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Abstract: Diabetes is a chronic metabolic disease characterized by lack of insulin in the body leading
to failure of blood glucose regulation. Diabetes patients usually need frequent insulin injections
to maintain normal blood glucose levels, which is a painful administration manner. Long-term
drug injection brings great physical and psychological burden to diabetic patients. In order to
improve the adaptability of patients to use insulin and reduce the pain caused by injection, the
development of oral insulin formulations is currently a hot and difficult topic in the field of medicine
and pharmacy. Thus, oral insulin delivery is a promising and convenient administration method to
relieve the patients. However, insulin as a peptide drug is prone to be degraded by digestive enzymes.
In addition, insulin has strong hydrophilicity and large molecular weight and extremely low oral
bioavailability. To solve these problems in clinical practice, the oral insulin delivery nanosystems were
designed and constructed by rational combination of various nanomaterials and nanotechnology.
Such oral nanosystems have the advantages of strong adaptability, small size, convenient processing,
long-lasting pharmaceutical activity, and drug controlled-release, so it can effectively improve the
oral bioavailability and efficacy of insulin. This review summarizes the basic principles and recent
progress in oral delivery nanosystems for insulin, including physiological absorption barrier of oral
insulin and the development of materials to nanostructures for oral insulin delivery nanosystems.

Keywords: oral insulin; absorption barrier; nanodrug delivery system; bioavailability

1. Introduction

Diabetes is listed as one of the top ten diseases threatening human health in the
world, and it is also one of the fastest-growing global health crises in the 21st century.
In 2019, the morbidity of diabetic patients worldwide accounted for 9.63%, and more than
4.6 million people die of diabetes each year [1,2]. Diabetes is divided into autoimmune
reaction-induced Type I (T1DM) and insulin resistance-induced Type II (T2DM) [3]. Patients
with T1DM almost completely lose their insulin secretion function, which need exogenous
insulin supplement. Patients with T2DM are resistant to insulin, that is, the blood glucose
levels of the patients are not sensitive to insulin [4,5]. In the early stage of T2DM, patients
can be treated by rational diet control, active exercise, and oral hypoglycemic drugs, such as
metformin and α-glucosidase inhibitors. However, in the late stage of T2DM, the patients’
blood glucose levels can only be controlled by direct injection of insulin [6].

At present, the U.S. Food and Drug Administration (FDA) has approved more than
100 types of insulin products for the clinical treatment of diabetes. However, because all
these products are injections, difficulties in operation caused by injections will bring a great
psychological burden to the diabetics. More serious is that injections cause many physio-
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logical hazards to patients, such as hypoglycemic reactions, lipoatrophy, fat hypertrophy at
the injection site, local allergic reactions, erythema, itching, abscesses, and induration [7–9].

In order to improve the adaptability of the patients and reduce the pain caused by
injection, the development of noninvasive insulin administration has become the research
goal of many medical and pharmaceutical researchers. In recent years, a large number
of scholars have developed noninvasive insulin administration such as perinasal [10–12],
sublingual [13,14], transocular [15–19], pulmonary [20–22], and rectum [23,24] methods.
However, it is still difficult to achieve the expected therapeutic effects due to the low
bioavailability, the inability to simulate the concentration gradient of normal human insulin,
the safety of additives, and low therapeutic activity [25,26].

Oral administration, as the most acceptable mode of administration, is also the safest
and most convenient mode of insulin administration. Its prominent advantage is that it
can avoid complications and hypoglycemia at the administration site [27,28]. However,
the bioavailability of oral insulin administration is less than 2% due to its high molec-
ular weight, strong hydrophilicity, poor stability, and low tolerance against hydrolysis
by proteases [29–32]. Moreover, oral insulin can play its role only passing through the
physiological absorption barrier of gastrointestinal tract, which has become a difficulty in
the development of oral insulin [33,34]. Enzyme inhibitors, permeation enhancers, and pH
regulators have been added to improve oral bioavailability of the formulation. Among
them, the most representative example was ORMD-0801, developed by the Oramed phar-
maceutical company, which included permeation enhancers, soybean trypsin inhibitor, and
calcium chelating agent. At present, it is in clinical phase III and has a bioavailability of
5–8%, but the safety and efficacy of its additives are still uncertain [35].

In the past 20 years, the combination of nanotechnology and pharmaceutics has brought
possibility for the realization of oral administration of macromolecular drugs [36–38], and it
is also a promising research direction of oral insulin [39,40]. In this review, we summarize
the physiological absorption barriers of oral insulin and discuss the nano-drug delivery
systems constructed from different materials (Figure 1). The bioavailability of oral admin-
istration of insulin is being enhanced by various types of strategies to construct different
delivery nanosystems. Finally, the future research tendency for the further improvement of
bioavailability is addressed.
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with the physiological mechanism of insulin action. However, the challenge of oral insulin 
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come many obstacles caused by gastrointestinal environment before entering the circula-
tion in order to achieve the expected therapeutic effects [41,42]. For the construction of 
oral insulin delivery nanosystems, delivery systems with different functions and struc-
tures need to be designed for these physiological barriers. Herein, we summarized the 
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cell layer.

2. Physiological Absorption Barrier of Oral Insulin

Insulin injections not only cause a heavy psychological burden for diabetics, but also
cause numerous physiological adverse effects. Oral insulin administration is the most
desired manner. It has the characteristics of painless and strong adaptability and is in line
with the physiological mechanism of insulin action. However, the challenge of oral insulin
administration is the very low bioavailability. The reason is that oral insulin must overcome
many obstacles caused by gastrointestinal environment before entering the circulation in
order to achieve the expected therapeutic effects [41,42]. For the construction of oral insulin
delivery nanosystems, delivery systems with different functions and structures need to
be designed for these physiological barriers. Herein, we summarized the compositions of
these barriers and the main ways to overcome them in Table 1.

Table 1. The physiological barriers of oral insulin administration and the mechanisms.

Physiological Barriers Constitution Mechanisms to Overcome References

Destruction by gastric acid Gastric acid, pH 1.0–2.0 pH responsiveness [43–47]

Degradation by
digestive enzymes

Pepsin, trypsin,
chymotrypsin, elastase,
and carboxypeptidase

Shielding effect,
hydrophobic effect [48–51]

Retention by the
mucus layer barriers

Water, glycoproteins, proteins,
electrolytes and lipids

Charge-reversing,
“Mucus-inert”

electroneutral surface
[52–55]

Retardation by intestinal
epithelial cell layer

Tight junction, apical endocytosis,
degradation of lysosomes, and

basolateral to the circulation

Permeation enhancer, increase
the active transportation [31,42,56–58]

2.1. Destruction by Gastric Acid

Insulin remains in the stomach for about 2 h after oral administration. The pH values
of gastric acid are about 1.2–2 [3,59–61]. The strong acidity in the stomach affects the
ionization of amino acids and breaks the spatial structure of peptides and proteins [62].
Many delivery systems stably encapsulate insulin under acidic conditions to avoid the
interaction with the acidic environment, while they can degrade or swell to release insulin
in neutral conditions [43–47].
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2.2. Degradation by Digestive Enzymes

There are many digestive enzymes that degrade proteins and peptides in the digestive
tract (Figure 1b). As we know, the stomach is rich in pepsin, and the neutral to weakly
alkaline intestine is rich in trypsin, chymotrypsin, elastase, and carboxypeptidase [63,64].
After naked insulin was incubated in simulated gastric and small intestinal fluids containing
digestive enzymes at 37 ◦C for 2–3 h, less than 10% of the insulin retained activity or,
even, all insulin lost its activity completely [65–67]. At present, insulin has been mainly
encapsulated by carrier materials to protect it from degradation by digestive enzymes. The
porous inorganic carrier materials were prepared to encapsulate insulin through the size
difference between insulin and digestive enzyme, which could prevent the degradation
of insulin by digestive enzyme. At the same time, the digestive enzymes could also be
shielded by the hydrophobic interaction between the carrier materials and the digestive
enzymes [48–51].

