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Marcus Hollenbach1*, Nora Klöting2, Ines Sommerer1, Jana Lorenz1, Mario Heindl1,
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Abstract

Background

p8 was initially described as being overexpressed in acute pancreatitis and encoding a ubiq-

uitous stress protein. Analysis of insulin sensitivity and glucose tolerance in p8-knockout

and haplodeficient mice revealed counterintuitive results. Thus, we determined glycemic

control of p8 in mice fed with standard (SD) and high-fat diet (HFD).

Methods

p8-/- and wild type (p8+/+) mice were used for analysis of glucagon (immunohistochemistry),

insulin levels (ELISA) and beta cell mass. Hyperinsulinemic- euglycemic glucose clamp

technique, i.p. glucose tolerance test (ipGTT), i.p. insulin tolerance test (ipITT) and meta-

bolic chamber analysis were performed in SD (4% fat) and HFD (55% fat) groups.

Results

p8-/- mice showed no differences in glucagon or insulin content but higher insulin secretion

from pancreatic islets upon glucose stimulation. p8 deficiency resulted in elevated beta cell

mass but was not associated with increased insulin resistance in ipGTT or ipITT. Glucose

clamp tests also revealed no evidence of association of p8 deficiency with insulin resistance.

Metabolic chamber analysis showed equal energy expenditure in p8-/- mice and wild type

animals.

Conclusion

p8 depletion may contribute to glucose metabolism via stress-induced insulin production

and elevated beta cell mass. Nevertheless, p8 knockout showed no impact on insulin resis-

tance in SD and HFD-fed mice.
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Introduction

Nuclear Protein 1, Transcriptional Regulator gene (NUPR1, p8; OMIM: 614812) encodes a

ubiquitous nuclear and cytoplasmic stress-activated protein and shares structural similarities

with high-mobility group box proteins [1]. Additional studies indicate interaction of p8 with

transcriptional cofactors including p300 and PTIP [2], as well as binding of p8 to DNA upon

phosphorylation [3]. p8 has been shown to be implicated in oxidative stress via regulation of

anti-oxidative enzyme heme-oxigenase-1 (HO-1) [4], and p8 is overexpressed in sepsis and

pancreatitis [5,6]. Moreover, p8-/- mice reveal enhanced mortality in sepsis and liver injury

[7,8]. Cerulein-induced pancreatitis is ameliorated by stimulation of p8-induced pancreatitis-

associated protein I (PAP I), resulting in NF-κB inactivation [9]. p8 also affects exocrine tissue

regeneration after pancreatectomy and induces proliferation of islet beta cells [10].

Furthermore, p8 shows anti-apoptotic effects through inhibition of apoptosis initiator cas-

pase 9 and effector caspases 3/7 [11]. Recently, the role of p8 has also been extensively studied

in the context of cancer. Genetic knockdown of p8 was accompanied by reduced proliferation

of liver cancer, glioblastoma and myeloma cells. In addition, p8 is important to maintain auto-

lysosomal efflux of cancer cells [12–17].

Since p8 is involved in cellular mechanisms of oxidative stress and inflammation, its role in

development of insulin resistance and hyperglycemia has been analyzed. Glucose and pro-

inflammatory cytokines (e.g. TNF-α) lead to upregulation of p8 [9], and glucose-dependent

stimulation of p8 was observed in INS-1 insulinoma cells [18]. Overexpression of p8 in human

islets leads to augmented insulin secretion, as well as cellular insulin content and improved

glycemic control [19]. In contrast, p8−/− mice show mild insulin resistance compared to wild

type animals but maintained normoglycemia through increase of beta cell mass and consecu-

tive hyperinsulinemia [20]. On the other hand, p8 haplodeficiency decreases visceral fat depo-

sition and ameliorates insulin resistance through upregulation of stress-induced protein hsp70

[21].

