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ABSTRACT Dynamic single-molecule force spectroscopy was performed to monitor the unbinding of fibronectin with the pro-
teoglycans syndecan-4 (SDC4) and decorin and to compare this with the unbinding characteristics of a5b1-integrin. A single en-
ergy barrier was sufficient to describe the unbinding of both SDC4 and decorin from fibronectin, whereas two barriers were
observed for the dissociation of a5b1-integrin from fibronectin. The outer (high-affinity) barriers in the interactions of fibronectin
with a5b1-integrin and SDC4 are characterized by larger barrier heights and widths and slower dissociation rates than those of
the inner (low-affinity) barriers in the interactions of fibronectin with a5b1-integrin and decorin. These results indicate that SDC4
and (ultimately) a5b1-integrin have the ability to withstand deformation in their interactions with fibronectin, whereas the decorin-
fibronectin interaction is considerably more brittle.
SIGNIFICANCE Dynamic single-molecule force spectroscopy was used to characterize the binding of two functionally
distinct proteoglycans (PGs) (syndecan-4 and decorin) to the extracellular matrix protein, fibronectin, and to compare their
binding characteristics with those of a5b1-integrin. The study demonstrates that PG binding is low affinity and exhibits a
single barrier, in contrast to the double barrier representing a5b1-integrin binding, reflecting two interaction sites.
Furthermore, although the energies of adhesion of the PGs are similar, their bonds with fibronectin are significantly
different. Decorin exhibits a brittle bond, whereas the interaction with syndecan-4 is elastic. The distinct binding
characteristics of the PGs, and the marked differences between their interaction with fibronectin and the a5b1-integrin
binding, reflect specific molecular and biological features.
INTRODUCTION

It is well known that the binding between ligands and re-
ceptors at the cell surface regulate cell function and
behavior (1). In addition, cell responses are controlled by
the cell environment such as the extracellular matrix
(ECM) and binding of specific cell surface molecules to
matrix proteins.

Fibronectin is a large protein of �0.5 MDa, which com-
prises two similar subunits attached through disulfide link-
ages. It is a primary ECM component and interacts with
cell surface integrins and proteoglycans (2,3).

Integrins are transmembrane proteins that comprise an a-
and a b-subunit and provide attachment to the ECM and
Submitted March 14, 2019, and accepted for publication July 3, 2019.

*Correspondence: e.qwarnstrom@sheffield.ac.uk or mark.geoghegan@

sheffield.ac.uk

Editor: Alexander Dunn.

688 Biophysical Journal 117, 688–695, August 20, 2019

https://doi.org/10.1016/j.bpj.2019.07.002

� 2019 Biophysical Society.

This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
control responses to mechanical stimuli (4–6). The trans-
membrane domain is linked to the actin cytoskeleton via
membrane proximal proteins, including talin and vinculin,
and exists in high- or low-affinity states depending on their
internal structure (7).

Members of the proteoglycan (PG) family are structurally
characterized by highly sulfated glycosaminoglycan (GAG)
chains anchored to a protein core. Many are cell surface
components and exhibit coreceptor functionality for various
systems (7–15). This includes heparan sulfate (HS) PGs
(HSPGs; PGs containing HS GAG chains), which associate
with regulatory receptor complexes to control signal
amplification.

Syndecan-4 (SDC4; an �20 kDa HSPG and the smallest
member of the syndecan family of biomolecules) regulates
the fibroblast growth factor receptor function and so has sig-
nificant effects in cellular development and proliferation
(8,16). SDC4 is constitutively expressed at focal adhesions,
where it can form bonds with specific heparin-binding sites
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FIGURE 1 A schematic diagram of energy landscapes for protein un-

binding. Two energy minima (upper curve) were observed for the fibro-

nectin–a5b1-integrin interaction, but only one minimum (lower curve)