2.3. Retention by the Mucus Layer Barriers

The epithelial layer of the intestine is covered with a layer of electronegative mu-
cus secreted by goblet cells (Figure 1c). The mucus is mainly composed of water, and
also contains small amounts of glycoproteins, proteins, electrolytes, and lipids [68–70].
Electroneutral or electropositive substances are more likely to be adsorbed and retained
in the mucus layer. However, studies have shown that strong electroneutral substances
may be electrostatically embedded in the mucus layer, resulting in inferior permeability.
Researchers have designed an electrically neutral delivery system with “mucus inert” or
a polymer coating with charge reversal properties to improve the permeability of mucus in
the system [52–55].

2.4. Retardation by Intestinal Epithelial Cell Layer

The intestinal epithelial cell layer is the physiological barrier for substances to enter
the blood or lymphatic system from the gastrointestinal tract (Figure 1d). The intestinal
epithelial cell layer consists of enterocyte, mucus-secreting cup cells, micro-folded cells
(M cells), secretin-secreting enteroendocrine cells, and lysozyme-secreting Pan cells [71].
These epithelial cells are closely linked to form a barrier for protein peptide drugs to
pass through and resist the invasion of harmful substances at the same time [72,73]. In
addition to the paracellular pathway, the main challenges of the transcellular pathway
of systemic circulation include barriers to apical endocytosis of cells, degradation of
lysosomes upon entry into cells, and difficulties in release from the basolateral to the
circulation [25,41,42,74,75]. Absorption enhancers are widely used in insulin delivery
systems to increase the absorption of insulin in the gastrointestinal tract. Chitosan and
other materials that can open tight connections have also been used to construct insulin
delivery nanosystems. The use of specific recognition to increase active transport can
also increase the oral bioavailability, such as folic acid pathways, bile acid pathways,
and betaine transporters [31,46,56–59].

The above-mentioned barriers lead to the ineffectiveness of oral naked insulin for oral
administration. For the therapeutic purposes, insulin must be protected from enzymatic
and acidic damages to maintain its structure and activity before it enters the systemic
circulation. These active insulins also must cross the mucus layer and can be absorbed by
the intestinal epithelium. Therefore, the conditions that need to be met to realize the effect
of oral administration of insulin include the following aspects: a. avoidance of degradation
by digestive enzymes; b. resistance to destruction by gastric acid; c. mucosal permeability;
d. epithelial cell permeability; and e. no toxicity to the body.

3. Oral Insulin Delivery Nanosystems

In order to overcome the above-mentioned oral absorption barriers of oral insulin,
an oral drug delivery nanosystem was prepared by using nanotechnology and suitable
carrier materials loaded with bioactive substances to improve the oral bioavailability
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of insulin. Delivery nanosystems are made by dissolving, dispersing, embedding, ad-
sorbing, or coupling drugs into carriers to produce various nanoparticles, including
nanoliposomes, nanosolid dispersions, polymer micelles, nanocapsules, nanospheres,
microemulsions, and inorganic/organic hybrids [76–79]. They have various functions,
such as small size, large specific surface area, strong adhesion and targeting, easy access
to human cells to achieve high drug efficacy, elimination of biological barriers of drug
action, maintenance of drug stability, various functional modifications, and sustained
or controlled release of drugs. Compared with conventional drug formulations, oral
nano-drug delivery systems have significant advantages in terms of improving bioavail-
ability, extended drug half-life, and targeted delivery [80–82]. Therefore, oral delivery
nanosystems are widely used in the development of oral formulations of insulin. The
formulation combines insulin with a variety of materials with specific functions using
nanotechnology to achieve the effect of improving the bioavailability of oral insulin. The
drug delivery nanosystem realizes the functions such as resistance to gastric acid and
digestive enzyme degradation, and penetration into the mucus layer and small intestinal
epithelial cells. Herein, we summarize the development in oral delivery nanosystems
for insulin from the dominating materials to nanostructures.

3.1. Materials for Oral Insulin Delivery Nanosystems

Carrier materials are used to load insulin to construct oral insulin delivery nanosys-
tems. The desirable materials should have pH responsiveness, bioadhesion, biocompat-
ibility, biodegradability, modifiability, and ease of processing, so as to maintain drug
stability and improve bioavailability. A variety of polymers have been commonly used
in the construction of oral delivery nanosystems (Table 2). They can be classified as natu-
ral polymers and synthetic polymers according to different sources. Common natural
polymer carrier materials include proteins, chitosan, sodium alginate, hyaluronic acid,
starch, and bile acid [83,84].

Synthetic polymers mainly include polylactic acid (PLA), poly (lactic-co-glycolic
acid) (PLGA), and polycaprolactone (PCL). In addition, a number of inorganic materials
or inorganic/organic hybrids have been used in the construction of insulin delivery
nanosystems. Herein, we summarize representative carrier materials for oral insulin
delivery nanosystems (Table 2).
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Table 2. Representative materials for construction of oral insulin delivery nanosystems.

Materials Carrier
Components Method Active

Components EE%; LE% Size (nm);
PDI

Zeta-Potential
(mV)

In Vitro Release
Study (Condition,

Time, Insulin
Release)

Dose
(IU kg−1)

In Vivo
Studies References

PLA

PLA, F127
[(PLA-F127-PLA)

aggregates)]
Self-assembly - -;

-
56;
- - pH 7.4, 2 h, 55% 50 BGL,

5 h a, 25% b [85]

PLA, PEG Nanoprecipitation IgG Fc -;
0.5

63;
- −5.6 pH 7.4, 2 h, 60%,

10 h, 100% 1.1 BGL
7 h, 55% [86]

PLGA

PLGA
(9.5 kDa)

PLGA
(100 kDa)

Reverse
micelle-solvent

evaporation
method

SPC 80~90;
-

200;
- −17~−12 pH 1.2, 2 h, 45%;

pH 6.8, 6 h, 65% 20 rBA, 7.7% [87]

Double
emulsion
solvent

evaporation

SPC,
DSPE-PEG

(2000)

92.36;
2.4

176;
- −31.1 - 40 rBA, 12.2% [88]

PLGA (50:50 c,
20 kDa)

Double
emulsion
method

N-Trimethyl
chitosan

47.0;
7.8

247;
- 45.2 SGF, 6 h, 54.6%;

SIF, 6 h, 72.5% 20 rPA, 11.8% [89]

PLGA (50:50,
8 kDa)

Double
emulsion
method

TDCS, Tat
(YGRKKR-
RQRRR)

58.95;
1.38

157;
0.220 41.8 pH 1.2, 6 h, 20%;

pH 7.4, 48 h, 15% 10 BGL, 12 h, 40%;
BGL, 36 h, 80% [90]

PLGA polymer
(50:50; 20 kDa)

Double
emulsion
method

Folic acid,
Chitosan

41;
6.83

252;
0.237 5.99 pH 1.2, 6 h, 32.2%;

pH 7.4, 6 h, 34.9% 70 rBA, 7.77% [91]

MOFs

Fe-based
mesoporous MOF

Physical
absorption SDS 51.6;

35.0
100;

- −18.3
pH 7.4, 14 h, 50%;
pH 6.8, 14 h, 20%;

pH 5.4, 14 h, 0
50 rPA, 7.8% [92]

Zr6-based MOF Physical
absorption - -;

40 - - pH 1.29, 1 h, 10%;
pH 7.4, 1 h, 91% - - [93]
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Table 2. Cont.

