111 –

Avg 86.07/0.7213 66.60/0.5546 79.80/0.5960 92.56/0.8513 69.45/0.5926 89.57/0.7914
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average classification accuracy. In addition, the results are
compared with related transfer learning methods to verify
the superiority of DAMSDAF.

5.1 Inter-subject transfer learning

5.1.1 Dataset 1: BCI IV 2b

To validate that the knowledge transfer effectiveness of mul-
tiple source domains is better than that of a single source
domain, the classification accuracy is taken as the average of
10 times to negate the random starting sample effect.
Figure 11 shows the accuracies of different single-source to
target transfers and the average accuracy of each target do-
main on dataset 1. SSka ; k ¼ 1; 2;⋯; 8 represents the reorder
of 8 ASDs after removing the target subject from the dataset,
Avga represents the average accuracy of the target domain,
TSi ; i ¼ 1; 2;⋯; 9 represents 9 target subjects and SSka‐TSi
represents the knowledge transfer from the kth ASD to the

ith target domain. The auxiliary of each source domain to
the target domain is different, except for TS4 , and it is obvi-
ously not optimal to average the transferred results of all
single-source to target transfers as the last classification result
of the multi-source domains transfer learning. Therefore,
selecting the most relevant multiple source domains is crucial
to achieving the best transfer effect.

Figure 12 shows the classification accuracies of each target
subject through DAMSDAF on dataset 1, i.e., the results of
different multi-source to target transfers which are obtained by
Algorithms 1 and 2. As seen in Fig. 12, the accuracies of the
target subjects show a trend of increasing first and then de-
creasing or remaining unchanged as the number of source
domains increases, reflecting that it is necessary to select the
most relevant source domains for transfer learning. In addi-
tion, by comparing Figs. 11 and 12, it is found that the transfer
effectiveness of multi-source domains is better than that of the
single-source domain, i.e., the classification results of multi-
source to target transfers are higher than the average of all

Fig. 11 Classification accuracies of different single-source to target transfers on dataset 1

Fig. 12 Variation in classification
accuracy with an increasing
number of source domains on
dataset 1
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single-source to target transfers and the best single-source to
target transfers, indicating that the DAMSDAF is effective.
Figure 13 shows the confusion matrix of the DAMSDAF
method on optimal multi-source to target transfers. LH repre-
sents imagining the left-hand task, and RH represents imagin-
ing the right-hand task. The classification accuracies of LH
and RH are 91.50% and 93.63%, respectively, achieving near-
ly consistent results, and the accuracies of the twoMI tasks are
higher than 90.00%, indicating that the proposed method can
keep balance and effectively recognize MI tasks of LH and
RH on inter-subject transfer learning.

Table 4 shows the comparison of classification accuracies
among DAMSDAF, DASSDAF and various relevant transfer
learning methods on dataset 1. Here the results of DASSDAF
and DAMSDAF are the average of all single-source to target

transfers and optimal multi-source to target transfers classifi-
cation accuracy, respectively. DAMSDAF is superior to
DASSDAF, SIITALfbcsp, SBTACSP and MF-BLDA, and
the gaps are 6.50%, 16.77%, 25.71% and 7.86%, respectively.
SIITALfbcsp selected information instances with higher nor-
malized entropy from the source domain by using the trained
classifier based on labeled instances of target domain, which
may lead to the imbalance of selected samples for all classes or
miss the most effective samples. SBTACSP used
target alignment to align each frequency sub-band between
the source and target domains, and mutual information to se-
lect representative CSP features from the sub-bands. MF-
BLDA used a boosting algorithm to update the weight of
samples in the course of LDA training, which can make the
learner focus on the samples with incorrect classification to
achieve domain adaptation. DAMSDAF and DASSDAF
measured the similarity between the time-frequency spectrum
images of the source domain and informative samples by cal-
culating NMI, which was set as the weight coefficient for the
time-frequency spectrum images of the source domain to align
the data distribution of the source domain. In addition, the
kappa value is a statistical measure, that can verify the consis-
tency of DAMSDAF, which is calculated on the classification
results based on LOSO validation in this paper. The results are
also shown in Table 4, which comprises the kappa values of
various transfer learning methods on dataset 1. The 9 subjects
had an average kappa value of 0.8513, and there was no sig-
nificant difference in all subjects, indicating that the
DAMSDAF has a strong generalization ability. To summa-
rize, the kappa values of the 9 target subjects and average are
all higher than those of the compared transfer learning
methods on dataset 1, which strongly proves that
DAMSDAF has good robustness and consistency. Hence,
the results in Table 4 illustrate that DAMSDAF has better
applicability to select and align the source domain based on