was observed for fibronectin with the two PGs studied. DG represents the

height of a barrier of width cB. Here, (i) and (o) indicate the inner and outer

barriers. Both curves have the same energy at large separations, so they are

shifted for clarity. To see this figure in color, go online

Fibronectin Binding
within the fibronectin core protein (3,17). Decorin is a small,
leucine-rich PG,�90–130 kDa in size, comprising a 42-kDa
core protein to which a single chondroitin or dermatan sul-
fate GAG chain is attached at the N-terminus (18). Unlike
SDC4, which is a membrane-spanning PG, decorin resides
in the ECM and binds fibronectin and other ECM proteins
such as collagen (19–22). It has specific relevance in con-
trolling regulatory events related to cell growth, morphogen-
esis, and immunity (23).

The distinct molecular features of integrins and PGs sug-
gest that their control of cellular responses is underpinned in
part by specific physical characteristics of their binding to
the ECM. The impact of force and elasticity, generated
through interactions with the ECM, on cell responses is
well established (24,25).

Atomic force microscopy (AFM) is an established tech-
nique for studying the binding between biomolecules
(26–28). In addition to revealing dissociation rates, the
AFM can provide information of the character of the bond
under external stress, which, in the case of cell-ECM inter-
actions and tissues under flow, may be physiologically rele-
vant. The ability of the AFM to resolve these properties of
bound systems stems from its capability in resolving the po-
sitions of individual energy barriers that govern unbinding
events under different loading conditions (29).

In this work, the force of the ECM binding of PGs and
a5b1-integrin is compared. Furthermore, the elastic char-
acter of both interactions is measured by extracting the
width, cB, of the energy barriers and determining the ther-
modynamic energy of adhesion, DG, for each from the
dissociation rates.

Dynamic single-molecule force spectroscopy (DSMFS)
was used to identify the energy barriers pertaining to the
dissociation of the low molar mass PGs SDC4 and decorin
with fibronectin (a schematic diagram is shown in Fig. 1).
This study also extends this technique to compare the
bond between PGs and fibronectin with energetic barriers
describing the unbinding of a5b1-integrin. The interaction
of fibronectin with a5b1-integrin is known to involve two
energy barriers (30,31), as is also schematized in Fig. 1.
Force spectroscopy experiments have previously been
used to characterize binding between fibronectin and hep-
arin (32), and these are compared with the current results.
It is shown that the energy barrier but not the dissociation
rate constant is similar for SDC4 and heparin.
MATERIALS AND METHODS

Recombinant human decorin, recombinant human a5b1-integrin, and

recombinant human SDC4 were purchased from R&D Systems (Minne-

apolis, MN). Bovine plasma fibronectin was purchased from Thermo

Fisher Scientific (Waltham, MD). HS was purchased from Iduron

(Manchester, UK). Hydrogen peroxide, sulfuric acid, (3-aminopropyl)

triethoxysilane (APTES), and N-hydroxysuccinimide-poly(ethylene gly-

col)-maleimide (NHS-PEG-Mal) were purchased from Sigma-Aldrich

(St Louis, MO).
Before substrates or probes were functionalized, they were cleaned using

isopropanol, followed by 5 min in an oxygen plasma, and finally with de-

ionized water.
Functionalization of AFM tip

The PGs and integrin were attached to the AFM tip using short poly(eth-

ylene glycol) (PEG]) units as linkers (33). Without these PEG chains,

the PGs or integrin can irreversibly adsorb onto the AFM tips,

making meaningful measurements impossible. Therefore, in a first step,

the functionalized PEG is attached to an APTES-coated AFM tip. After

this, it is possible to attach integrin or a PG using a standard chemical route.

The PGs were tethered via cysteine residues using silane chemistry (34).

Silicon nitride microlever cantilever AFM probes were immersed in piranha

solution (70% sulfuric acid and 30% hydrogen peroxide) for 30 min to hy-

droxylate the surface. A reactive amine group was then introduced by im-

mersion in 3 mL/mL APTES solution in toluene for 2 h and subsequently

heated at �80�C in an oven for 30 min to stabilize the structure (35).

