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Abstract
Infection with the pandemic human coronavirus SARS-CoV-2 elicits a respiratory tract disease, termed Coronavirus disease 
2019 (COVID-19). While a variable degree of disease-associated symptoms may emerge, severe COVID-19 is commonly 
associated with respiratory complications such as acute respiratory distress syndrome (ARDS), the necessity for mechani-
cal ventilation or even extracorporeal membrane oxygenation (ECMO). Amongst others, disease outcome depends on age 
and pre-existing conditions like cardiovascular diseases, metabolic disorders but also age and biological sex. Intriguingly, 
increasing experimental and clinical evidence suggests that an exacerbated inflammatory response and in particular IgG 
immune complexes (ICs), significantly contribute to severe and prolonged COVID-19 disease progression. Vast amounts 
of deposited, unresolved ICs in tissue are capable to initiate an exaggerated Fc gamma receptor (FcγR) mediated signal-
ling cascade which eventually results in common IC-associated organ diseases such as vasculitis, glomerulonephritis and 
arthritis, comorbidities that have been frequently reported for COVID-19. Moreover and independent of deposited ICs, very 
recent work identified soluble ICs (sIC) to be also present in the circulation of a majority of severely ill patients, where their 
systemic abundance correlated with disease severity. Thus, detection of circulating sICs in patients represents a potential 
marker for critical COVID-19 disease progression. Their detection early after clinical deterioration might become an indica-
tor for the requirement of prompt anti-inflammatory treatment. Here, we review the role of ICs in COVID-19 progression, 
their possible origins and potential intervention strategies.
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Graphical abstract

A model of immune complex driven immunopathologies in COVID-19 

Circulating, soluble immune complexes from IgG auto-antibodies and self-antigen formed (sICs) are formed in 
predisposed individuals. Self-antigen can be released from destructed tissue following a conditioning innate 
immune response. Immobilized ICs of viral- and self-origin can deposit in tissue, leading to inflammation and 
potential additional release of autoantigen. Excess of autoantigens leads to accumulation of circulating, non-
deposited soluble ICs (sICs). sICs trigger systemic complement and Fc-gamma receptor (FcγR) expressing 
immune cells in circulation leading to the release of cytokines eventually progressing to multi-organ disease. In 
severe COVID-19, multiple cells of the immune system express either constitutively or aberrantly FcγRs. The 
resulting systemic inflammation is further exacerbated by sICs incorporating pro-inflammatory, afucosylated 
IgG. Created with BioRender.com

Keywords COVID-19 · Immunopathology · Immune complexes · Fc-gamma receptors

Immune complexes and their effect 
on immune cells

Following the invasion of a pathogen, several arms of the 
human immune system become activated. Initially, cells of 
the innate immune system, such as dendritic cells (DC), 
macrophages (M), natural killer cells (NK) and granulo-
cytes, together with the complement cascade, will cooperate 
to control pathogen replication and dissemination. Besides 

