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Antibiotic resistance is a major and increasing healthcare problem that threatens many of the

achievements of modern medicine. Transplants, chemotherapy, and survival of extremely pre-

mature infants all rely on the efficacy of antibiotics to fight off infection. According to the Cen-

ters for Disease Control and Prevention (CDC), over 2 million infections every year in the

United States are caused by antibiotic-resistant bacteria, resulting in at least 23,000 deaths and

US$55 billion in increased healthcare costs and lost productivity [1]. Without significant

action, antibiotic-resistant infections could annually kill 10 million people worldwide by the

year 2050, eclipsing the number of deaths caused by cancer and adding US$100 trillion to the

world’s healthcare costs by that time [2]. It is therefore critical to understand novel and often

underrecognized mechanisms of resistance that represent barriers to antibiotic efficacy so as

to combat them with new drugs and therapeutic approaches.

Heteroresistance as a form of subpopulation-mediated resistance

Studies on mechanisms of antibiotic resistance have typically focused on stable genetic muta-

tions or acquisition of antibiotic resistance genes, both of which confer resistance to all the

cells within a population. However, there is an increasing appreciation of the ways in which

phenotypic traits expressed by minor subpopulations of cells can impact bacterial physiology,

including resistance to antibiotics [3]. Heteroresistance (HR) is a phenomenon in which a pre-

existing subpopulation of resistant cells (Fig 1, panel A) can rapidly replicate in the presence of

a given antibiotic (Fig 1, panel C), whereas the majority population of susceptible cells is killed.

The mechanisms underlying HR are somewhat unclear, although unstable amplification of

antibiotic resistance genes resulting in increased gene dosage is responsible for the resistant

subpopulation in numerous cases [4–6].

HR is distinct from other forms of subpopulation-mediated resistance such as persistence,

in which a small subpopulation of bacteria that are temporarily quiescent or very slow growing

display increased resistance to a wide range of antibiotics [7]. Persistence is believed to lead to

the relapse of infection after cessation of antibiotic therapy, but it is not capable of causing

acute treatment failure. HR is also distinct from tolerance, wherein a whole population of bac-

teria are able to survive transient exposure to high antibiotic concentrations, and in which

there may be no preexisting resistant cells prior to antibiotic exposure [7]. It should be noted

that the term “heteroresistance” has been used to describe mixed populations of bacteria with

stable genetic differences, including closely related bacteria that developed mutations [8] or

coinfections with two unrelated strains [9]. These are distinct occurrences that are not the

focus of this review.
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Fig 1. Dynamics of heteroresistance during infection and clinical susceptibility testing. (A) Schematic showing a patient infected with a heteroresistant

bacterial isolate harboring a minor subpopulation of antibiotic-resistant cells (red). (B) Clinical susceptibility testing may not detect the minor resistant

subpopulation, and the isolate would therefore be incorrectly designated susceptible to the given antibiotic. (C) Subsequent antibiotic therapy selects for the

resistant subpopulation, which is able to grow in the presence of the drug. (D) Continued clinical susceptibility testing involves in vitro subculture of the

heteroresistant bacteria in the absence of an antibiotic, which leads to a contraction of the resistant subpopulation. This minor subpopulation is therefore still

not detected by clinical testing, and the isolate again appears susceptible. (E) Inappropriate antibiotic therapy ultimately leads to treatment failure and inability

to clear the infection.

https://doi.org/10.1371/journal.ppat.1007726.g001
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HR can affect treatment outcome

The relevance of HR has been debated; can the minor subpopulation of resistant cells affect

treatment outcomes? There are numerous examples of vancomycin HR in Staphylococcus
aureus, and it has been postulated that this may cause vancomycin treatment failure [10].

Although some reports suggest that vancomycin HR can lead to negative treatment outcomes

[11], others have found that vancomycin is still effective in treating such strains [12]. These

discrepancies may be due to the relatively minor 2- to 4-fold differences in minimum inhibi-

tory concentration between the susceptible and resistant subpopulations in most vancomycin

HR isolates. Beyond S. aureus, few studies have investigated the impact of HR on the outcome

of in vivo antibiotic therapy.

We recently identified a clinical isolate of the nosocomial pathogen Enterobacter cloacae
that exhibited HR to the last-line polymyxin antibiotic colistin [13]. Colistin has been used

increasingly to treat infections caused by gram-negative bacteria that are resistant to carbape-

nems, including Enterobacter, Klebsiella, and Escherichia coli, which together constitute the

majority of the carbapenem-resistant Enterobacteriaceae (CRE). Whereas most of the cells of

the heteroresistant E. cloacae strain were highly susceptible to colistin, 1%–10% of the popula-

tion was resistant to 1,000× higher concentrations [13]. These resistant cells rapidly replicated

in the presence of colistin, quickly becoming the majority population, indicating that they are

distinct from persisters [14]. Interestingly, the frequency of the resistant subpopulation

returned to baseline after a single antibiotic-free subculture, highlighting that this subpopula-

tion transiently expands in the presence of the drug. Although the basis for this phenotypic

reversion was unclear, it may in some cases be due to the loss of the aforementioned multipli-

cation of antibiotic resistance genes through an undefined mechanism. At the transcriptional

level, the resistant and susceptible subpopulations exhibited vast differences, including the up-

regulation of colistin resistance genes controlled by the two-component histidine kinase PhoQ

in the resistant cells [13].

Most importantly, HR had a profound impact on the efficacy of antibiotic treatment in

vivo. Whereas colistin was effective in rescuing mice infected with a susceptible strain, those

infected with colistin HR isolates failed colistin therapy and were unable to survive [14]. Treat-

ment failure was preceded by a significant expansion of the colistin-resistant subpopulation in

vivo. These findings clearly demonstrate the profound effect that HR can have on antibiotic

treatment outcomes.