Fig. 13 Confusion matrix obtained with the average of the optimal multi-
source to target transfers on dataset 1

Table 4 Comparison of the accuracies (%) and kappa values (accuracy/kappa value) of DAMSDAF with different transfer learning methods on dataset 1

Target subject Transfer learning methods

SBTACSP [18] SIITALfbcsp [11] MF-BLDA [15] DASSDAF DAMSDAF

TS1 72.50/0.4500 70.28/0.4056 79.40/0.5880 79.25/0.5850 90.25/0.8050

TS2 66.33/0.3266 61.71/0.2342 80.30/0.6060 65.92/0.3185 87.56/0.7512

TS3 60.00/0.2000 57.00/0.1400 70.30/0.4060 77.00/0.5400 88.94/0.7788

TS4 85.83/0.7166 94.40/0.8880 95.00/0.9000 97.27/0.9454 97.50/0.9500

TS5 58.33/0.1666 86.13/0.7226 88.70/0.7740 92.99/0.8597 93.25/0.8650

TS6 72.50/0.4500 74.90/0.4980 90.30/0.8060 88.24/0.7649 93.06/0.8612

TS7 63.33/0.2666 78.00/0.5600 78.40/0.5680 94.41/0.8882 95.94/0.9188

TS8 55.83/0.1166 79.85/0.5970 91.30/0.8260 93.00/0.8600 94.82/0.8964

TS9 70.00/0.4000 79.90/0.5980 88.40/0.7680 86.50/0.7300 91.75/0.8350

Avg 66.85/0.3437 75.80/0.5159 84.70/0.6936 86.07/0.7213 92.56/0.8513
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the decision boundary of the target domain, and multi-source
to target transfers greatly improve the performance of the
model.

5.1.2 Dataset 2: BCI IV 2a

To demonstrate the effectiveness of DAMSDAF in multiple
class, the classification accuracies of single-source to target
transfers and the average accuracy of each target subject on
dataset 2 are shown in Fig. 14. The meaning of each mathe-
matical symbol in this subsection is consistent with those in
dataset 1. We can see that the classification results of single-
source to target transfers are different. In addition, the highest
accuracy of single-source to target transfers is higher than the
average accuracy; therefore, it is also necessary to optimize
the source domain for multiple tasks. Figure 15 shows the
classification accuracies of each target subject through
DAMSDAF on dataset 2. The tendency in Fig. 15 is relatively

consistent with that in Fig. 12, and the comparison results of
Figs. 14 and 15 are consistent with those of Figs. 11 and 12,
demonstrating that the proposed method is effective in multi-
class classification. Figure 16 shows the confusion matrix of
the DAMSDAF method on dataset 2. FT represents the imag-
inary foot task, and T represents the imaginary tongue task.
The classification accuracies of LH, RH, FT and T are
71.11%, 70%, 67.78% and 68.89%, respectively, indicating
that the accuracy of task T is slightly worse than that of LH
and RH tasks, while the FT task is relatively indistinguishable.

Table 5 shows the classification results of various do-
main adaptation methods on dataset 2. DAMSDAF5S repre-
sents the results of 5 target subjects. It can be seen in Table 5
that DAMSDAF achieved the highest results, and the gaps
in DAMSDAF and DASSDAF, W/C, ASFA, MFTL-TSK
and SCSN-MMD are 2.85%, 15.67%, 12.09%, 0.95% and
1.01%, respectively. W/C selected one of the most relevant
source subjects from multiple source domains, and realized

Fig. 14 Classification accuracies of different single-source to target transfers on dataset 2