A PEG-linking region was attached to the tip by immersion in 0.5 mg/mL

NHS-PEG-Mal in water for 2 h. The NHS terminus of the NHS-PEG-Mal

binds with the exposed amine group on the tip resulting in a PEG-linked

terminal maleimide (33). This Mal was bound directly to cysteines in the

proteins of interest (SDC4, decorin, and a5b1 integrin) in 2 mg/mL phos-

phate-buffered saline (PBS) solution (pH 7.4) at 2�C overnight (36).

Between each step of the modification process, tips were dried using absor-

bent tissue and washed with the solvent required for the next step before

being tissue dried again.
Surface immobilization of fibronectin

A solution concentration of 20 mg/mL fibronectin in PBS was selected and

was applied to a gold surface overnight (12 mm diameter Pelco gold-coated

AFM/STMmetal specimen disks; Ted Pella, Redding, CA) at 4�C to ensure

a complete coating. This concentration is consistent with other studies in

which binding sites in fibronectin, such as the Arg-Gly-Asp (RGD) peptide,

have been shown to be functional (30,37,38). Fibronectin readily adsorbs to

gold, and no modification of protein or surface was necessary. A complete

surface coating was verified using tapping mode AFM in a liquid PBS envi-

ronment with an unmodified probe.
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Dynamic single-molecuie force spectroscopy

Before functionalization, the spring constant of the AFM tips was

measured using the thermal method (39). The spring constant was typically

18 5 2 pN nm�1.

DSMFS measurements were conducted on the unbinding of SDC4, de-

corin, and a5b1-integrin from fibronectin in PBS to identify characteristics

of these distinct interactions. Force spectroscopy profiles are shown in

Fig. 2. In DSMFS, the tip approaches the surface until contact, at which

point the tip cannot move any further. The force on it increases until it rea-

ches a set value known as the trigger force. The force is then held constant

for a set period (dwell time) before the tip is retracted.

Control tests compared an SDC4-exhibiting probe interacting with fibro-

nectin-immobilized or gold-coated surfaces and were conducted at a retrac-

tion speed of 1 mm s�1 with a trigger force of 500 pN and a dwell time of

200 ms to enhance the probability of ligand-receptor binding. Longer dwell

times were not selected because fibronectin has been shown to exhibit sig-

nificant binding to Si3N4 cantilevers at exposure times of 1 s or longer (40).

All control tests were conducted at 10 different regions on the fibronectin-

coated substrate (the position was changed every 100 curves until 1000

curves were obtained) to ensure that measurements were not taken on un-

functionalized or otherwise adversely affected regions.

For the measurements of unbinding, the retraction speed was varied to

control the loading rate, which is the product of the retraction speed and

gradient of the rupture curve close to dissociation (32). Because this

gradient is dependent on the cantilever and the polymers, including the

bond, it is not possible to obtain specific loading rates for direct comparison

of the different bonds. The 500-pN trigger force was retained from the con-

trol experiments. After the trigger force was achieved, the AFM tip was

immediately retracted (no dwell). The position at which the measurement

was taken was changed after 100 curves.

Hydrodynamic drag is a factor in experiments such as these, and a correc-

tion factor can be obtained from the gradient of a plot of half the difference

between approach and retraction forces at large separations as a function of

retraction speed. The fit for the cantilever used here reveals a drag coeffi-

cient of 3.6 pN s mm�1, which is of the same order as those obtained in

similar experiments (30,32,41).
Analysis of unbinding events

Unbinding can be treated by the Bell-Evans model, which is a kinetic pro-

cess of the escape from a potential under the influence of an external
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FIGURE 2 Representative force spectroscopy data for the unbinding of