Materials Carrier
Components Method Active

Components EE%; LE% Size (nm);
PDI

Zeta-Potential
(mV)

In Vitro Release
Study (Condition,

Time, Insulin
Release)

Dose
(IU kg−1)

In Vivo
Studies References

Chitosan

Chitosan, γ-PGA electrostatic
interaction - 75;

15
250;

- 25
pH < 7, 100%

pH > 7.0,
disintegrating

30 rBA, 15% [94]

Chitosan
(100 kDa, 90%)

self-assembly
method

Hyaluronic acids
(200 kDa),

Biotin

71.72;
-

277;
0.06 −27.90 250 U/mL trypsin,

2 h, 30% 50 rBA, 4.6% [95]

Chitosan
(365 and 222 kDa,
86% d), alginate

Electrostatic
interaction and

Chemical
cross-linking

- 78.3;
-

104;
- 3.89

pH 1.2, 2 h, 25%;
pH 6.8, 2~14 h,

60%~70%;
pH 7.4, 14~24 h,

80~85%

100 rBA, 8.11% [96]

Chitosan
(200–300 kDa,

85%), snail mucin

Self-gelation
method - 92.5;

21.4
504;

0.185 31.2 pH 1.2, 2 h, 10%;
pH 7.4, 10 h, 87% 50 rBA, 10.6% [97]

Chitosan
(150 kDa, 85.8%)

Self-assembly
method

SDS,
L-Phenylalanine

93.4;
-

131;
0.227 30.71 pH 1.2, 2 h, 45%;

pH 6.8, 4 h, 82% 50 rPA, 5.8% [51]

Chitosan
(29.80 kDa, 80.2%)

Chemical
cross-linking

Pentaerythritol
tetrakis (3-merc
aptopropionate)

79.63;
19.82

220;
0.091 2.3 pH 2, 12 h, 96%;

pH 5.3, 24 h, 92% 50 3 h, 50% [98]

Carboxymethyl
chitosan

Ionic
cross-linking

method
L-valine, PBA 67;

9.8
190;

- -

SGF, 24 h, 16.6%;
SIF, 24 h, 50.7%;

pH 7.4, 24 h, 55.4%;
pH 7.4 (10 mM),

24 h, 68%;
pH 7.4 (20 mM),

24 h, 92%

75 rPA, 7.55% [99]
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Table 2. Cont.

Materials Carrier
Components Method Active

Components EE%; LE% Size (nm);
PDI

Zeta-Potential
(mV)

In Vitro Release
Study (Condition,

Time, Insulin
Release)

Dose
(IU kg−1)

In Vivo
Studies References

Others

Alginate,
dextran sulfate

Emulsification/
internal gelation,
polyelectrolyte
complexation

low molecular
weight chitosan,
bovine serum

albumin

30.7;
6.2

300;
- 28.9

pH 1.2, 2 h, 35%;
pH 5.5, 2–4 h, 100%;
pH 7.4, 2~8 h, 100%

- - [100]

Proanthocyanidins,
short-chain

glucans
Recrystallization - 70.2;

3.5
100~200;

- - pH 1.2, 8 h, 60%;
pH 6.8, 8 h, 75% 100 rPA, 6.98% [101]

HPMCP

Spontaneous
emulsification

solvent diffusion
method

90.8;
8.13

200;
<0.27 −15~0

pH 3.0, 4 h, 8.2%;
pH 6.0, 4 h, 39.7%;
pH 6.8, 4 h, 77.4%;
pH 7.4, 4 h, 82.0%

25 rBA, 8.6% [102]

Waxy corn starch
(approximately

99% amylopectin),
Chitosan

(140 kDa, 90%),

Self-assembly - 89.6;
6.8

311;
0.227 −43.7 pH 7.4, 8 h, 50% 50 rBA, 15.19% [103]

Silica - SiO2
20~100;

- 10 rBA, 23.4% [39]

a: The time from medication to glucose level testing; b: hypoglycemic effect; c: degree of deacetylation; d: the ratio of poly (lactic acid) and poly (glycolic acid); PDI: poly dispersion
index; EE%: encapsulation efficiency; LE%: drug loading efficiency; rBA: relatively bioavailability, rPA: relatively pharmacological activity; BGL: blood glucose level; SPC: soybean
phosphatidylcholine; PBA: phenylboronic acid; DSPE-PEG(2000): 1,2-distearoyl-sn-glycero-3-phosphoethanol-amine-N-methoxy (polyethyleneglycol)-2000; SDS: sodium dodecyl sulfate;
TDCS: N-trimethyl-N-dodecyl chitosan; γ-PGA: poly (γ-glutamic acid); HPMCP: hydroxypropyl methylcellulose phthalate; -: not given in the literature.
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3.1.1. Polylactic Acid (PLA)

PLA is a kind of polyester derived from the polymerization of lactide as the main
raw material (Figure 2A), which is biodegradable, biocompatible, and bioadhesive. PLA
has been widely used in pharmaceutical formulations. PLA-b-Pluronic-b-PLA (PLA-F127-
PLA) aggregates were synthesized to be used as nanocarriers for oral insulin [85]. The
nanoparticle formulation maintained a hypoglycemic effect in diabetic rats for 18.5 h. The
negatively charged hydroxyl and carboxyl groups of PLA increased adhesion to the intestinal
wall and prolonged the residence time of nanoparticles, which was detrimental to the
transport of the nanoparticles. PLA nanoparticles had an electrically neutral and hydrophilic
shell after modification by an amphiphilic compound, lauryl phosphatidylcholine, which
facilitated the diffusion of nanoparticles by shielding the negatively charged hydrophobic
PLA cores and prevented prolonged adhesion to the mucus layer [104]. The amphiphilic
polylactic acid insulin nanoparticles could reduce blood glucose by 40% within 4 h after
oral administration compared with other PLA nanoparticles, which indicated that the
modification of carrier materials could enhance the absorption of drugs after gastrointestinal
uptake. Transportation of PLA nanoparticles could also be improved using a ligand-linked
approach. PLA nanoparticles targeted the neonatal Fc receptor (Fc-RN) by coupling an
immunoglobulin G crystallizable segment (IgG Fc fragment) to improve the bioavailability
of insulin [86]. Adult Fc-RN expression levels were similar to those of the fetus and transport
IgG antibodies through the small intestine and colon [87]. Enhancement could be observed
on the basolateral side of the small intestine by fluorescent labeling, which indicated that
these nanoparticles were transmitted and circulated through the intestinal epithelium. PLA
has a high protective effect on insulin, because it is stable in gastric acid and is not prone to
degrade. Insulin encapsulated by PLA needs to be dissolved with dichloromethane, which is
the main reason why PLA cannot be widely used. At the same time, the degradation rate of
PLA is too slow. PLA is not suitable for the preparation of quick acting insulin formulations,
but more suitable for the preparation of long-acting and sustained release formulations.
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(A) PLA, (B) PLGA, (C) chitosan, (D) MOFs, and (E) alginate acid.

3.1.2. Poly (lactic-co-glycolic acid) (PLGA)

PLGA is a biodegradable functional polymeric compound formed by random polymer-
ization of two monomers, including lactide acid and glycolide (Figure 2B). PLGA has good
biocompatibility, nontoxicity, and good film-forming properties, and has been developed in
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oral delivery systems for macromolecular substances [105]. PLGA has a faster degradation rate
than that of PLA, which is more suitable for the construction of oral insulin delivery systems.