Fig. 15 Variation in classification
accuracy with an increasing
number of source domains on
dataset 2
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domain adaptation for one pair of source and target domains
by a gradient reversal layer, while DAMSDAF performed
the multi-source to target transfers by using MMD to align
each pair of ASD and target domain simultaneously, and the
results obtained by DAMSDAF were higher than W/C.
ASFA used sample reweighting to align the classifier output
between auxiliary and target classifiers, and the classifica-
tion accuracy was higher than W/C by 3.58%. MFTL-TSK
used information from other source subjects and a small
amount of MI-EEG data from target subject to conduct the
distribution alignment and achieved a great improvement in
classification accuracy. SCSN-MMD successively selected
5 subjects with the highest data quality (S1, S3, S7, S8 and S9)
from dataset 2 as the target subject for evaluation, and the
data distribution among subjects might not be the most sim-
ilar. DAMSDAF enhanced the similarity between the

source and target domains by pre-aligning the source do-
main, and the average result of DAMSDAF outperformed
SCSN-MMD on these 5 subjects. Furthermore, Table 5 also
shows kappa values on dataset 2. There is a large difference
among subjects. S8 obtained the highest value of 0.8213,
while S4 obtained the lowest value of 0.2733, but
DAMSDAF showed a much-improved kappa value for all
subjects compared with that of the related methods. Overall,
the results obtained by DAMSDAF were higher than those
obtained by relevant transfer learning methods, indicating
the importance of multi-source domains transfer learning by
combining source domain alignment and multi-source do-
main adaptation.

5.2 Cross-dataset transfer learning

To evaluate the performance of DAMSDAF on cross-dataset
transfer learning, Fig. 17 shows the classification results of
single-source to target transfers and multi-source to target
transfers on dataset 3. TS1 represents the one target subject

in dataset 3, and SASh ‐TS1 represents the knowledge transfer

from the hth ASD of dataset 1 to the target domain. The blue
bar graph represents the results and average result of single-
source to target transfers, and the orange bar graph represents
the results of multi-source to target transfers. DAMSDAF ob-
tained the highest classification accuracy with three source
domains, demonstrating that DAMSDAF can be used for
knowledge transfer from multiple source domains to target
domain with greater data distribution differences. Figure 18
shows the confusion matrix of the DAMSDAF method on
dataset 3. The classification accuracies of LH and RH are
89.14% and 90.00%, respectively, which achieved near-
unanimous results, indicating that DAMSDAF also contrib-
utes greatly to cross-dataset transfer learning. However, com-
paring Figs. 12, 15 and 17, it can be obtained that the

Fig. 16 Confusion matrix obtained with the average of the optimal multi-
source to target transfers on dataset 2

Table 5 Comparison of the accuracies (%) and kappa values (accuracy/kappa value) of DAMSDAF with different transfer learning methods on dataset 2

Transfer learning methods

Target subject W/C [32] ASFA [14] MFTL-TSK [17] DASSDAF DAMSDAF SCSN-MMD [37] DAMSDAF5S

TS1 70.00/0.6000 72.99/0.6399 79.00/0.7200 72.84/0.6379 75.35/0.6713 76.80/0.6907 75.35/0.6713

TS2 38.00/0.1700 28.19/0.0425 52.00/0.3600 51.40/0.3520 54.51/0.3935 – –

TS3 76.00/0.6900 86.25/0.8167 85.75/0.8100 81.63/0.7551 83.40/0.7787 80.50/0.7400 83.40/0.7787

TS4 39.00/0.1900 42.95/0.2393 58.75/0.4500 42.26/0.2302 45.50/0.2733 – –

TS5 31.00/0.0700 36.01/0.1468 45.25/0.2700 48.10/0.3080 52.43/0.3657 – –

TS6 38.00/0.1800 41.60/0.2213 49.00/0.3200 56.53/0.4204 58.33/0.4444 – –

TS7 70.00/0.5900 69.51/0.5935 82.00/0.7600 79.57/0.7277 83.06/0.7741 80.60/0.7413 83.06/0.7741

TS8 63.00/0.5000 78.78/0.7171 82.00/0.7600 83.74/0.7832 86.60/0.8213 82.40/0.7653 86.60/0.8213

TS9 59.00/0.4500 59.90/0.4653 80.50/0.7400 83.28/0.7771 85.83/0.8111 88.90/0.8520 85.83/0.8111

Avg 53.78/0.3822 57.35/0.4314 68.50/0.5767 66.60/0.5546 69.45/0.5926 81.84/0.7579 82.85/0.7713
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classification accuracy of the cross-dataset decreases faster
than that of inter-subject, which might be because adding
more weakly related source domains, reveals that the correla-
tion among domains is still the basis of transfer learning.