SDC4 (top), decorin (middle), and a5b1-integrin (bottom) from a fibro-

nectin-immobilized surface. The retraction speeds for these data are 2, 1,

and 3 mm/s, respectively. For clarity, the data for SDC4 and decorin are

offset by 200 and 100 pN, respectively. To see this figure in color, go online
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loading force (29,42). It is possible to extract characteristics describing

dissociation events between molecules by obtaining a linear fit between

the rupture force and the natural logarithm of the loading rate for each

contributing energy barrier. These include the dissociation rate, the thermo-

dynamic energy of adhesion, and the barrier width (43). The relation be-

tween rupture force, F, and the loading rate, r (force per unit time), of

the AFM cantilever is given by

F ¼ kBT

cB

lnðrÞ þ kBT

cB

ln

 
cB

KdkBT

!
; (1)

in which kB is the Boltzmann constant, T is the absolute temperature, cB is

the width (Fig. 1) of the energy barrier, and Kd is the dissociation (escape)

rate. It is this dissociation rate that contains the thermodynamic energy of

adhesion, DG, between the molecular bonds at the surface, given by the Ar-

rhenius relation

Kd ¼ fm exp

 
�DG

kBT

!
; (2)

where fm is the equilibrium dissociation rate, i.e., the dissociation rate

when there are no external forces applied. For large or complex proteins,

this rate is taken as fm z 107 s�1 (44–46), which would be appropriate for

simple interactions involving fibronectin. This value may still be an un-

derestimate for SDC4 and decorin, although any uncertainty in DG is

mitigated by its logarithmic dependency on fm. In general, an order of

magnitude increase in fm requires a corresponding 2.3kBT decrease in

DG. The barrier width is not dependent on fm. A reduction in the height

of the energy barrier is induced by the external force imparted on the

bond and is assumed to increase linearly with the time under stress

(47). The observed rupture force has then been shown to vary with the

loading rate, which is dependent on the velocity of retraction of the tip

from the sample.
RESULTS

Control experiments

Control experiments were carried out on an uncoated sur-
face to test that the chemically modified probes successfully
exhibited proteins at cysteine residues via PEG chains. This
is particularly important for syndecan, which is relatively
depleted in cysteine compared to other PGs (48,49). In the
absence of thiols, nonspecific maleimide binding with
amines is also possible (50), although this is a slow reaction,
increasing with pH (51). The first control involved recording
the number of events in 1000 curves on a fibronectin-coated
substrate and an SDC4-exhibiting probe in a liquid environ-
ment of PBS. This surface was then replaced with an un-
modified gold substrate, which was immersed in new
PBS, and a further 1000 curves were taken. Single-molecule
events characterized in the measurements between the
SDC4 probe and the fibronectin surface were not observed
on an uncoated gold substrate, indicating that the rupture
events are due to the functionalized probe and fibronectin.

HS is generally found as a PG component but is structur-
ally almost identical to isolated GAG heparin. In fact, they
differ only in the degree of sulfation along their chains;
HS contains various sulfated domains interspaced with
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nonsulfated domains, whereas heparin is uniformly sulfated
along its length. To test for nonspecific binding, control ex-
periments were performed for an SDC4 probe on a fibro-
nectin surface in which heparin-binding sites were
blocked by immersing the surface in free HS for 30 min.
These experiments identified a low level of nonspecific
binding that corresponded to �10% of events. This agrees
with published data and demonstrates that DSMFS is a reli-
able tool for measuring these interactions (52).
Unbinding of a5b1-integrin and fibronectin

Force pulling of an a5b1-integrin–exhibiting probe from a
fibronectin-immobilized surface were conducted over a
range of loading rates between 0.5 and 91 nN s�1. The dis-
tribution of rupture forces is shown in Fig. 3 A, and the dy-
namic force spectrum describing the unbinding is presented
in Fig. 4 A. The energy landscape in this range is governed
by two energy barriers. When fitted with the Bell-Evans
model in Eq. 1, the low-affinity (inner) barrier is described
by a linear regression of
FIGURE 3 Frequency distributions for extracted rupture forces, taken at differ

(B), and decorin (C). The number of measurements, n, from which the distribu

Gaussian or log-Gaussian models, and the modal averages of the rupture force fo

by noting that the fit to a log-Gaussian model passes through the origin.) Includ