Insulin–phosphatidylcholine complexes were prepared by reverse micellar–solvent
evaporation method in view of the poor water solubility of PLGA. The insulin complexes
were loaded onto PLGA nanoparticles by a modified composite emulsion–solvent evap-
oration method, which improved encapsulation and permeability. First, a complex of
sodium deoxycholate and insulin was formed by hydrophobic ion-pairing method and
encapsulated into PLGA nanoparticles by emulsion–solvent diffusion method, which ef-
fectively improved the encapsulation rate (93.6%) and reduced the blood glucose level
of diabetic rats to 43% of the original level [89]. Polymeric lipid hybrid nanoparticles
consisting of a hydrophobic PLGA core, an amphiphilic phosphatidylcholine interlayer,
and a hydrophilic PEG shell were constructed by spray freeze-drying. They were then filled
into rigid gelatin capsules encapsulated with hydroxypropylmethylcellulose phthalate
(HPMCP-55). The formulation exhibited good cellular internalization and the integrity
of the drug encapsulation, which could maintain the integrity of drug encapsulation for
up to three months [106]. The penetration of negatively charged PLGA nanoparticles
through the mucus barrier was low. The surface modification of PLGA with positively
charged compounds or targeted functional molecules can further improve the penetration
rate [91,92]. PLGA nanoparticles modified with positively charged natural trimethyl chi-
tosan (TMC) could facilitate the transportation of the nanoparticles [90]. Nanoparticles
modified with TMC can penetrate into HT29 MTX cells and increase the diffusion rate by
28% compared with uncoated PLGA nanoparticles. However, the size of nanoparticles
using PLGA as carrier is usually larger than 200 nm, which is not conducive to absorption.
PLGA, as a material approved and certified by FDA, has good biocompatibility, no toxicity,
no irritation, no immunogenicity, and sustained release, and still has a great potential in
the field of drug research.

3.1.3. Chitosan and Its Derivatives

Chitosan is a natural polymeric polysaccharide composed of deacetylated glucosamine
and N-acetylglucosamine (Figure 2C). It has desirable biological properties, including bio-
compatibility, biodegradability, adhesion, and permeability [95–98]. The positive charge
of chitosan interacts with the silicate group in mucin by hydrogen bond and electrostatic
interaction, so as to enhance the adhesion of gastrointestinal tract [106]. The tight junction
protein-4 (Claudin-4), an important protein, plays an important role in maintaining cell po-
larity and tight junction barrier function. Chitosan induces the redistribution of Claudin-4
from the cell membrane to the cytoplasm. Claudin-4 is then degraded by lysosomes,
thereby weakening the tight junctions between cells and instantly increasing paracellular
permeability. However, chitosan is insoluble under neutral and alkaline conditions. It is
also difficult to protonate in the intestine to exert its cationic properties, which limits its
absorption and utilization. Chitosan-derived compounds, such as quaternized chitosan,
trimethyl chitosan (TMC), ethyl chitosan, carboxymethyl chitosan (DMEC), carboxymethyl
chitosan (CMCS), acrylate-chitosan, and mercapto chitosan, were introduced to improve
the aqueous solubility, adhesion, and permeability of nanoparticles at neutral and alkaline
pH conditions. Their water solubility is higher than that of chitosan in a wide range of
pH and concentration and does not affect their cationic properties. TMC is more likely to
be aminated in neutral and alkaline environments, so as to improve its water solubility in
alkaline environment and greatly increase the permeability of insulin. Because the protons
of the primary amines of TMC are replaced by methyl groups, TMC can no longer form hy-
drogen bonds with the hydroxyl groups, so it is conducive to the absorption of hydrophilic
compounds at a pH value similar to jejunum [107,108]. The most prominent advantages
of chitosan and chitosan derivatives as materials for oral insulin delivery nanosystems
are their strong adhesive properties and their natural positively charged properties. The
obstacle of chitosan as insulin carrier is that it has certain toxicity to gastrointestinal tract.
While chitosan opens up tight junctions, harmful substances can easily enter the blood
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through the paracellular pathway. On the other hand, the excessive positive charges tend
to be retained in the mucus layer and cannot enter the circulation. In order to overcome
the retention, some negatively charged polymers, such as alginate nanocompound and
polyglutamic acid compounds, have been used to modify chitosan nanoparticles to improve
the permeability across the mucus layer and the oral bioavailability.

3.1.4. Metal Organic Frameworks (MOFs)

Metal organic frameworks (MOFs), also known as porous coordination polymers, are
three-dimensional ordered porous materials consisting of inorganic clusters bridged by or-
ganic ligands. They have regular three-dimensional structure and stable porosity (Figure 2D),
and their structures and chemical functions can be adjusted purposefully, which is widely
used in drug delivery. Zhou et al. synthetized iron-based MOFs that could load insulin
by physical adsorption, and the insulin-loaded MOFs could be coated with an amphiphilic
polymer, poly (ethylene glycol-b-lactide), to keep it stable in the acidic environment of gastric
juice [93]. Li et al. constructed a mesoporous zirconium-based MOF with a pore size of
3.2 nm and a loading capacity of up to 40%, which allowed insulin with a molecular size of
1.3 nm× 3.4 nm to enter the pores, while pepsin with a molecular size larger than 4 nm could
not enter [95]. Therefore, the pepsin could not degrade the loaded insulin. Furthermore, this
MOF was structurally stable under acidic conditions, preventing the release of the insulin
in gastric juice, whereas in PBS, the structure of this MOF could disintegrate itself, thereby
releasing the loaded insulin. However, the release rate of such drug delivery materials
was too fast. About 80% of insulin was released in 40 min under physiological conditions,
which may lead to side effects, such as hypoglycemia. At present, it is necessary to optimize
and control the slow release of drugs. In addition, the degradation profile and metabolism
pathway are still unknown, which might have potential negative effects on human heaths.
Therefore, MOF materials for oral insulin delivery require further research.

3.1.5. Other Materials

In addition, numerous other materials, such as natural polysaccharides and inorganic
nanoparticles, are widely used in insulin oral delivery nanosystems. Anionic surface silica
nanoparticles were designed to promote insulin absorption in the gastrointestinal tract. The
negative electrical characteristics of the nanoparticle surface could induce the nanoparticles
to relax the tight junctions among small intestinal epithelial cells by binding integrins
and activating myosin light chain kinase (MLCK), increasing intestinal permeability and
improving the uptake of nanoparticles by small intestinal epithelial cells. This effect is
reversible and highly biocompatible and will not cause necrosis or inflammation of the
intestinal tissues [39]. Ionic liquids are substances composed of ions with a melting point
below 100 ◦C. They are liquid at or near room temperature, and are widely used in various
fields, including pharmaceuticals. Banerjee et al. prepared a highly effective oral insulin
formulation using choline and geranylate (CAGE) ionic liquids, which significantly reduced
blood glucose to 45% of initial. The formulation exhibited excellent pharmacokinetic
and pharmacodynamic results with good biocompatibility and storage stability for at
least four months under refrigerated conditions [55]. Natural polysaccharides, such as
sodium alginate and starch, are widely used in the oral delivery of insulin [95,101,102].
Sodium alginate is a byproduct of the extraction of iodine and mannitol from the brown
algae kelp or Sargassum. Its molecular structure consists of β-D-mannuronic acid (β-D-
mannuronic, M) and α-L-guluronic acid (α-L-guluronic, G) linked by (1→4) glycosidic
bonds (Figure 2E), and is a hydrophilic, adhesive, biodegradable, biocompatible, and pH-
sensitive natural polysaccharide. The guluronic acid can be cross-linked with divalent
cations by exchanging sodium ions to form a gel matrix, in which hydrophilic drugs can be
encapsulated. Insulin encapsulated in sodium alginate and chitosan by calcium chloride
ionic gelation reduced blood glucose levels by more than 40% in diabetic rats at the doses
of 50 IU/kg and 100 IU/kg, and the hypoglycemic effect lasted for more than 18 h. Insulin
nanoparticles based on carboxymethylated short-chain amylose were constructed and
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coated with positively charged polysaccharides, which improved drug encapsulation rate
and enhanced the permeation effect of nanoparticles in small intestinal epithelial cells,
improved the absorption efficiency of insulin, and increased the bioavailability of insulin
to 15.19% [104].