HR in the clinic

Although HR has been observed worldwide, in a variety of pathogens, and in response to

numerous classes of antibiotics, very little epidemiologic data exists about its prevalence. In

addition to E. cloacae and S. aureus, HR has been detected in Klebsiella species, E. coli, Acineto-
bacter baumannii, Pseudomonas aeruginosa, and others [15]. Furthermore, it has been

observed against diverse antibiotics including aminoglycosides, carbapenems, and other beta-

lactams [5, 15]. In a study of E. coli isolates in southwest China, 3.9% were heteroresistant to

meropenem, 17.2% to ertapenem, and 25.0% to imipenem [16]. Additionally, A. baumannii
strains from a cohort of Spanish hospitals displayed imipenem HR (20%) and meropenem HR

(24%) [17].

HR has often been observed against the polymyxins colistin and polymyxin B. In addition

to colistin HR in E. cloacae [14], this phenomenon has been described in many other species,

including A. baumannii [18], Klebsiella pneumoniae [19], and Stenotrophomonas maltophilia
[20], whereas polymyxin B HR has been observed in numerous species as well [15]. Polymyxin

treatment in vitro can in some cases lead to regrowth of bacteria after initial killing and has
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been attributed to the presence of unstable resistant subpopulations characteristic of HR [14,

19, 21]. These subpopulations may be linked to the long history of polymyxin susceptibility

testing being described as unreliable and difficult to interpret [22]. Clinical treatment with

polymyxins is already challenging because of their low therapeutic index and drug stability

[23], and the added complication of HR further threatens the clinical use of these last-line

drugs.

There is a large gap in our understanding of the impact of HR on treatment efficacy in

human patients, and it is thus imperative that future studies investigate its clinical relevance. It

will also be important to continue to investigate the prevalence of HR, although epidemiologic

studies are hindered by the fact that this phenotype is often undetected by clinical diagnostic

tests.

Clinically undetected HR

As mentioned previously, detection of HR by conventional antibiotic susceptibility tests is

unreliable and varies greatly based on the method used. Resistant subpopulations in heterore-

sistant strains may be visible by gradient diffusion methods, such as disc diffusion and Etest

[24], as colonies growing within the zone of inhibition. The gold-standard method to detect

HR is population analysis profile, which consists of labor-intensive agar microdilution on a

range of antibiotic concentrations. Unfortunately, this method is not feasible for clinical use,

because of its duration and complexity. New diagnostics are needed that are sensitive enough

to detect low-frequency resistant cells while maintaining the high reproducibility and low

complexity that is standard for clinical testing methods.

The inability to detect HR by routine diagnostic testing results in strains being misclassified

as susceptible (Fig 1, panels B and D). This can occur when the antibiotic-resistant subpopula-

tion is present at a very low frequency. We studied one such colistin HR isolate of E. cloacae
that was designated as colistin susceptible by both Etest and broth microdilution testing [14].

The resistant subpopulation in this strain was present at 1 in 105 cells, which was nonetheless

sufficient to mediate failure of colistin therapy in an in vivo infection model [14].

Demonstrating that this phenomenon is not restricted to Enterobacter, we recently identi-

fied two carbapenem-resistant K. pneumoniae (CRKP) isolates that similarly exhibited unde-

tected colistin HR and led to failure of colistin therapy [19]. This is particularly concerning

because infections with CRKP lead to high mortality rates [25], and undetected colistin HR

may lead to inappropriate antibiotic prescription and unexplained treatment failure (Fig 1,

panel E). In fact, even when a bacterial isolate is classified as susceptible to a given antibiotic, it

is expected that antibiotic therapy will fail 10% of the time [26]. Therefore, the burden of such

unexplained treatment failures is significant, and HR is a possible cause.

Beyond antibacterials: HR to other drugs and anti-infectives

Although HR has been best characterized in bacteria, this phenomenon exists in other patho-

gens as well. Infectious species of Candida can display HR to the antifungals amphotericin B

and fluconazole [27]. Pathogenic Cryptococcus species have been shown to develop HR to itra-

conazole while simultaneously gaining increased virulence and altered morphology [28].

Although parasitic pathogens have not been reported to display HR to antiparasitics, there is

one report of a phenomenon similar to HR. In Trypanosoma rhodesiense, the pathogen respon-

sible for African sleeping sickness, a subpopulation of cells exhibit resistance to human serum

because of differential expression of a surface glycoprotein, facilitating disease in humans [29].

Phenotypic heterogeneity can also occur in cancer against chemotherapeutics [30]. Some

cancers have been observed to harbor a small population of phenotypically resistant cells
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exhibiting chromatin modifications, allowing the cells to resist 500-times-greater concentra-

tions of chemotherapeutic tyrosine kinase inhibitors [31]. Thus, HR or similar phenomena

may explain the resistance of some cancers to chemotherapeutics when the majority of the

tumor cells appear to respond to therapy.

Taken together, the current data on HR suggest that this phenomenon warrants much

greater study. It is exhibited by both prokaryotes and eukaryotes, and evidence from animal

infection models suggests that it can have a major impact on the outcome of therapy. The fact

that HR is often undetected by clinical diagnostic tests highlights that it could be a significant

cause of unexplained treatment failure. Future clinical studies will be critical to determine

whether HR negatively affects outcomes in human patients. It is of the utmost importance that

we thoroughly investigate all aspects of HR and potentially redefine diagnostic and treatment

methods to account for the impact of these resistant subpopulations.
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