To date, the specific role of p8 in glucose homeostasis and insulin resistance remains incon-

clusive regarding the counterintuitive results mentioned above. Thus, we investigated p8-/-

mice and their wild type littermates under standard and high-fat diet conditions with examina-

tion techniques not previously used in this context. The aims of our study were (I) to deter-

mine insulin and glucagon levels from isolated pancreatic islets as well as beta cell mass in

p8-knockout and wild type mice, (II) to analyze the impact of p8 on insulin resistance by

means of glucose tolerance tests (ipGTT) and insulin tolerance tests (ipITT), and (III) to

evaluate the effect of p8 silencing on respiratory exchange rate, physical activity and energy

consumption in a metabolic chamber. For the first time in this context, we used the hyperinsu-

linemic-euglycemic clamp test as the gold standard test [22] to assess p8-mediated insulin

resistance.

Material and methods

Animal studies

p8-/- mice on C57BL/J6 background were a kind gift from Prof. Juan Iovanna [8,10]. The

Regional Governmental Principles of Leipzig for the care and use of animals were followed

and currently approved for all procedures involving animals (animal research proposal

TVV 14/08; Ethical Committee at the Medical Faculty, Leipzig University; IORG0001320,

IRB00001750, chairwoman: Prof. Dr. Dr. Ortrun Riha, Käthe-Kollwitz-Str. 82, D-04109 Leip-

zig). Animals were kept conventionally in type-II cages (four animals per cage) with dry sluice

according to guideline 86/609/EWG of the European Union and local animal protection
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authorities. Mice were housed in pathogen-free facilities (three to five mice per group and

cage) at 22 ± 2˚C on a 12-h light/dark cycle. Animals were bred and kept in the animal labora-

tories at the University of Leipzig. Animal housing premises comprise of electronic admission

control, automated air conditioner and filtering. Standard local hygienic management was

used according to “Hygiene Monitoring of Mice and Rats in Various Housing Systems“, rec-

ommended by GV-SOLAS.

All mice had free access to water at all times and were fed a standard chow (4% energy from

fat, Altromin Spezialfutter, Lage, Germany, SD). A subgroup of twelve knockout (p8−/−) and

twelve wild-type mice (equal number of male and female animals) were kept on a high-fat diet

(HFD) containing 55 kJ% of calories from fat (Altromin) for 20–30 wk. Food was only with-

drawn if required for an experiment.

During HFD and SD, mice were observed for typical symptoms, e.g. alterations of body

weight, coat, behavior (apathy) and food intake. Additionally, a score by GV-SOLAS was cal-

culated and the feeding experiment subsequently stopped if the score reached 20 or more

points, followed by euthanasia with cervical dislocation.

Intraperitoneal insulin tolerance tests (ipITTs) and glucose tolerance tests

(ipGTTs)

ipITT and ipGTT were performed in p8-knockout and wild type animals under chow and

HFD diet conditions at an age of 20 wk, as previously described [23]. ipGTT was performed

after an overnight fast of 14h by injecting 2g glucose per kg body weight into p8−/− and litter-

mate controls. Measurements of the blood glucose levels were taken after tail vein incision at 0

(baseline), 15, 30, 60 and 120 min after injection. ipITT was performed in random-fed animals

by injecting 0.75 units/kg body weight human regular insulin (40 units Insuman Rapid; Sanofi,

Frankfurt/Main, Germany). Glucose levels were determined in blood collected from tail tip

immediately before and 15, 30, and 60 min after the intraperitoneal injection.

Hyperinsulinemic-euglycemic clamp studies

After anesthesia (Isofluran, Baxter, Unterschleißheim, Germany), catheters (MicroRe-

nathane1 tubing, MRE 025; Braintree Scientific Inc., Braintree, MA) were implanted in the

left jugular vein and hyperinsulinemic-euglycemic clamps of 12 animals (6 male, 6 female) of

each genotype were performed at the age of 30 weeks as previously described [24–27]. Briefly,

the insulin clamp was conducted with a continuous infusion of human insulin at a rate of 20

mU/kg/min to lower plasma glucose levels within a physiological range (about 5 mmol/l).

Physiological blood glucose concentrations were maintained by adjusting infusion of a 20%

glucose solution. Steady state was ascertained when glucose measurements were constant for

20 min at a fixed glucose infusion rate (GIR) and was achieved within 120–240 min. Steady

state was maintained for 45 min and blood samples (10 μL) were taken at 0 and 5 min, and

then at 10-min intervals after reaching steady state. All infusions were done using micro-dialy-

sis pumps (TSE Systems, Chesterfield, MO, USA).