5.3 Statistical analysis

To further analyze the performance improvements of
DAMSDAF over each compared transfer learning method
on classification results, paired t-test was performed to detect
whether there is a significant difference when they are applied
to recognize the MI-EEG in this paper.

First, the Lilliefors test was used to verify whether the
classification results produced by the proposed methods and
other compared methods come from a normal distribution. In
this experiment, the lillietest function of MATLAB was used
to test the normal distribution. The test results of datasets 1

and 2 are displayed in Table 6, respectively. The output results
include the hypothesis test result h and the p value, where h is
returned as a logical value, and p is returned as a scalar value
in the range (0.0, 1.0). The output results of all approaches are
h = 0 and p > 0.05, which means that the null hypothesis that
the data from a normal distribution cannot be rejected. Hence,
the classification results of DAMSDAF and the state-of-the-
art methods all fit the normal distribution except for MFTL-
TSK.

After the normal distribution of all methods was examined,
we performed the paired t-test by using the MATLAB ttest
function. Assume that two samples were chosen from the
abovementioned methods, and they had the same sample size
θ, x1i ∈ sample1, x2i ∈ sample2, i = 1, 2,⋯, θ, and then the
test statistic t was calculated by

t ¼ x−μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑θ

i¼1 xi−x
� 	
θ−1

s
=

ffiffiffi
θ

p
ð19Þ

x ¼ ∑θ
i¼1xi
θ

ð20Þ

where xi = x1i − x2i is the difference between all pairs and x is
the average value. In this section, we want to test whether the
average of the difference is significantly different, and the
constantμ = 0.

Defining the null hypothesis is H0: the difference between
the paired samples has a mean of zero; the alternative hypoth-
esis is H1: the classification results of each pairwise compar-
ison have unequal means. The significance level can be set as
α = 0.05. The decision rule is to reject H0 if

p ¼ P t > tα n−1ð Þf g≤0:05 ð21Þ

The paired t-test results on the classification accuracies of
datasets 1 and 2 are shown in Table 7, respectively, where the

Fig. 17 Classification accuracies of single-source and multi-source to target transfers on dataset 3

Fig. 18 Confusion matrix obtained with the optimal multi-source to tar-
get transfers on dataset 3
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6 p values are smaller than 0.05 in datasets 1, except for the p
value between MF-BLDA and DASSDAF, and 5 of the 6
p values are smaller than 0.05 in datasets 2, except for the p
value between SCSN-MMD and DASMDAF. Hence, the null
hypothesis H0 is rejected at the 0.05 significance level, indi-
cating that the differences between DAMSDAF and each oth-
er method are statistically significant and showing the advan-
tage of the proposed method in the recognition of MI-EEG. In
addition, DAMSDAF significantly outperformed DASSDAF
on datasets 1 and 2 by observing the last column in Table 7,
suggesting that the transfer effectiveness of multi-source to
target transfers is superior to that of single-source to target
transfers.

6 Discussion

Considering the small data size and individual variabilities
of MI-EEG, a multi-source domain adaptation framework
based on dual alignment was proposed to explore multiple
source domain transfer learning in this paper. The perfor-
mance of DAMSDAF was evaluated by 3 MI datasets and
compared with the relevant research results, as shown in
Tables 3, 4 and 5. DAMSDAF obtained average recogni-
tion rates of 92.56% and 69.45% and average kappa values
of 0.8513 and 0.5926 on datasets 1 and 2, respectively,
which were higher than those of the compared methods.
In addition, DAMSDAF achieved an 89.57% recognition
rate on dataset 3, which is higher than DASSDAF. It is

confirmed that DAMSDAF is effective and universal for
inter-subject and cross-dataset transfer learning.