representing a potent first line of defence, the combined 
innate response is also a precondition to induce antigen-
specific adaptive immune responses predominantly elicited 
by T (TC) and B cells (BC) roughly 5–14 days after symp-
tom onset. Among others, the adaptive response brings forth 
pathogen-specific antibodies of the IgG subclass. Naturally, 
IgG will bind to its respective antigen, forming so-called 
immune complexes (ICs). IgG-ICs can be transiently found 
deposited in tissue (ICs) or soluble (sICs) in the human 
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circulation. Both, circulating as well as deposited IgG-ICs 
will usually be rapidly cleared by phagocytes, which, to this 
end, express specific receptors recognizing the Fc part of an 
IgG molecule (Fcγ bound by FcγRs). Clearance of IgG-ICs 
is primarily mediated via FcγRIIA and FcγRI, expressed 
by granulocytes such as neutrophils and monocyte-derived 
cells like dendritic cells or macrophages. In addition to 
eliminating ICs, FcγRs are also crucial signal transducers of 
immune cells, whereby activating (e.g. FcγRIII/CD16) and 
inhibitory FcγRs (e.g. FcγRIIB/CD32B) are constitutively 
expressed in a cell-type-specific manner [1]. sIC interaction 
with FcγRs is governed by the IgG glycan profile [2], with 
activating FcγRs showing enhanced affinity to desialylated 
and afucosylated IgG. Further, FcγRs are sensitive to the 
molecular size of sICs with multimeric, large sICs showing 
stronger reactivity compared to smaller sICs [3, 4]. However, 
if IgG-ICs cannot be cleared and remain in circulation, they 
can cause severe systemic and long-lasting inflammation. 
These complexes are referred to as circulating ICs (CIC) 
as a characteristic of certain autoimmune diseases. More 
generally, soluble ICs (sICs) describe all non-deposited IgG 
complexes in clinical as well as experimental settings. An 
autoimmune disease where sICs can drive systemic inflam-
mation is systemic lupus erythematosus (SLE). SLE is char-
acterized by circulating autoreactive antibodies that deposit 
in tissues, including skin, kidneys, and brain. Here, IC depo-
sition elicits a progressive inflammatory response resulting 
in tissue damage [5] and further release of autoantigens at 
a given point [6–9]. This self-propelling process eventually 
drives severe systemic inflammation, which can often only 
be controlled by the administration high-dose glucocorti-
coids and cyclophosphamide. In very severe cases, these 
drugs have been combined with the systemic removal of pro-
inflammatory factors from the circulation via plasmapheresis 
[10]. While IC-mediated local inflammation is commonly 
associated with complement activation and subsequent 
immune cell recruitment and stimulation, FcγR activation 
by sICs likely plays an even more important role as the club 
of immune cells expressing FcγRs is continuously growing. 
Next to monocytes, granulocytes, platelets and NK cells, 
recent studies showed that subsets of γδ-T cells can also 
express an FcγR, specifically FcγRIIIA [11]. A recent study 
using a panel of reporter cells expressing individual FcγRs 
revealed that not only the inhibitory FcγRIIB but especially 
the activating FcγRs IIA (genotype H) and FcγRIIIA showed 
strong reactivity towards sICs, albeit the profile of effec-
tor responses elicited in primary NK cells differed between 
sICs and immobilized ICs. Recently, αβ-T cells were shown 
to aberrantly express high levels of FcγRIIIA in severely 
diseased COVID-19 patients where they exert polyclonal 
TCR-independent highly cytotoxic T cell responses [12].

Immune complex‑mediated inflammation 
in viral infections

IC-mediated repercussions evoked by viral infections are col-
lectively termed antibody-dependent enhancement (ADE). 
ADE can be broadly categorized into two different molecular 
mechanisms. First, ADE can refer to antibody-dependent 
enhanced infection. Here, IgG-opsonized virions show 
enhanced virus uptake and replication in FcγR expressing 
cells such as macrophages. The best-documented example in 
this regard is Dengue virus infection, where there is a direct 
correlation between in vitro ADE and clinical manifestation 
[13, 14]. Likewise, there is in vitro evidence for enhanced 
infection of FcγR expressing macrophages via ADE using 
SARS-CoV-1 and MERS [15–17]. Recently, Junqueira et al. 
were able to show that a fraction of monocytes found in 
patients is infected by SARS-CoV-2 and that this infection 
is mediated by FcγRs and virus-specific IgG. However, 
although infection resulted in initial viral gene expression, it 
was ultimately found to be abortive [18]. While in this publi-
cation it was shown that infected monocytes could contribute 
to systemic inflammation via inflammasome activation and 
subsequent pyroptosis, there is still no evidence supporting 
ADE to play a dominant role in COVID-19 disease progres-
sion. In line with this finding, others also argue against mac-
rophages as productive host cells of SARS-CoV-2 infection 
[19]. Second, ADE can also refer to enhanced immune cell 
activation by activating FcγRs and subsequent inflammation. 
Here, similar to autoimmune diseases like SLE, uncleared 
IC deposition can lead to severe clinical manifestations [20] 
such as glomerulonephritis [21–23], vasculitis [24] or bone 
erosion [25]. Antibodies associated with this form of ADE 
are typically non-neutralizing and associated with immu-
nopathology, predominantly in respiratory viral infections 
such as RSV and measles [26–28]. Deducing from this, 
pro-inflammatory ADE likely plays an important role in 
COVID-19 disease progression as well. Specifically, there 
is mounting evidence that complexed IgG is a key ingredient 
for exacerbated disease. Further, severe COVID-19 often 
shows striking similarities to autoimmune diseases like SLE 
or rheumatoid arthritis, both of which are characterized by 
the emergence of autoantibody-derived sICs.