Energy expenditure in metabolic chamber

Mice (20 wk old) fed with SD and HFD (12 per group, 6 male, 6 female) were kept in a meta-

bolic chamber (CaloSys V2.1; TSE Systems, Bad Homburg, Germany) for 72h as previously

described [28,29]. During the observation period, flow of O2 / CO2 and temperature were

determined. Respiratory exchange rate (RER) was calculated by means of O2- and CO2-flow

measurement. Indirect calorimetry was assessed by a calorimetry module (CaloSys V2.1; TSE

Systems, Bad Homburg, Germany). After 2h of acclimatization, mean oxygen consumption
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(VO2), weight change, water and food intake as well as ability to run on a treadmill, were

recorded for 72h, as previously described [24]. Data were analyzed by the manufacturer’s

software.

Immunohistochemistry and morphometric analysis

Mice were sacrificed at an age of 20 wk by bleeding and cervical dislocation (12 per group, 6

male, 6 female). The pancreas was immediately removed, weighed and organ mass was related

to whole body weight to obtain relative organ weights. Explanted mouse pancreata were fixed

in formaldehyde solution (4%, OttoFischerGmbH, Saarbruecken, Germany) overnight,

embedded in paraffin and cut into 5 μm thick longitudinal sections. One section was mounted

on one slide. We analyzed six slides per pancreas (each tenth), which were equally distributed

over the organ. Sections were dewaxed and rehydrated by xylol and a descending ethanol

series. Subsequently, slides were boiled in target retrieval solution (pH 9, Dako, Hamburg,

Germany) and cooled down for 15 min, followed by washing in PBST (Biochrom Berlin, Ger-

many) thrice. Quenching of endogenous peroxidase-activity by incubation for 10 min with 3%

H2O2 (Sigma-Aldrich) was performed twice, followed by another washing step. Sections were

blocked with 5% donkey-serum (= host of secondary antibody, Sigma) for 30 min at room

temperature (RT) and incubated with primary antibodies (AB) for insulin (C27C9) or gluca-

gon (D16G10, both rabbit monoclonal AB, Cell Signaling, Cambridge, UK) for 60 min at RT.

Slides were washed thrice and incubated with secondary AB (711-035-152, donkey anti-rabbit

polyclonal AB, Dianova, Hamburg, Germany) for 30 min at RT. Staining was performed with

DAB Peroxidase Substrate Kit (Liquid DAB+Substrate Chromogen System, Dako), following

instructions of the manufacturer. Slides lacking the primary antibody were used as controls.

Sections were counterstained with ready-to-use hematoxylin (Hollborn, Leipzig, Germany).

Additional overview images were stained with hematoxylin (Hollborn) and eosin (0.2%, Med-

ite, Burgdorf, Germany; HE). Stained sections were photographed with a Keyence Biozero BZ

8000 microscope. Staining intensity of DAB was quantified using a scoring system from nega-

tive to 6x positive. Quantifications of islets, area and beta cell mass (mg per pancreas) was cal-

culated by multiplying relative DAB-positive area (the percentage of glucagon positive area

over total pancreas area) by pancreas weight, as previously reported [30] using ImageJ software

(ImageJ 1.45; http://rsbweb.nih.gov/ij/download.html).

Statistical analysis

Results are expressed as mean ± standard deviation (S.D.). At least 12 animals per group (6

male, 6 female) were used for statistical analysis of each experimental setting. Unless otherwise

indicated, results of male and female animals are presented. If not further specified, subgroup

analysis found no differences between the male and female groups. For comparison of only

two groups (metabolic chamber, pancreas size, islet size and area under the curve (AUC)), the

Mann-Whitney-U-test was performed because several groups did not pass normality tests. For

grouped analysis (glucagon and insulin test, ipITT and ipGTT), the two-way ANOVA with

Bonferroni post test was used. Statistical analysis of clamp tests was calculated by means of

one-way ANOVA with Bonferroni post-test. P values<0.05 were considered statistically sig-

nificant. GraphPad Prism 4.0 software was used for calculation and drawing of graphs.