Standard error values for each fit, provided by statistical software package Grap

terval width) quoted here. The log-Gaussian fit was used when the Gaussian fit w

this figure in color, go online.
F ¼ ð605 3Þ ln r--ð5005 30Þ; (3)

with a correlation factor of R2 ¼ 0.9935. The high-affinity
(outer) barrier is described by

F ¼ ð6:25 0:6Þ ln r--ð15 4Þ; (4)

with a correlation factor of R2 ¼ 0.9712. The rupture force
is in pN and the loading rate in pN/s.
Unbinding of SDC4 and fibronectin

Force pulling of an SDC4-exhibiting probe from a fibro-
nectin-immobilized surface were conducted over a range
of loading rates between 0.9 and 66 nN s�1. The distribution
of rupture forces is shown in Fig. 3 B, and the dynamic force
spectrum describing the unbinding is presented in Fig. 4 B.
The energy landscape in this range is governed by single en-
ergy barrier and, when fitted with the Bell-Evans model in
Eq. 1, is described by
ent velocities for the unbinding of fibronectin from a5b1-integrin (A), SDC4

tions were obtained, is shown in each panel. The fits (shown) are to either

r the corresponding loading rate were obtained. (These may be distinguished

ed errors correspond to the width of the 95% confidence interval for the fit.

hPad, were significantly smaller than the error values (95% confidence in-

as unsatisfactory, although the modal average is model independent. To see
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FIGURE 4 The dynamic force spectrum describing the unbinding be-

tween fibronectin and a5b1-integrin (A), SDC4 (B), and decorin (C). The

linear increase of the average rupture force with the logarithm of the

average loading rate for each pulling velocity, fitted using the Bell-Evans

relation (Eq. 1), is shown. Included errors correspond to the width of the

95% confidence interval from which average rupture forces were extracted.

Two energy barriers were observed for the unbinding of fibronectin from

a5b1-integrin.
TABLE 1 Extracted Energetics for Each Energy Barrier

Revealed in the Dynamic Spectra for the Unbinding of

Fibronectin from Both the Inner, I, and Outer, o, Barriers of

a5b1-Integrin, as well as Those for SDC4 and Decorin

cB (Å) Kd (s
�1) DG/kBT

a5b1 (i) 0.69 5 0.03 70 5 40 11.9 5 0.6

a5b1 (o) 6.6 5 0.7 0.18 5 0.13 17.8 5 0.7

Kennelly et al.
F ¼ ð12:25 0:6Þ ln r--ð425 6Þ; (5)

with the rupture force in pN and the loading rate in pN/s.
2
 SDC4 3.4 5 0.2 2.4 5 0.4 15.2 5 0.2

Decorin 1.4 5 0.1 40 5 4 12.4 5 0.1

A correlation factor of R ¼ 0.9844 was associated with
this fit.
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Unbinding of decorin and fibronectin

DSMFS experiments using a decorin-exhibiting probe and a
fibronectin-immobilized surface were conducted over a
range of loading rates between 3 and 46 nN s�1. The distri-
bution of rupture forces is shown in Fig. 3 C, and the dy-
namic force spectrum describing the unbinding is
presented in Fig. 4 C. The energy landscape in this range
is governed by a single energy barrier and, when fitted
with the Bell-Evans model in Eq. 1, is described by

F ¼ ð30:45 1:6Þ ln r--ð2155 15Þ; (6)

with the rupture force in pN and the loading rate in pN/s.
A correlation factor of R2 ¼ 0.9841 was associated with
this fit.

The decorin-fibronectin curve, like that of SDC4 with
fibronectin, cannot support a two-barrier model such as
that observed for a5b1-integrin binding with fibronectin.
In the case of the SDC4 interaction, the straight line crosses
all data within error. The line misses only one datum for the
decorin interaction. It can thus be concluded that a two-bar-
rier model is inappropriate for these data.