These above-mentioned materials provide a wide range of candidates for constructing
nanostructures for oral insulin delivery. Based on these materials, nanotechnology is also
an essential aspect of development of efficient oral insulin formulation. Thus, varieties of
nanostructures have been intensively studied to improve the bioavailability of oral insulin drugs.

3.2. The Structures of Oral Insulin Delivery Nanosystems

The structure of oral insulin delivery nanosystems can be divided into liposomes, poly-
meric micelles, solid liposomal nanoparticles, organic nano-microspheres/microcapsules,
nanogels, and inorganic/organic nanohybrids. The structures can be combined with vari-
eties of functional components to improve their solubility, permeability, release properties,
targeting, and protective effects. Herein, we summarized the structures of oral insulin
delivery nanosystems.

3.2.1. Liposomes

Liposomes with the size ranging from 25 nm to 2.5 um are water-containing cored
bilayer vesicles comprising phospholipid bilayer membranes (Figure 3A and Table 3). Li-
posomes have the advantages of low toxicity, high biocompatibility, good biodegradability,
ease of scalability, reproducibility, and outstanding non-immunogenicity [109]. Once the
liposomes enter the body, they will be regarded as an exogenous substance to stimulate the
body’s immune mechanism. Then, they will be phagocytosed by the reticuloendothelial
system and thus targeting enrichment in tissues, such as the liver, spleen, lung, and bone
marrow, reducing toxicity to the heart and kidneys. However, liposomes aggregate in
the gastric environment, and bile salts and trypsin lipase are prone to cause liposome
degradation [110]. The physical stability of liposomes is poor, which is prone to produce
laxatives and corruption. The commonly used lipid preparation methods include thin
film dispersion, injection, ultrasonic dispersion, melting, and reverse evaporation [111].
Wang et al. prepared cationic liposomes (CLs) by thin film hydration using egg yolk
lecithin (EPC), cholesterol, and the cationic lipid DOTAP as carrier materials [112]. Protein
corona liposomes were prepared by adsorbing bovine serum albumin (BSA) on cationic
liposomes in order to form neutral charge and hydrophilic surfaces to overcome mucus
and epithelial barriers (Figure 3B). PcCLs could improve the oral bioavailability of insulin.
In vitro and in vivo experimental studies have shown that the uptake and trans-epithelial
permeability of PcCLs were 3.24 and 7.91 times higher than that of free insulin, respec-
tively. Further studies on the behavior of PcCLs showed that when PcCLs crossed the
mucus layer, the BSA corona could be shed from the PcCLs system, exposing CLs with
positive electrical properties to promote epithelial uptake. Intra-jejunal injection of PcCLs
had significant hypoglycemic effects in Type I diabetic rats, increasing oral bioavailability
up to 11.9%. Kim et al. prepared an uncapped positive-charged liposomal nanoparticle
(IPUL-CST) with a particle size of approximately 200 nm using a conventional thin film
rehydration method [113]. The dimethyloctadecylammonium bromide (DDAB), deoxy-
cholic acid (DOCA), and superparamagnetic iron oxide nanoparticles (SPION) with the
diameter of 10 nm were used as materials (Figure 3C). Insulin was loaded by diffusion and
electrostatic interaction into this uncapped special structure by dispersing superparam-
agnetic iron oxide nanoparticles in liposomes, allowing magnetic shear stress to squeeze
the liposomal surface and tear it apart and forming open lipid bilayer pores. This allowed
insulin to be encapsulated not only on the outside but also on the inside of the liposomes.
The encapsulation rate of insulin in such nanoliposomes was significantly increased. The
insulin-loaded liposomes were then encapsulated with a chondroitin sulfate-taurocholic
acid coupling (CST). Complexation of the cationic liposomes with the anionic CST increased
the active transport of IPUL-CST using the apical sodium-dependent bile acid transporter-
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mediated intestinal uptake and lymphatic transport pathways. It had shown that IPUL-CST
absorbed via the distal ileum was delivered to the body’s circulation via the lymphatic
pathway in vivo absorption pathway experiments. The apparent bioavailability of this
insulin-loaded liposome after oral administration reached approximately 34%, and blood
glucose consistently reduced at least 16 h after oral administration. This work was the first
demonstration of an oral insulin delivery system directly triggered by increasing postpran-
dial glucose concentrations in the intestine to provide an on-demand insulin release with
ease of administration. Gu and his team reported a glucose-responsive nanoliposome with
enhanced intestinal absorption function using phenylboronic acid conjugated hyaluronic
acid (HA-PBA) shell coated with the (Fc Rn)-targeted liposome core (Figure 3D). This
study demonstrates a responsive oral insulin delivery system, which is directly triggered
by increasing postprandial glucose concentration in the intestine to provide on-demand
insulin release and easy administration [40].
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diagram of IPUL-CST and its intestinal uptake and lymphatic transport. (D) Schematic representation of
the glucose-responsive oral insulin delivery liposomes for postprandial glycemic regulation.
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Table 3. Examples of liposomes as a nano structure for oral insulin delivery nanosystems.

Materials Method Active
Components

EE%;
LE%

Size (nm);
PDI

Zeta-
Potential

(mV)

In Vitro
Release Study

Dose
(IU kg−1)

In Vivo
Studies References

DOTAP, EPC Thin-film
hydration method BSA 28.7;

1.5
195;

- −10.9 pH 6.8, 6 h, 45% 75 rBA,
11.9% [112]

DDAB, DOCA Thin-film
hydration method CST, SPION 75;

33
194;

- -
pH 1.2, 2 h,

10–14%;
pH 7.4, 25 h, 47%

20 rBA,
34% [113]

Mpeg2000-
DSPE, HSPC

Extrusion, thin film
hydration method FA, PEG 70;

-
180;
<0.2 −12.9~−4.0 pH 1.2, 1 h, 25%;

pH 6.8, 1 h, 48% 50 rBA,
19.08% [114]

EPC, CH, SA
Thin film hydration
Method, alternating

electrostatic deposition

PAA,
FA-PEG-PAH

>88;
-

250;
<0.27 25.4

pH 1.2, 2 h, 15%;
pH 6.8, 1 h, 25%;
pH 7.4, 25 h, 75%

50 rBA,
20% [115]

PC, DSPE-
PEG2000, CH

Microfluidic technique,
nanoprecipitation

Chitosan,
HPMCAS-
MF, PEG

91;
-

363;
0.315 23 pH 1.2, 2 h, 1%;

pH 6.8, 8 h, 25% - - [116]

EP, CH,
DOTAP

Thin-film
hydration technique Chitosan 87.5;

-
439;

- 29.9 pH 1.2, 50 h, 18.9%;
pH 7.4, 50 h, 73.3% 250 - [117]