The calculation of the sample size was performed as followed: the alpha error was set to 5%

and the beta error to 80%. These data and the estimation of variance were calculated by means

of sample size estimation software (http://www.psycho.uni-duesseldorf.de/abteilungen/aap/

gpower3).

Further supporting information can be found in supplemental material and methods.
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Results

Previous studies by Barbosa-Sampaio et al. examined whether depletion of the p8 gene pro-

duced a metabolic phenotype. No significant differences in serum glucose and insulin levels

were observed in SD, and only slightly higher insulin levels were found in p8-/- HFD group

suggesting a questionable role of p8 on glucose homeostasis [20].

In our study, male and female p8−/− mice on a C57BL/6 background showed similar body

weights compared with age-matched p8+/+ mice (male: 25.9±2.7 g vs. 28.7±1.5 g, p>0.05;

female: 20.3±1.3 g vs. 19.3±1.6 g, p>0.05).

p8 deficiency leads to a higher number of islets and elevates beta cell mass

The total number of pancreatic islets and islet size were significantly different when comparing

p8-knockout and wild type mice (Fig 1). Representative images of stacked whole pancreata

from both groups (Fig 1A1 and 1A2) and glucagon stained islets (Fig 1A3 and 1A4) indicated

higher number of pancreatic islets in p8-knockout mice. p8 deficient mice had more islets per

slide than littermate controls (53.0±10.4 vs. 38.1±8.7, p<0.05, Fig 1B3), and the total area of

p8−/− islets was significantly elevated (Fig 1B4). The relation of islet area to pancreas area was

also higher in p8-silenced mice compared to controls (Fig 1B5). In addition, islet weight (beta

cell mass) reached 1.98±0.59 mg in p8-knockout animals compared to 1.15±0.48 mg (p<0.05,

Fig 1B6) in wild type mice. In contrast, mean islet size (436.4±103.5 vs. 440.0±165.1 μm2,

p>0.05, data not shown in graph), pancreas area (Fig 1B1) and pancreas weight (Fig 1B2) did

not differ significantly between both groups.

Islets from p8-/- mice secrete more insulin than wild type islets after glucose

stimulation

To determine whether islet size and islet number contribute to an insulin secretion and con-

tent change, glucose-stimulated insulin release and glucagon content was measured ex-vivo in

islets harvested from p8−/− and wild type mice (Fig 2A1). Both p8+/+ and p8 knockout islets

revealed glucose-dependent insulin secretion. As is evident in Fig 2A2, p8−/− islets secreted sig-

nificantly more insulin (5.88±1.9 ng/mg/islet) when exposed to 22 mM glucose compared with

islets from control mice (3.15±1.5 ng/mg/islet, p<0.01). In contrast, stimulation with 1.5–22

mM glucose showed no significant differences in insulin levels from islet lysates (Fig 2A3).

Thus, islets lacking p8 expression secrete more insulin than wild-type controls when chal-

lenged with glucose, suggesting that p8 serves as a negative regulator for insulin secretion. In

contrast, insulin content per islet in unstimulated p8-silenced islet lysates did not differ statisti-

cally significant (p8-/-: 207.8±43.5 ng/mg/islet, p8+/+: 216±72.6 ng/mg/islet, p>0.05).

For determination of glucagon staining intensity, pancreatic slides of both p8-knockout

and wild type animals were analyzed by means of glucagon DAB staining (Fig 2B1 and 2B2).

Quantifications of glucagon staining intensity revealed no statistically significant differences

between p8-/- and p8+/+ mice. (Fig 2B3). The majority of islets were of low glucagon staining

intensity in both groups. Representative images for insulin and glucagon DAB staining and

isolated pancreatic islets can be found in Fig 2B1 and 2B2.