Potential origins of ICs in COVID‑19

Autoantibodies can potentially be generated during SARS-
CoV-2 infection in two ways. Next to molecular mimicry, 
a phenomenon where viral antigens are activating immune 
responses towards autoantigens [29], the inflammatory 
host response following a SARS-CoV-2 infection could 
induce autoantibody formation in predisposed patients. 
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While clinical evidence for molecular mimicry is still miss-
ing, the latter mechanism has been frequently described in 
COVID-19. Amongst others, an unexpectedly high per-
centage of COVID‐19 patients, clinically suspected to have 
heparin-induced thrombocytopenia, developed high titers of 
anti‐platelet-factor-4(PF4)/heparin antibodies [30]. Along 
these lines, vaccine-induced thrombotic thrombocytopenia 
(VITT) following the administration of SARS-CoV-2 vector-
based vaccines has also been linked to anti-PF4 autoanti-
body induction [31]. In addition, there have been numerous 
reports on elevated levels of autoantibodies associated with 
rheumatological diseases in COVID-19 patients but also 
against immunomodulatory proteins including interfer-
ons, cytokines, chemokines, complement components and 
cell-surface proteins [32–36]. In particular, the presence of 
anti-phospholipid antibodies has been linked to thrombo-
embolic events [37, 38]. In certain cases, autoantibodies 
were induced following infection [36, 39]. To conclude, 
pro-inflammatory ADE in COVID-19 could be a conse-
quence of sIC formation following autoantibody induction. 
While it cannot be excluded that viral antigens are part 
of sIC formation, as immune complex vasculitis has been 
observed following mRNA vaccination (BNT162b2) [40] 
and shed S-antigen was detected following mRNA vaccina-
tion (mRNA-1273) [41] as well as in plasma of patients with 
severe disease [42], there is no conclusive evidence on per-
sisting, circulating SARS-CoV-2 antigens during later stages 
of severe COVID-19 when viral loads are vanishing. How-
ever, continuous antigen production is required for sustained 
sIC formation. In line with this, a recent study proved the 
presence of serum-derived sICs in severe COVID-19, which 
were devoid of SARS-CoV-2 antigen [43]. Although not 
directly identifying autoantibodies as culprits, the authors 
show that sICs are not formed following administration of 
either heterologous (Vaxzevria/Spikevax) or homologous 
(Comirnaty) prime-boost vaccination, demonstrating that 
spike-antigen expression per se does not induce sIC forma-
tion. Another piece to the puzzle is also provided in this 
study, as in a sizeable group of patients SARS-CoV-2 spe-
cific IgG is detected only after the emergence of sICs.

IC‑mediated immune cell activation 
and systemic inflammation in COVID‑19

While there are more hypothetical considerations on how 
soluble immune complexes would act systemically in 
COVID-19 [44], several studies directly link deposited 
immune complexes and FcγR activation to tissue damage in 
COVID-19. One study showed that FcγRIIA-mediated acti-
vation of platelets is linked to thrombocytopenia in critically 
ill patients [45, 46]. Another study reported that enhanced 
eosinophil-mediated inflammation in the respiratory tract 