EPC, DOPE, CH Lipid film
hydration method

Glucose-sensitive
hyaluronic acid

shell; Fc Rn

20.7;
17.1

94;
- −28.1 pH 2.5, 12 h, <10%;

pH 7.4, 12 h, <10% 10 - [40]

DOATP: N-[1-(2, 3-Dioleoyloxy) propyl]-N,N,N-trimethylammonium methyl-sulfate; EPC: egg phosphotidyl-
choline; BSA: bovine serum albumin; RB: relative bioavailability, PAA: poly(acrylic acid); DDAB: dimethyl
dioctadecyl ammonium bromide; DOCA: deoxycholic acid; CST: chondroitin sulfate-g-taurocholic acid; SPION:
superparamagnetic iron oxide nanoparticles; DSPE: distearoylphosphatidylethanola-mine; mPEG: methoxy-
polyethelene glycol; HSPC: hydrogenated soya phosphatidylcholine; FA: folic acid; PEG: polyethylene glycol;
CH: cholesterol; PAH: poly(allylamine hydrochloride), SA: stearylamine; HPMCAS-MF (M grade fine pow-
ders, abbreviated as MF): hydroxypropyl methylcellulose acetate succinate; PEG: poly(ethyleneglycol), DOPE:
dioleoylphosphatidylethanolamine.

Liposomes as an oral insulin delivery nanosystem have outstanding biocompatibility,
and some nanoliposome drugs have been approved for marketing, such as paclitaxel lipo-
somes. Liposomes are widely used and have a high safety profile. However, the property
of lipid materials results in low encapsulation efficiency. Due to the poor thermodynamic
stability and short life of liposomes, nanoliposomes are more suitable for the preparation
of quick-acting insulin preparations.

3.2.2. Polymer Micelles

Polymer micelles are synthetic amphiphilic block copolymers, which can self-assemble
in aqueous environments to form a thermodynamically stable colloidal system, which
can spontaneously form polymeric micelles after dissolution in water because of their
hydrophilic shell and hydrophobic core (Figure 4A and Table 4) [118]. The common mate-
rials for preparing polymer micelles are cohydrophilic blocks, such as polyoxyethylene,
polyethylene glycol, polyvinylpyrrolidone, and hydrophobic materials, such as polylactic
acid, methyl methacrylate, polystyrene, polypropylene, etc. [119]. Polymeric micelles pro-
tect insulin from sudden release and enzymatic degradation in gastric juice and then release
in the intestinal environment, which can increase intestinal permeability and improve
the efficiency of drug delivery. PH-sensitive polymer micelles can minimize the sudden
release under acidic conditions in the stomach, which promote the adhesion of micelles
and increase their residence time in the intestine.

Hu et al. designed pH-sensitive cationic polymer micelles with a core/shell structure
that can be self-assembled in aqueous solution. The micelles were composed of methyl
methacrylate (MMA, hydrophobic unit) and methacrylic acid (MAA, pH-sensitive and
hydrophobic unit) as the core, with hydrophilic and pH-sensitive poly (2-aminoethyl
methacrylate) (PAEMA) chain segments wrapped on the surface (Figure 4B) [47]. The
PAEMA provided a spatial protective layer on the surface of the self-assembled micelles to
enhance the stability of the micelles. The amine residues could be dramatically protonated
in an acidic environment to form a positive-charged surface to provide an adhesive func-
tion, which improved drug permeability and bioavailability by opening the tight junctions
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of cells in the intestinal wall. Most polymeric micelles promote absorption by opening
tight junctions among cells, but this approach also increases the invasion of harmful sub-
stances into the body. Han et al. used an amphoteric betaine polymer, DSPE-PCB (polymer
(polycarboxybetaine, PCB) of 5000 Da molecular weight conjugated to 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine (DSPE)) to prepare DSPE-PCB micelles with a particle size
of 25 ± 4 nm through mimicking the surface characteristics of chlamydial viruses to enable
their rapid movement in the mucus layer (Figure 4C) [57]. These amphiphilic polymeric
particles could enhance the bioavailability of insulin using the proton-assisted amino acid
transporter 1 (PAT1) channel to facilitate the penetration of substances, such as betaine
and betaine derivatives, into small intestinal epithelial cells. Transportation and in vitro
experiments showed that the uptake of amphoteric micelles by PAT1 overexpressing cells
(Caco-2) was increased significantly, while the uptake of amphoteric micelles was signifi-
cantly inhibited in the presence of PAT1 substrate. In an in vitro fluorescence imaging study,
DSPE-PCB micelles showed better retention and uptake in the small intestine compared to
other micelles, such as polysorbate 80 micelles. Animal studies in diabetic rats showed that
the bioavailability was as high as 42.6%. Monolayer micelles have smaller size and stronger
permeability to small intestinal epithelial cells compared with liposomes. However, the
drug loading rate of micelles was also relatively low. The high release rate and responsive
release capability of micelles made them suitable for rapid postprandial glucose control.
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Table 4. Examples of micelles as nanostructures for oral insulin delivery nanosystems.

Materials Method Active
Components

EE%;
LE%

Size
(nm);
PDI

Zeta-
Potential

(mV)

In Vitro
Release
Study

Dose
(IU kg−1)

In Vivo
Studies References

P(MMA-co-
MAA)-b-
PAEMA

Electron transfer,
atom transfer radical
Polymerization and

self-assembled

MAA.MMA.
AEMA

-;
9.1

neutral
pH 200;

-
15–25

pH 1.2, 10 h,
36%~40%;

pH 7.4, 10 h,
50%~65%

- - [47,53]

PCB,
DSPE-PCB Zinc ion 25;

- −41 - 20 rBA,
41.2% [104]

DODA-
501, NIP

AAm, AAC

Free radical
polymerization

59;
-

94~200;
-

pH 1.55,
2 h, 45%;
pH 7.4,

2 h, 60%

- - [120]

MMA: methyl methacrylate; MAA: methacrylicacid; AEMA: amino ethyl methacrylate; P(MMA-co-MAA)-b-
PAEMA: Poly(methyl methacrylate-co-methacrylicacid)-b-poly(2-amino ethyl methacrylate); PCB: polycarboxy-
betaine; DSPE: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; DODA-501: dioctadecylamine-501; NIP Aam:
N-isopropylacrylamide AAC: acrylic acid.

3.2.3. Solid Lipid Nanoparticles (SLNs)

SLNs are solid nanodrug delivery systems made of solid natural or synthetic lipids,
such as lecithin, fatty acids, fatty alcohols, and other lipid-like materials, and the drugs
are encapsulated or embedded in lipid-like nuclei (Figure 5A and Table 5). SLNs have
low toxicity, no organic solvent, good biocompatibility, and high entrapment efficiency for
hydrophobic substances. However, SLNs also have deficiencies, such as low encapsulation
efficiency, short in vivo circulation time, and poor physical stability. The solubility of drugs
in lipids and the limitations of preparation technology will lead to low drug content. SLNs
can be prepared by high-speed homogenization, high-pressure emulsification, solvent
emulsification, microemulsion, and ultrasonic dispersion [118–124].

Table 5. Examples of SLNs as a nanostructure for oral insulin delivery nanosystems.