Intraperitoneal insulin tolerance test (ipITT) and glucose tolerance test

(ipGTT) in standard and high-fat diet

To assess the impact of elevated insulin release on glucose disposal, we performed an intraperi-

toneal glucose tolerance test (ipGTT, 2 g/kg body weight) in p8−/− and control mice under dif-

ferent diet conditions. At 15 and 30 min after administering glucose, there was a significant

p8 and glucose tolerance
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Fig 1. Morphologic analysis of pancreata and islets in p8-/- and p8+/+ mice. A1-A4, representative HE stained bright

field image of stacked whole pancreata from wild type (A1) and p8-knockout animals (A2). Glucagon-DAB-staining

indicated more islets in p8-/- (A4) compared to p8+/+ animals (A3). B1-B6, morphologic analysis of beta islets and

pancreas from p8-/- mice and wild type littermates. p8-knockout animals showed statistically significant higher number of

islets (B3), islet area (B4, B5), and beta cell mass (B6). No significant differences were found in mean islet size (not

shown), pancreas area (B1) and pancreas weight (B2). Results are expressed as mean ± S.D. of islets and pancreata from

12 animals (6 male, 6 female) per group. Scale bars: 1000μm (A1-A2), 100μm (A3-A4); � P<0.05.

https://doi.org/10.1371/journal.pone.0201159.g001
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Fig 2. Glucagon staining intensity and insulin levels in pancreatic islet cells. A1-A3, insulin levels in supernatants

and lysates of isolated pancreatic islets after glucose stimulation. A1, bright field image of isolated islets. Insulin levels

were measured via ELISA after incubation of isolated islets for 2h. In protein lysates of islets (A3), no statistically

significant differences in insulin levels were determined upon glucose stimulation. In contrast, islet supernatants

showed significant elevation of insulin after stimulation with 22 mM glucose in p8-knockout islets (A2). B1-B2,

representative images of DAB stained pancreatic slides for glucagon (B1) and insulin (B2) indicating pancreatic islets.

Slides were counterstained with hematoxylin. Quantifications of DAB staining intensity (B3) revealed no statistically

significant differences between p8-knockout animals and wild type littermates. Results are expressed as mean ± S.D. of

islets from 12 animals (6 male, 6 female) per group. Scale bars: 100μm.

https://doi.org/10.1371/journal.pone.0201159.g002

p8 and glucose tolerance

PLOS ONE | https://doi.org/10.1371/journal.pone.0201159 July 24, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0201159.g002
https://doi.org/10.1371/journal.pone.0201159


difference in serum blood glucose level and glucose area under the curve (AUC) between p8−/−

(AUC: 26.58±9.6 mmol/l�min) and wild type mice (41.1±7.4 mmol/l�min, p<0.001, Fig 3A2

and 3A3). In contrast, glucose tolerance did not differ in HFD fed mice between p8-knockout

(36.4±8.2 mmol/l�min) and wild type rodents (37.5±6.9 mmol/l�min, p>0.05, Fig 3B2 and

3B3). In the ipITT, p8+/+ and p8-/- animals showed an early decrease in blood glucose concen-

trations in response to insulin injection (SD p8+/+: 8.0±1.2 mmol/l before vs. 6.0±2.4 mmol/l

90 min after insulin injection, p<0.01, Fig 3A1). Results reveal that p8−/− and control mice had

similar blood glucose levels after insulin injection (0.75 U/kg), indicating similar insulin sensi-

tivity under standard chow conditions (AUC 4.2±3.2 mmol/l�min vs. 5.7±2.9 mmol/l�min,

p>0.05, Fig 3A1 and 3A3). Under HFD conditions, determination of glucose concentrations

upon insulin stimulation showed statistically significant lower levels in p8-/- mice (AUC:

3.15±1.8 mmol/l�min) related to their wild type littermates (6.4±4.1 mmol/l�min, p<0.05, Fig

3B1 and 3B3).

Hyperinsulinemic-euglycemic clamp

Since tolerance tests do not distinguish between insulin resistance in peripheral tissues and

capacity of insulin production by beta cells, we performed hyperinsulinemic-euglycemic

clamp experiments at an age of 30 weeks [31].

Glucose infusion rate (GIR) was used as an indicator for insulin resistance and therefore

determined in p8-knockout and wild type mice fed with SD or HFD. Therefore, a reduced

GIR is associated with insulin resistance. Our results clearly showed that insulin resistance was

induced by HFD in both wild type and p8-knockout animals (GIR p8+/+: 56.3±8.9 vs. 40.6±9.2

mg/kg/min, p<0.01; GIR p8-/-: 57.1±11.6 vs. 41.2±7.1 mg/kg/min, p<0.01; Fig 4A). However,

our data indicated no significant alterations of GIR between p8-knockout and wild type ani-

mals neither in SD nor in HFD fed mice (Fig 4A). In addition, in gender-specific analysis, GIR

did not differ between appropriate groups (data not shown).