of critically ill and deceased COVID-19 patients is associ-
ated with FcγR signaling in myeloid cells [47]. Finally, neu-
trophil activation by immune complexes via FcγRIIA was 
suggested to negatively impact COVID-19 progression [48]. 
Here, the authors demonstrate that ICs resulted in a more 
inflammatory neutrophil activation profile when contain-
ing anti-SARS-CoV-2 IgG from severely diseased patients 
compared to IgG from mildly diseased patients. As FcγRs 
are sensitive to IgG glycan modifications, this is in line 
with other studies showing that the increase in afucosylated 
IgG correlates with COVID-19 severity [49–51]. Further, 
afucosylated anti-SARS-CoV-2 IgG occurring in COVID-
19 was shown to be directly linked to FcγRIIIA-mediated 
activation irrespective of disease severity [43, 49] and was 
associated with alveolar macrophage-driven inflammation 
[52]. This finding is reminiscent of SLE, where de-sialylated 
and afucosylated IgG may exert stronger pro-inflammatory 
effects [2, 53]. To make matters worse, as mentioned above, 
a previously unknown population of αβ-TC expressing high 
levels of FcγRIIIA and possessing increased cytotoxic func-
tions has been described to emerge during severe COVID-
19 [12]. In light of the many reports showing autoantibody 
formation in COVID-19 and the recent discovery of sICs 
being present in patient circulation [43], it is highly likely 
that severe COVID-19 follows a similar, if not even higher, 
combined local IC and systemic sIC driven immunopathol-
ogy as observed in SLE where both ligands lead to exces-
sive FcγRIIIA/CD16 activation. Fittingly, the same study 
that identified sICs in the circulation of severely and criti-
cally diseased patients also showed that sIC reactivity sig-
nificantly correlated with the severity of disease [43]. The 
authors further demonstrated that sIC reactivity was com-
parable to and even slightly exceeded that of patients with 
active SLE. Naturally, such a systemic event might also be 
an explanation for the generally observed systemic increase 
in pro-inflammatory cytokines during COVID-19 [54]. To 
conclude, it can be speculated that the large arsenal of highly 
reactive FcγRIIIA/CD16 + immune cells, including TC in 
severe COVID-19, is excessively activated by sICs, which 
leads to severe systemic inflammation and multi-organ dis-
ease. One may even surmise that COVID-19-associated 
Multisystem Inflammatory Syndrome in children or adults 
(MIS-C/A) [55–58] is also connected to sIC formation and 
FcγR activation. Only recently a comprehensive multi-omics 
study of a large multi-institutional paediatric MIS-C cohort 
analysed multiple soluble biomarkers and applied proteom-
ics as well as single-cell gene expression approaches [59]. 
This investigation revealed some similarities between severe 
COVID-19 and MIS-C such as the emergence of auto-anti-
bodies, but also remarkable differences such as the amounts 
of spike antigen in the circulation and genetic markers such 
as HLA class I alleles [59]. Accordingly, the two SARS-
CoV-2 caused diseases appear to be distinct with separate 
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immunopathologies, but this insight should not obviate the 
need to search for the presence of sICs in MIS-C.

Therapeutic implications and future 
research needs

In recent months it has become obvious that COVID-19 can 
bear some striking resemblance with autoimmune diseases 
such as SLE. The emergence of an autoantibody response 
against a multitude of unrelated self-antigens, enhanced 
afucosylated IgG and IC-mediated clinical manifestations 
such as vasculitis or glomerulonephritis make this syn-
drome unique among the known respiratory infections. 
This became even more obvious when highly reactive sICs, 
a hallmark of active SLE, were detected in the circulation of 
severely diseased COVID-19 patients, but not in the blood of 
patients with acute respiratory distress syndrome (ARDS) in 
response to other etiologies [43]. The remaining question is 
whether we can utilize this knowledge to optimize current 
intervention or relief strategies. Due to the systemic inflam-
mation often observed in critically diseased patients, it is 
not surprising that one of the most successful immediate 
treatment strategies is the administration of corticosteroids. 
Complement inhibition in COVID-19 also showed promis-
ing effects by reducing inflammation and preventing lung 
injury [60, 61]. Alternatively, monoclonal antibodies target-
ing SARS-CoV-2 showed promising efficacy, although there 
is a widely observed escape by the most recent Omicron 
variants [62]. Considering the impact of IgG complexes on 
systemic inflammation, it is, however, important to exclude 
any adverse effect in this direction when administering IgG 
preparations such as SARS-CoV-2 specific monoclonal anti-
bodies, antibody cocktails or reconvalecent-immunoglobulin 
administered as prophylactic intervention against the pro-
gression of SARS-CoV-2 infection to severe COVID-19. 
If ICs might be formed following IgG administration they 
could bear the risk of exacerbating disease via enhanced 
complement and FcγR activation. An absence of such side 
effects would support the hypothesis that sICs actually con-
tain autoantibodies and self-antigen when they occur in 
severely ill COVID-19 patients. The removal of sICs could 
be a promising strategy to alleviate severe disease. Indeed, 
recent studies published promising results regarding the use-
fulness of plasmapheresis [63, 64], which used to be a last 
resort effort to treat highly active SLE. This procedure is 
able to remove sICs, autoreactive IgG and cytokines alto-
gether. Still, due to the costly and laborious process, it will 
likely remain the last resort effort to treat the most severe 
cases of immunopathology in COVID-19. Lastly, a poten-
tial strategy to block the FcγR driven part of IC-mediated 
immunopathology could simply be the administration of 
large amounts of non-specific human IgG (IVIg). In absence 

of a specific antigen, this should not lead to the formation 
of sICs. Indeed, there is evidence that the administration 
of IVIg can improve the clinical outcome and significantly 
reduce mortality in COVID-19 65,66. While it is still unclear 
if we identified all major culprits of immunopathology in 
COVID-19, recent work lifted the curtains to reveal immune 
complexes as a unique but also familiar facet of this novel 
disease.
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