Figures 11 and 14 show the classification results of
DASSDAF on datasets 1 and 2, respectively. The average
accuracy of DASSDAF was not the optimal method for
multi-source to target transfers. DAMSDAF can select multi-
ple source domains that provide auxiliary information to the
target domain and recognize the MI-EEG of the target domain
through MBDN and weighted prediction to obtain the best
transfer effect. Figures 12 and 15 show the classification re-
sults of DAMSDAF with multi-source domains. Interestingly,
comparing Figs. 11 and 12 and Figs. 14 and 15, with the
increase in the number of source domains, the accuracy of
multi-source to target transfers decreases, and the results are
lower than that those of the best single-source to target trans-
fers on the same target subject, demonstrating that more
source domains are used for multi-source domain adaptation,
which is not always better. However, the sequential selection
algorithm can solve this phenomenon well by selecting the
most appropriate number of source domains for transfer learn-
ing. Enchantingly, the multiple class MI tasks need more
knowledge transfer of the source domain to achieve the best
classification accuracy by comparing Figs. 12 and 15, which
might be because the domain adaptation of multiple class MI
tasks was more complicated than two class MI tasks. The
produced LMMD had a large impact on the MBDN in the late
training process, which might cause the whole network train-
ing to be unstable; therefore, the multiple class MI tasks need
more source domains to train the MBDN. In addition, by

Table 6 Results of the normal
distribution test on datasets 1 and 2 Type Dataset Group Mean p value h

Normal distribution test Dataset 1 SIITALfbcsp [11] 75.80 0.5 0

SBTACSP [18] 66.85 0.5 0

MF-BLDA [15] 84.70 0.1587 0

DASSDAF 86.07 0.3941 0

DAMSDAF 92.56 0.5 0

Dataset 1 W/C [32] 53.78 0.1082 0

ASFA [14] 57.35 0.3629 0

MFTL-TSK [17] 68.50 0.0224 1

SCSN-MMD [37] 81.84 0.3893 0

DASSDAF 66.60 0.3522 0

DAMSDAF 69.45 0.1443 0

Table 7 p-Values of paired t-test
results on the classification
accuracies of datasets 1 and 2

Dataset 1 Methods SIITALfbcsp [11] SBTACSP [18] MF-BLDA [15] DASSDAF
DASSDAF 7.1240e-04 0.0023 0.6215 –
DAMSDAF 4.8017e-04 2.8008e-05 0.0059 0.0259

Dataset 2 Methods W/C [32] ASFA [14] SCSN-MMD [37] DASSDAF

DASSDAF 0.0013 0.0264 – –

DAMSDAF/5S 3.8777e-04 0.0082 0.5080 5.8305e-06
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observing the number of source domains used on target do-
mains in Figs. 12 and 15, it is difficult to distinguish MI tasks
that might need more source domains, while the space for
improvement is considerable, such as TS2 and TS3 in dataset
1 and TS4 and TS5 in dataset 2, indicating that DAMSDAF is a
universal framework that can maximize the auxiliary of the
target domain.

To determine the influence of ASD, MMD and weighted
average (WA) on the proposed method, we conducted exper-
iments on DAMSDAF without one of these three strategies,
and the data division and accuracy acquisition methods are
consistent with DAMSDAF. The average classification results
of the target domains on three datasets with different strategies
are shown in Fig. 19. DAMSDAFASD represents the obtained
results without considering the ASD, i.e., the samples in the
source subject are directly transferred to DTT as the source
domain without considering weight assignment.
DAMSDAFLMMD represents the obtained results without con-
sidering the MMD, i.e., each pair of ASD and target domain is
not aligned after extracting the domain-specific features.
DAMSDAFWA represents the obtained results without con-
sidering the WA, i.e., the output of the sub-classifiers is not
weighted while directly averaging the output of M classifiers
as the final result. The blue, green and orange lines represent
the results of four different DAMSDAFs on datasets 1, 2 and
3, respectively. It can be seen that the results of
DAMSDAFLMMD are the lowest among the four methods on
3 datasets, indicating that the feature-level domain adaptation
has the greatest influence on the transfer learning of multi-
source domains. The gaps in DAMSDAFWA and
DAMSDAF are 1.31% and 0.38% on datasets 1 and 2, respec-
tively, demonstrating WA has a slightly greater impact on
dataset 1 than dataset 2. The cause of this phenomenon might
be that each single-source domain in dataset 1 has a great
difference from the auxiliary for the target domain, and the
most relevant source domains can perform better with WA.
Moreover, the gaps of DAMSDAFASD and DAMSDAF are
1.93% and 2.09% on datasets 1 and 2, respectively,