Energy expenditure is comparable between p8-/- and control mice

To evaluate the impact of p8 knockout on important metabolic parameters like RER and

energy consumption, mice fed with SD and HFD were observed for 72h in metabolic

chambers.

Between p8-/- and wild type mice, no statistically significant differences were found in

weight change, water intake or food intake neither in SD or HFD group (Fig 5A1 and 5C2).

p8-/- mice and their wild type littermates covered equal distances in SD group (day: 0.3±0.1 vs.

0.3±0.2 km, p>0.05; night: 2.5±0.9 vs. 2.8±2.2 km, p>0.05, Fig 5D1) and HFD group (day:

0.3±0.3 vs. 0.3±0.3 km, p>0.05; night: 2.3±1.5 vs. 2.2±1.1 km, p>0.05, Fig 5D2). Additionally,

analysis of RER showed no significant differences in p8-/- animals and p8+/+ mice in SD or in

HFD (Fig 5E1 and 5E2). Furthermore, p8-knockout and wild type animals revealed equal

energy consumption rate in SD group (day: 16.2±2.0 vs. 15.1±2.6 kcal/h/kg, p>0.05; night:

21.4±2.9 vs. 22.2±5.4 kcal/h/kg, p>0.05, Fig 5F1) and HFD group (day: 13.9±2.5 vs. 13.6±2.4

kcal/h/kg, p>0.05; night: 18.6±3.2 vs. 17.5±3.4 kcal/h/kg, p>0.05, Fig 5F2).

Subgroup analysis of male and female animals also indicated no significant differences

between p8-knockout animals and wild type mice (data not shown).

Discussion

p8 constitutes a stress-activated protein related to high-mobility group box proteins [1] and

was originally identified to be overexpressed in sepsis and pancreatitis [5,6]. Prior experiments

demonstrate that neither the structure nor function of the exocrine pancreas is altered in

p8 and glucose tolerance
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Fig 3. ipITT and ipGTT in standard and high-fat diet. Blood glucose levels were measured in wild type and p8-knockout animals in SD (A1,A2) and

HFD (B1,B2) after i.p. insulin tolerance test (ipITT, A1,B1) and glucose tolerance test (ipGTT, A2,B2). Unstimulated glucose levels showed no

significant alterations. p8-/- mice revealed statistically significant lower glucose levels after ipGTT in SD and after ipITT in HFD. Quantifications of

AUC (A3, B3) confirmed significant results of tolerance tests. Results are expressed as mean ± S.D. of 12 animals (6 male, 6 female) per group.
� P<0.05, ��� P<0.001.

https://doi.org/10.1371/journal.pone.0201159.g003
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p8-knockout mice. Nevertheless, cerulein-induced acute pancreatitis is accompanied by a

higher severity of the disease in p8-/- mice compared to wild types [9]. Due to involvement of

p8 in cellular mechanisms of oxidative stress, inflammation and proliferation of pancreatic

islet cells, p8 depletion may also lead to metabolic dysfunction.

However, the analysis of p8 in transgene mice reveals conflicting data. Whereas complete

p8 deficiency results in aggravation of insulin resistance but maintains normoglycemia [20],

p8 haplodeficiency protects from hyperinsulinemia and glucose intolerance in HFD-fed ani-

mals [21]. Thus, our study analyzed the specific role of p8 in glucose intolerance and insulin

resistance by means of insulin or glucose tolerance tests, clamp trials and metabolic chamber

analysis in SD and HFD-fed mice.

Recent studies extensively investigated the influence of p8 silencing on insulin levels rather

than the analysis of glucagon levels. In addition to these studies, we were able to show that glu-

cagon staining intensity in pancreatic islets from p8-/- mice and their wild type littermates

Fig 4. Hyperinsulinemic-euglycemic clamp. A, Hyperinsulinemic-euglycemic clamp tests were performed in both groups to analyze insulin

resistance. Mice were allowed to maintain steady state after basal infusion of 75 min. Then, insulin perfusion was started at a rate of 40mU/kg/min.