Extraction of binding energies

From the linear Bell-Evans fits for each energy barrier re-
vealed in the dynamic force spectra depicted in Fig. 4, ener-
getic properties characterizing the binding interactions can
be extracted. The width of each energy barrier, cB, can be
obtained directly from the gradient of the linear fit using
Eq. 1. The dissociation rate describing each barrier, Kd,
can then be extracted from the intercept of the linear fit
from Eq. 1. By incorporation of the Arrhenius relation
(Eq. 2), an estimate of the thermodynamic energy of adhe-
sion can be extracted from the dissociation rate directly or
from the Bell-Evans fit by substitution. The parameters
characterizing each barrier for the unbinding of SDC4, de-
corin, and a5b1-integrin from fibronectin are summarized
in Table 1, noting that Kd and DG are calculated based on
the assumption fm ¼ 107 s�1.
DISCUSSION

This study compares the interaction of the ECM protein,
fibronectin, and the a5b1-integrin, with its binding of
PGs. Analysis using DSMFS shows that in contrast to
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fibronectin-integrin binding, which is characterized by two
distinct binding affinities, fibronectin association with PGs
exhibits one binding site only. In addition, the results iden-
tify differences in elasticity between the three fibronectin
interactions.

The dynamic force spectra extracted from unbinding
measurements of both SDC4 and decorin with fibronectin
revealed only a single energy barrier. This is similar to pre-
vious studies investigating the binding between heparin and
fibronectin (32). Furthermore, the width of the energy bar-
rier probed in this work for the SDC4 interaction with fibro-
nectin is only �10% larger (and falls within the range of
associated errors) than the width of 3.1 5 0.1 Å reported
for heparin (32). This would indicate a similar bond compli-
ance in the binding of fibronectin, with both heparin and HS
and its relatively large size suggests that the bond formed
between PGs and extracellular fibronectin is resilient to me-
chanical stress and deformation. Combined, these results
support other work showing that HSPGs bind fibronectin
through their GAG chain and that the core protein has no
significant role in binding (13).

Comparison of the dissociation rate extracted for the
SDC4-fibronectin interaction in this study reveals a
12-fold increase when compared with that reported for the
heparin-fibronectin (32), suggesting a weaker interaction
between fibronectin and SDC4 than heparin. It can be noted
that both the width of the barrier and the dissociation rate
extracted from the dynamic force spectra for the SDC4-
fibronectin interaction are comparable to values reported
for other protein-carbohydrate interactions (53,54).

The single energy barrier revealed in the dynamic force
spectrum for the decorin-fibronectin interaction reveals a
much smaller barrier width and a much larger dissociation
rate than those extracted from the SDC4 interaction. The
observed bond formed between decorin and fibronectin is
therefore more brittle and less deformable than that with
SDC4. Here, the binding strength between decorin and
fibronectin is significantly smaller than that resulting from
the association of heparin sulfate chains to fibronectin (3).
However, under some conditions, affinities of heparan and
chondroitin sulfates are comparable (55,56).

Two energy barriers characterizing the unbinding of
a5b1-integrin and fibronectin have been identified in this
study. This is consistent with previous work on a5b1-integ-
rin unbinding from fibronectin (30,31) and with other
studies of integrins with ECM components (57,58). DSMFS
data for the interaction of fibronectin with fibronectin-bind-
ing proteins in Staphylococcus aureus have also shown the
possibility of two energy barriers (59), although this conclu-
sion is not unequivocal. S. aureus binding to fibronectin is
understood to involve a5b1-integrin (60). The interaction
of fibronectin with monoclonal antibody has also been
shown to exhibit two energy barriers (47).