illustrating that ASD has a greater influence on transfer learn-
ing of inter-subject with multiple MI tasks, which might be
because the relatively large LMMD, which is generated by the
unaligned source domain and target in the specific feature
space, affects the performance of MBDN. In addition, the
results of DAMSDAFWA and DAMSDAFASD on dataset 3
are different from the results of DAMSDAF by 2.43% and
3.86%, respectively, which are larger than the difference on
datasets 1 and 2, confirmingWA and ASD have less influence
on inter-subject, but more influence on cross-dataset transfer
learning. The main reason is that there are large data distribu-
tion discrepancies between datasets 1 and 3. Therefore, reduc-
ing the differences in inter-subject transfer learning, especially
in cross-dataset transfer learning is still a great challenge for
future consideration. Overall, ASD, MMD and WA all have a
certain influence on the proposed method. DAMSDAF
achieved preferable results on 3 datasets by combining three
strategies, which suggests that DAMSDAF is feasible and
effective for multi-source to target transfers in MI-EEG
classification.

Due to the specificity of EEG, the information obtained by
different channels with great discrepancy, and the influence of
different channels on the classification accuracy are explored
in this work. The channel-wise results obtained for the pro-
posed method on three datasets are shown in Fig. 20, where
C3-Cz denotes combining the information of the C3 and Cz
channels, C4-Cz denotes combining the information of the C4
and Cz channels, C3-C4 denotes combining the information
of the C3 and C4 channels, C3-Cz-C4 denotes combining the
information of the C3, Cz and C4 channels. The results of
DAMSDAF all achieved the best performance by combining
the C3, Cz and C4 channels on three datasets, while that of
DAMSDAF achieved the lowest performance by using the Cz
channel on datasets 1 and 3. This is because the Cz channel
has very little information related to the MI of the left or right
hands, while the positions of C3 and C4 channels are the main
MI brain areas for left and right hands, which provide EEG
signals that can reflect brain activity. However, it can be seen

Fig. 19 Influence on the performance of DAMSDAF without
considering ASD, MMD or WA

Fig. 20 Channel-wise accuracies obtained for DAMSDAF on three
datasets
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in dataset 2 that the classification accuracies of Cz and C4-Cz
are slightly higher than those of C3 and C4-C3, and the gaps
are 0.30% and 0.12%, respectively, indicating that Cz is ben-
eficial for recognizing the MI of the foot and tongue. In addi-
tion, as seen in dataset 1, the classification accuracy of C4 is
higher than that of C3 by 2.50%, and the classification accu-
racy of C3-C4 is higher than that of C3 and C4 by 13.44% and
10.94%, respectively, indicating that C4 acquires the most
relevant information during MI, and combining C3 and C4
can greatly improve the results. Furthermore, the classification
accuracies of C4-Cz-C3, C4-Cz and C3-Cz are higher than
those of C4-C3, C4 and C3 by 2.86%, 2.81% and 1.56%,
respectively, indicating that combining Cz can improve the
classification result. The findings from dataset 1 can also be
obtained on the other two datasets. The channel-wise classifi-
cation results suggest that using more channels will achieve
better MI-EEG classification results.

Based on the above discussion and results analysis, the
main advantages of this paper are summarized into three
points. First, the data distribution between different source
and target domains is aligned based on NMI, which pro-
vides sufficient and reliable training data for the classifier.
Second, a multi-branch deep network is designed based
on MMD, which aligns the feature distributions of each
pair of source and target domains by learning the outputs
of several sub-neural networks to strengthen the model
training. Finally, a sequential selection algorithm is ap-
plied to select optimal multiple source domains, which
proves that multi-source transfer learning is superior to
single-source transfer learning on three datasets. As seen
in Tables 4 and 5 the classification accuracies of
DAMSDAF outperform the related works. In addition,
the weighted alignment and domain adaptation can easily
be embedded into the real-time BCI as predestinate strat-
egies, which has important significance in a clinical sce-
nario. This work lays a solid foundation for the applica-
tion of domain adaptation in MI-EEG classification, and
will promote the more extensive integration of MI-EEG
recognition with domain adaptation technology and deep
learning.