Additionally, 20% glucose was infused to maintain blood glucose at euglycemic levels (6.7–7.8 mmol/l) and glucose infusion rate (GIR) was determined.

In both p8+/+ and p8-/-, HFD induced insulin resistance indicated by significantly reduced GIR. However, neither in SD no in HFD, calculation of GIR

showed statistically significant differences between p8-/- mice and their wild type littermates (A). Results are expressed as mean ± S.D. of 12 animals (6

male, 6 female) per group. �� P<0.01.

https://doi.org/10.1371/journal.pone.0201159.g004
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Fig 5. Metabolic chamber analysis. Mice lacking p8 or wild type animals fed with SD or HFD were kept in metabolic

chambers for 72h observing weight change (A1,A2), water (B1,B2) and food intake (C1,C2), running distance (D1,

D2), flow of O2 / CO2 and temperature. Respiratory exchange rate (RER, E1,E2) was calculated by means of O2 and

CO2 flow measurement, and energy consumption rate (F1,F2) was estimated from direct calorimetry. No statistically

significant alterations between p8-knockout and wild type mice were detected in the aforementioned parameters.

Results are expressed as mean ± S.D. of 12 animals (6 male, 6 female) per group. Subgroup analysis of male and female

animals also revealed no significant differences.

https://doi.org/10.1371/journal.pone.0201159.g005
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revealed no differences in glucagon levels. On the contrary, determination of insulin levels

showed significantly higher insulin secretion but no content change upon glucose stimulation

in islets from p8-/- mice. An explanation for higher insulin levels in p8-knockout animals

could be a significant elevation of beta cell mass indicated by an increased number and area of

pancreatic islet cells. Our results are in line with recent data showing slightly but not signifi-

cantly elevated fasting insulin levels (about 140 pmol/l) compared to wild type littermates

(about 100 pmol/l, p = n.s.), yet indicated elevated insulin levels in p8-/- mice upon glucose

stimulation [20]. Nevertheless, absolute insulin concentrations in our data were lower than

reported by previous studies. These differences may be the result of different experimental set-

tings. We used isolated pancreatic islets for insulin determinations, contrary to the blood

plasma analysis of mice analyzed by prior works [20].

Butler et al. deduces the elevated insulin levels upon glucose stimulation in p8-silenced ani-

mals as evidence for insulin resistance as it occurs in diabetes mellitus type 2 [32,33]. On the

other hand, our results offered additional explanations for the stimulation of insulin produc-

tion in p8-/- mice. Since ipITT or ipGTT do not distinguish between insulin resistance in

peripheral tissues and beta cell function, we performed hyperinsulinemic-euglycemic clamp

experiments. Clamp trials constitute the gold standard test for insulin resistance. The rationale

for this test is that high doses of insulin infusion are sufficient to completely suppress hepatic

glucose production and that there is no net change in blood glucose concentrations after

reaching a steady-state. Under this condition, the rate of glucose infusion (GIR) is equal to the

rate of whole-body glucose metabolism. Furthermore, GIR reflects the necessary amount of

exogenous glucose to fully compensate for hyperinsulinemia [22]. In our study, insulin resis-

tance was induced by HFD and was indicated by a significantly reduced GIR in HFD animals

compared to SD group. Nevertheless, determination of GIR revealed no statistically significant

differences between p8-silenced or wild type animals, neither in SD nor in HFD group. In this

regard, we could not find any evidence for enhanced insulin resistance in p8-/- mice. Our

results of the metabolic chamber tests further support these findings, since no changes in

energy consumption rate were detected.