Materials Method Active
Components

EE%;
LE%

Size
(nm);
PDI

Zeta-
Potential

(mV)

In Vitro
Release
Study

Dose
(IU kg−1)

In Vivo
Studies References

Soybean
lecithin

double emulsion
method

Peptide:
GLFEAIEG-
FIENGWEG-
MIDGWYG

98.16;
7.52

161.6,
0.25 −16.1

pH 5.5,
12 h, 50%;

pH 6.8,
12 h, 70%

50 rBA,
5.47% [30]

Soy lecithin
Emulsification

solvent-evaporation
technique

propylene
glycol

54.5;
-

203.6,
0.175 −43.3

pH 2.5
(pepsin),

0.5 h, 40%
50 rBA,

5.1% [125]

Glyceryl
Trimyristate,
Soya Lecithin

Double emulsification L-penetratin 67.42;
1.82

745.3,
0.227 −23.7

pH 1.2,
6 h, 91%;
pH 7.4,

6 h, 76%

10 rBA,
13.1% [126]

Boushra et al. prepared SLN from soy lecithin. Viscosity-enhanced nanocarriers (VEN)
were developed by adding a hydrophilic viscosity enhancer (VA) to the SLN core, which
solved the problem of low encapsulation efficiency of hydrophilic active substances by SLN
(Figure 5B) [125]. Oral insulin VEN showed good hypoglycemic effect in fasted rats with a
relative bioavailability of 5.1%. Xu et al. prepared solid nanoliposomes with a shell con-
taining endosomal escape factor hemagglutinin-2 peptide (HA2) by ultrasonication, which
consisted of a soy lecithin solid lipid shell and an aqueous nucleus containing insulin [30].
The shell containing HA2 could effectively avoid lysosomal degradation of epithelial cells,
the accumulation of insulin in the basolateral side of epithelial cells was much greater than
that of free insulin, and the biological activity of insulin was maintained to a greater extent
during intracellular transport (Figure 5C). SLN has better stability and simpler preparation
method compared with liposomes. However, the encapsulation efficiency of hydrophilic
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drug insulin is still low. The development of oral insulin preparations still needs to be
further studied.
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3.2.4. Organic Nanospheres/Nanocapsules

Organic nanospheres and nanocapsules are spherical or encapsulated drug loaded
particles with nanoscale diameters. They were prepared with natural or synthetic polymer
materials as carriers by nanotechnology. Nanocapsules are composed of a polymer shell
and a liquid (aqueous or oily) inner core, with the drug usually encapsulated in a polymeric
membrane. Nanospheres, on the other hand, are homogeneous spherical solid drug
delivery systems formed by mixing the drug in some way with a matrix of polymeric
material (Figure 6A and Table 6). Compared to other nanocarriers, such as liposomes,
micelles, emulsions, nanospheres, or nanocapsules, organic nanospheres can provide better
storage and physiological stability to protect peptide molecules. They are prepared by
emulsification–evaporation, nanoprecipitation, and self-assembly method [105,127–131].

He et al. used a transient nanoprecipitation technique (Figure 6B) with a hyaluronic
acid-coated insulin/L-penetrating composite nanoparticle as the core and an enteric ma-
terial hydroxypropylmethylcellulose phthalate (HPMCP) coating as the outer layer to
prepare core–shell structured nanoparticles with controlled particle size, high encapsula-
tion, and high drug loading rate, with a particle size of 45–115 nm and 11% bioavailability
after oral administration [132]. Sun et al. used the FNC technique to electrostatically
complex insulin with a-(2-hydroxy) propyl-3-trimethylammonium chloride modified chi-
tosan (HTCC)/sodium tripolyphosphate (TPP) to form a nanocomplex (NC), followed by
a secondary electrostatic complexation to further encapsulate the nanocomplex into the
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enteric material Eudragit L100-55, and prepared NC-HTCC of 87 nm particle size with bet-
ter solubility and cell permeability under neutral conditions compared to normal chitosan
(Figure 6C) [29]. The results indicated that the intestinal embedding method of peptide
drugs endow drug formulations with better size controllability, batch reproducibility, and
uniform surface coating properties, and significantly improved the oral bioavailability of in-
sulin. Studies have shown that it would have great potential for clinical applications of oral
protein therapeutics. Wu et al. constructed virus-like PLGA oral nanoparticles (P-R8-Pho
NPs) with a particle size of 81.8 nm using a self-assembled nanoprecipitation method [53].
To further improve the mucus penetration and epithelial cell permeability of the nanoparti-
cles, the surface of the nanoparticles was coated with oligoarginine R8 (a cell-penetrating
peptide, rich in positively-charged arginine) and phosphatidylserine modifications. Brush
border enzymes and intestinal alkaline phosphatase expressed by intestinal epithelial cells
catalyzed the hydrolysis of phosphatidylserine, and then exposed positively charged R8,
which makes the surface of nanoparticles positively charged and promotes the uptake of
particles by small intestinal epithelial cells (Figure 6D). The nanoparticles could switch the
surface charge for the different physiological environments of mucus and epithelial cell
membranes, thus facilitating the permeation and absorption of the particles.

A large number of materials can be selected for the organic nanoparticle preparation
process. Moreover, most of these materials for the preparation of nanoparticles have some
reactive groups that facilitate further functional modifications, for example, functional
molecules, such as linker ligands and phenylboronic acids, which allow the systems to
achieve functions such as pH responsiveness, glucose responsiveness, and ligand–receptor-
specific recognition. However, the biocompatibility of these materials still needs to be
improved for the development of multifunctional insulin delivery nanosystems.
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Table 6. Examples of organic nanospheres/nanocapsules as nanostructure for oral insulin
delivery nanosystems.

Materials Method Active Components EE%;
LE%

Size
(nm);
PDI

Zeta-
Potential

(mV)

In Vitro
Release
Study

Dose
(IU kg−1)

In Vivo
Studies References

Poly(N-butylcyano
acrylate)

Self-
polymerization - 100;

20~60
120;

- −20–−10 pH 6.8, 2 h,
73.3% 50 rBA,

7.74% [50]

Hyaluronic
acid (190 kDa),

HPMCP
FNC

Penetratin peptide
(Ste-RQIKIWFQN

RRMKWKK)

96.6;
66.7

103;
0.07 −19.7 pH 7.4,

12 h, 75% 80 rBA,
11% [132]

PLGA Self-assembly
nanoprecipitation

DSPE-PEG2000-R8,
DSPE-PEG2000-Pho

~35;
-

81.8;
0.191 −2.39

pH 2.5,
0–2 h, 35%;

pH 6.8,
2–8 h, 52%

50 rBA,
5.96% [53]

Sodium
tripolyphosphate,

Chitosan
(50 kDa, 95%)

FNC

N-(2-hydroxy)-propyl-
3-trimethylam

monium chloride
modified chitosan

81.9;
35.6

106;
0.15 −24.6

pH 2.5,
0–2 h, 20%;

pH 6.8,
2–8 h, 45%;

pH 7.4,
8–24 h, 80%

80 rBA,
13.3% [29]

HPMCP: hydroxypropylmethyl cellulose phthalate; FNC: flash nano-complexation.

3.2.5. Nanogels

Nanogels are nanoparticles with a 3D network structure, produced by physical or/and
chemical cross-linking of one or more hydrophilic monomers (Figure 7A and Table 7),
which are rich in hydrophilic groups and can be swollen but not dissolved in water. The
nanogels can be used as carriers to load hydrophilic insulin. After modification of the
monomer polymer, the nanomaterials have the characteristics of sensitive release to pH
value, temperature, and glucose [124–126].

Table 7. Examples of nanogel as a nanostructure for oral insulin delivery nanosystems.