Increasing loading rates reveal the internal binding
regime, which is characterized by a large dissociation rate
and a barrier of subångstrom width, indicating a brittle
bond that is resistant to external forces. It is not uncommon
to report subatomic internal barrier widths for ligand-recep-
tor dissociation (30,41,57,61,62). Previous studies on the
binding of the integrin b1 subunit with ECM proteins have
suggested that this barrier is due to the ionic interaction be-
tween the RGD domain in cell-binding matrix components
and the chelated Mg2þ ion in the b1 metal-ion-dependent
adhesion site (58). The high-affinity barrier governs the un-
binding at lower loading rates (and lower forces) and is char-
acterized by a wide width, which implies that the bond in
this regime can withstand significant deformation.

The slow dissociation rate for the outer barrier suggests a
relatively high affinity bond between a5b1-integrin and
fibronectin. This is consistent with the cell attachment func-
tion of integrin-ECM binding and suggests an integrin inter-
action through both the RGD and the synergy binding sites
of fibronectin (30,63,64). Activation results in the change in
conformation of the b1 subunit and permits higher affinity
binding with ligands (65).

Other studies using DSMFS have reported that recombi-
nant integrin variants exhibit binding characteristics of the
high-affinity state, reflecting a conformational change in
the protein (58). In contrast, the binding characteristics of
the recombinant, PEG-linked a5b1-integrin variant (particu-
larly the dissociation rate of the outer barrier) exhibited a
lower affinity than that measured for the wild-type protein
(30). It may be that a5b1-integrin requires an interaction
with cellular components to induce structural stability in
the receptor complex to provide efficient binding with extra-
cellular fibronectin. It should be noted that both the dissoci-
ation rates and the width of each barrier extracted in this
work are comparable to other integrin-ECM studies
(30,58,66).

The estimated thermodynamic energy of adhesion for the
outer barrier is within experimental uncertainty in agree-
ment with the value of �17.3 kBT, which was extracted
from equilibrium affinity constants acquired in surface
plasmon resonance measurements for inactivated a5b1-
integrin (67).

The characterization of the energy barriers involved in the
dissociation of recombinant a5b1-integrin and fibronectin
offers a good comparison and positive control for the un-
binding energetics between fibronectin and the PGs SDC4
and decorin. This and earlier observations of two separate
barriers for the a5b1-integrin interaction with fibronectin,
compared with the single barriers revealed for the PG-fibro-
nectin interactions, are also consistent with differences in
the binding properties. The significant strength of binding
between the cell-adhesion-mediating a5b1-integrin with
fibronectin offers a useful comparison with the energetics
of PG-fibronectin unbinding.

The lower affinity of the measured fibronectin binding of
the PGs compared to that for a5b1-integrin may in part
reflect PG interactions through the GAG chains and a
Biophysical Journal 117, 688–695, August 20, 2019 693
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stronger binding of the integrin through a protein-protein
interaction (63,68). This characteristic, as well as the two
energy barriers in the dissociation mechanism, means that
the bound complex of a5b1-integrin and fibronectin can sus-
tain considerable deformation and is resilient to significant
external forces.

In part, the distinct characteristics of the binding pre-
sented here reflect the differences in protein-protein and
GAG-protein interactions with the integrin and PGs,
respectively. These differences are also consistent with
their specific molecular functions. The brittle interaction
of decorin with fibronectin under low loading may provide
increased sensitivity for regulation of matrix composition
and signaling crosstalk (23,69). In contrast, the ability to
withstand deformation at focal adhesions and coordinate
cell activation and movement may be facilitated by
the greater elasticity provided by SDC4 and a5b1-
integrin (3,6).
CONCLUSION

DSMFS was performed on the unbinding of fibronectin with
SDC4, decorin, and a5b1-integrin. Single energy barriers
were uncovered for both SDC4 and decorin unbinding
with fibronectin, and two barriers were observed for the
dissociation of a5b1-integrin with fibronectin. Using the
Bell-Evans model, descriptive energetics of dissociation
were extracted directly from the dynamic force spectrum
characterizing each energy barrier.

The results identify differences in affinities and elastici-
ties in PG and integrin binding to fibronectin, which are
consistent with their distinct molecular characteristics and
specific biological functions.
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