According to our findings, we conclude that the increased beta cell mass and insulin levels

upon p8 knockout do not reflect a compensatory mechanism for insulin resistance but rather

are a result of enhanced beta cell proliferation and expansion. In this regard, previous studies

are in line with our results. It has been observed that fibroblasts isolated from p8-/- mice

showed increased cell proliferation [34], and silencing of p8 in pancreatic cell lines also results

in the latter [35]. In contrast, p8 overexpression is accompanied by upregulated proliferation

of beta cells; however, this was only observed in the presence of glucose [19]. Additionally, p8

overexpression results in reduced beta-cell-related gene expression, insulin content and secre-

tion. In turn, transplanted pancreatic islets overexpressing p8 show induced beta cell growth

and insulin production, leading to the assumption of a complex interplay of p8 in beta cell reg-

ulation [18,19]. Transcriptional regulation of p8 is well analyzed involving NF-κB and SMAD

[36,37], but little is known about molecular control of p8 on protein levels. Therefore, it has

been suggested that p8 is regulated in islets by calcium/calmodulin-dependent kinase 4

(CaMK4) [38,39] as well as promotor activities of Ccna2 and Tcf19 [20]. Therefore, the regula-

tion of p8 is complex and not fully understood. The aforementioned enhanced proliferation

and activation of beta cells upon p8 induction may be stress-induced in response to glucose.

Our results are further supported by another study evaluating the effect of p8 haplodefi-

ciency in glucose homeostasis. Although it has been assumed that p8-/+ mice show improved

insulin sensitivity in HFD, only tolerance tests and no clamp experiments were performed.

Haplodeficient mice reveal no alterations in insulin levels, beta cell mass or cell proliferation in

SD group. The authors deduce that p8-/+ mice show reduced expression of stress-induced
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Hsp70 [21]. These findings are in line with our hypothesis that the contribution of p8 to glu-

cose metabolism and insulin sensitivity is mediated mainly by its property as a regulator for

oxidative stress.

Our study has some limitations. We did not evaluate our results from complete p8-knock-

out mice in haplodeficient animals. Hyperinsulinemic-euglycemic clamp tests of p8-/+ mice

eventually would further support our findings. Nevertheless, the meaning of haplodeficiency

to genetic function and protein expression is often counterintuitive. In addition, we did not

analyze effects of p8 knockout on stress-induced pathways in glucose metabolism, but several

studies (see above) have investigated this issue. Furthermore, our results of ipITT and ipGTT

show some limitations. We found an increase in blood glucose after 90 min in p8 knockout

mice. This may be a result of counterregulatory mechanisms to stress response but remains

unclear. Furthermore, we found no differences in ipGTT in HFD group between p8+/+ and

p8-/- animals. Several explanations, including mouse strain, diet and anesthesia might serve as

an explanation [23]. Another important issue is the influence of fasting on glucose homeosta-

sis in mice. Typically, mice are fasted overnight (14-18h) or for 5-6h in metabolic studies.

Overnight fasting leads to a nearly catabolic state and reduces liver glycogen stores in the

mouse. In a consequence, the variability in baseline blood glucose is decreased. Therefore,

overnight fasting is recommended when analyzing the glucose utilization as we applied in the

protocol of the ipGTTs. Nevertheless, prolonged fasting enhances insulin-stimulated glucose

utilization in mice (in contrast to humans). Thus, determination of insulin action should be

performed not later than 5-6h fasting or in random-fed animals as it was performed in ipITT

in our experiments [23]. In addition, sex can influence metabolic responses of mice, particu-

larly in transgenic phenotypes [40–42]. To reduce the influence of sex on metabolic studies,

mice of the same gender or equal numbers of mice from both sex should be used in each

experimental group [23], as it was performed in our experimental setting. In addition, sub-

group analysis of male and female animals (data not shown) did not reveal statistically signifi-

cant differences.

To overcome these known limitations of ipGTT and ipITT, we performed clamp trials as

the gold standard test for insulin resistance. To avoid the necessity of a large animal number in

concordance to the governmental principles for the care and use of animals, we performed

ipITT and ipGTT in rodents at the age of 20 wk followed by clamp trials at the age of 30 wk.

Thus, this difference in age could be a potential influencer to our results. Nevertheless, we used

age-matched wild type and p8-knockout animals to overcome this limitation.

In conclusion, our results show elevated insulin levels upon glucose stimulation and

increased beta cell mass in p8-knockout mice as a consequence of induced beta cell prolifera-

tion. Therefore, in hyperinsulinemic-euglycemic clamp tests, no evidence for p8 contribution

to insulin resistance was observed. Further studies are necessary to evaluate the influence of p8

on glucose homeostasis.
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