However, there are several limitations in this work, which
will be addressed in our future research:

1. DAMSDAF copes well with the MI-EEG classification
on 3 EEG channels (C3, Cz and C4), ignoring the infor-
mation carried by other channels. For complex MI tasks,
the activated brain regions may overlap, and fewer chan-
nels carry less comprehensive information, leading to sub-
optimal results. More experiments will be carried out in
future work to further verify the universality of
DAMSDAF.

2. The current DAMSDAF can be used in multi-source do-
mains transfer learning; however, it is time-consuming in

this work. This is due to the server configuration and the
limited operating speed.Wewill equip the laboratory with
higher-performance experimental equipment in the future.

3. The datasets used in this paper were derived from public
databases, and the samples were limited to normal sub-
jects. This is due to the influences of COVID-19, affecting
the data collection of stroke patients, which was carried
out as early as possible and applied to demonstrate the
effectiveness of the proposed method.

7 Conclusions

Aiming at the individual difference characteristics of complex
MI-EEG signals inmulti-source domains transfer learning, the
current research focuses on aligning the data distribution of
the source and target domains. This paper proposes a novel
method called DAMSDAF, which consists of three steps.
First, calculate the NMI between the time-frequency spectrum
images of the source domain and informative samples to align
the data distribution of the source domain, making the deci-
sion boundary of ASD closer to that of the target domain,
which is beneficial to model training. Second, design an
MBDN with MMD, which aligns the domain-specific feature
distribution of each pair of ASD and target domain simulta-
neously by learning multiple domain invariant representa-
tions, and the output of multiple classifiers is a weighted av-
erage that can reasonably utilize the knowledge transfer from
multiple source domains to the target domain with different
degrees of correlation. Third, select the optimal multi-source
domains for transfer learning via the sequential selection al-
gorithm to ensure the best transfer effect, enabling transfer
learning of multi-source domains in BCI. Experiments on
threeMI-EEG datasets of inter-subject and cross-dataset trans-
fer learning demonstrated that DAMSDAF outperformed the
state-of-the-art transfer learning methods, indicating that the
dual alignment can make the data distribution of source do-
mains more similar to the target domain and verifying the
validity of DAMSDAF. It is expected to promote the applica-
tion of BCI technology and transfer learning in rehabilitation
engineering. The main drawback of this work is that we did
not fully consider the applicability of the shared network, and
training a domain common network to improve the proposed
framework is a potential research direction.

This paper briefly presents the application of domain adap-
tation in MI-EEG recognition, but other new deep learning
methods, especially the attention mechanism and transformer,
are not considered. The attention mechanism draws on the
method of human attention thinking, considers different
weights for each input element and focuses more on the parts
that are similar to the point of interest while suppressing use-
less information. DAMSDAF combined with the attention
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mechanism may enhance the information of samples with
highNMI values byweighting the features similar to the target
domain. The transformer achieves efficient parallelization and
another very important innovation is the use of positional
encoding, which encodes different positions to a certain ex-
tent. DAMSDAF successfully realizes multi-source domain
transfer learning but is time-consuming, while transformers
may be used as common feature extractor to extract the fea-
tures of the multiple source domains and target domain and
improve model efficiency through parallel computing. In ad-
dition, the proposed model has high application value and can
be used to develop intelligent wearable devices to help stroke
patients recover motor control. In the future, we plan to de-
velop a practical rehabilitation training system that can use a
wearable cap to acquire the MI-EEG signals of patients, input
them into our proposed model to recognize MI-EEG, and
transmit the results to the wearable robotic arm to help patients
undergo rehabilitation training. Furthermore, the proposed
model can also be used in the development of virtual reality
games and smart-home devices, thereby expanding the appli-
cation prospects of BCI.
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