Materials Method Active
Components

EE%;
LE%

Size
(nm);
PDI

Zeta-
Potential

(mV)
In Vitro Release Study Dose

(IU kg−1)
In Vivo
Studies References

(CMS-g-AA),
iBAA

Aqueous
dispersion

copolymerization

Acrylic acid,
carboxymethyl

starch
-

pH 1.2,
480;

pH 6.8,
700

- pH 1.2, 4 h, 25%;
pH 6.8, 4 h, 75% 60 rPA,

5.7% [41]

PLG,
dextran

Covalent
cross-linking PBA, PEG 44;

-
43.7;

- −40
pH7.4, 72 h, 40.2%

(Cg: 1 mg mL−1), 72.8%
(Cg: 3 mg mL−1), 81.5%

- - [133]

EGDMA - VPBA,
folic acid

68;
-

166;
- -

pH 1.2, 0–2 h, 10%;
pH 6.8, 2–8 h, 50%;
pH 7.4, 0–24 h, 90%

(Cg: 15 mM)

75 BLG,
5 h, 42.9%; [134]

CMS-g-AA: acrylate-grafted-carboxymethyl starch; iBAA: 2-isobutyl-acrylic acid; PLG: poly (L-glutamic acid);
Cg: the concentration of glucose; EGDMA: ethylene glycol dimethacrylate; VPBA: 4-vinylbenzeneboronic acid.

Li et al. used the pH-sensitive monomer, ethylene glycol dimethacrylate (EGDMA),
and the glucose-sensitive monomer, 4-vinylbenzeneboronic acid (VPBA), as materials to
synthesize smart responsive nanogels of approximately 200 nm by microemulsion radical
polymerization (Figure 7B) [134]. As the glucose concentration increased, hydrophilic
phenylboronic acid–glucose complexes were formed, and the hydrogel size increased.
Under the pH condition of the small intestine, the carboxyl group of acrylic acid lost its
protons, which led to electrostatic repulsion between polymer chains. Nanogel produced
a sparse gel structure and eventually released insulin from the nanoscale carrier. The
system was further modified with polyethylene glycol–folic acid, which targeted the folate
receptor on epithelial cells and promoted the penetration of the nanogel through receptor-
mediated endocytosis. The hypoglycemic effect was verified in animal experiments. Si et al.
developed a novel nanogel system with a particle size of approximately 44 nm based on
poly (L-glutamic acid)-g-methoxypoly (ethylene glycol)/aminophenylboronic acid (PLG-
g-mPEG/PBA) and dextran (Figure 7C) [133]. The nanogel was constructed through the
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reversible reaction of boron ester bonds between cis-diol on dextran and phenylboronic
acid in PLG-g-mPEG/PBA, and insulin was loaded into the cross-linked lattice during
the formation process. Since the boron ester bond broke at high glucose concentrations
and weak acid environment, the prepared protein-loaded nanogels had good stability
under normal physiological environments and could rapidly release insulin in weak acid
and high glucose environments. It also had dual pH and glucose sensitivity. Effective
endocytosis of the nanogels by cells could be observed by fluorescent imaging through
confocal microscopy. Liu et al. used acrylic acid-grafted carboxymethyl starch (CMS-g-AA)
and 2-isobutyl acrylate (iBAA) as monomers to prepare nanogels with a particle size of
about 400 nm by aqueous dispersion copolymerization and loaded insulin into them by
solubilization diffusion [41]. The system was pH-sensitive, with a mutation of ionization–
deionization around pH 6.0 in the pKa value of iBAA, which conferred pH sensitivity
to the material (Figure 7D). The accelerated breakdown of CMS-containing nanogels by
amylase was confirmed by color development reactions and morphological changes, so that
intestine-enriched alpha-amylase could degrade CMS to further accelerate insulin release
in the intestine. This kind of nanomaterials could promote transmembrane transport of
insulin into Caco-2 cells and enhance the oral pharmacological bioavailability of insulin.
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Figure 7. (A) Structure of nanogel. (B) Schematic representation of insulin-loaded glucose-responsive
nanocarriers further encapsulated into hyaluronic acid (HA) hydrogel for oral delivery of insulin.
(C) Schematic diagram of pH and glucose dual-responsive nanogels for protein delivery. (D) Synthetic
process and its pH responsiveness of CMS/PiBAA hybrid microgel.

The nanogels are highly hydrophilic and biocompatible, thus avoiding the elimination
of immune system and maintaining long-term circulation. The main disadvantage of hy-
drogels is their poor storage stability, which makes it difficult to maintain drug persistence.

3.2.6. Organic/Inorganic Nanohybrids

Organic/inorganic nanohybrids were composed of organic and inorganic materials by
surface functionalization, one-pot synthesis, and wrapping (Figure 8A and Table 8) [130–133].
Inorganic materials as drug carriers are usually more stable and biologically inert compared
with organic materials and provide better protection for drugs. However, inorganic materials
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are less functional. The wide use of organic materials offers a variety of options for the
construction of nanohybrids. It can impart inorganic specific functionality and improve the
dispersion and stability of nanomaterials.
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schematic diagram of insulin delivery to the effector cells by HAP-PEG-GA-INS NPs. (D) Structure
and synthesis of the MSNs core–shell nanoparticles (a) and its pH- and glucose-sensitive behavior (b).

Common materials include mesoporous silica, alumina, zirconium phosphate, and
hydroxyapatite. Mesoporous silica nanoparticles are widely used because of their good
biocompatibility, modifiable outer surface, and tunable pore size. Zhang et al. prepared
insulin nanoparticles by introducing a membrane-penetrating peptide on the surface of
mesoporous silica nanoparticles to mimic viruses [135]. Compared to nanoparticles with
positively charged surfaces, such nanoparticles that mimic the surface structure of viruses
could penetrate the mucus layer and reduce retention in the mucus layer (Figure 8B). These
nanoparticles enhanced the efficiency of endocytosis through a cellular membrane cavity-
like invagination mechanism, which further enhanced the ability to cross the small intestinal
epithelial cells. Animal studies showed that this delivery system was able to reduce blood
glucose levels by 50%, demonstrating excellent therapeutic efficacy. Zhang et al. prepared
mesoporous silica nanoparticles of approximately 400 nm in size by coating polyethylene
glycol on the surface of hydroxyapatite as a nucleus, and then coupling insulin and gallic
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acid with PEG (HAP-PEG-GA-INS NPs) (Figure 8C) [49]. Sun et al. coated the pH-sensitive
material dextran-maleic acid and the glucose-sensitive material 3-aminophenylboronic acid
on the surface of mesoporous silica nanoparticles (MSNs) for performance optimization
(Figure 8D) [136]. The results of these nanocarriers in vivo on diabetic rats showed that they
were more stable in hypoglycemic effect and reduced the probability of adverse reactions
(such as hypoglycemia).

Table 8. Examples of inorganic/organic nanohybrid as nanostructure for oral insulin delivery nanosystems.

Materials Method Active
Components

EE%;
LE%

Size
(nm);
PDI

Zeta-
Potential

(mV)

In Vitro
Release Study

Dose
(IU kg−1)

In Vivo
Studies Reference

Mesoporous silica
nanoparticles

Physical
adsorption

method
KLPVM peptide 80;

18
263.5;
0.175 −0.49 pH 6.8, 6 h, 40.52% 100 rBA,

2.84% [135]

Hydroxyapatite,
PEG

Homogeneous
precipitation

method,
esterification

reaction,
amidation
reaction

Gallic acid 45–60;
-

150;
- 30–40 - 50 - [49]

Iron-based MOF,
mPEG-b-PLLA,

SDS

Oil/water
emulsion SDS, PEG 51.6;

35
~100;

- −18.33
pH 6.8, 12 h, 20%;
pH 7.4, 12 h, 50%;
pH 5.4, 12 h, 0%

50 rPA,
7.8% [93]

Mesoporous silica
nanoparticles

Aqueous
polymerization

and physical
adsorption

APBA 77~89;
18~21

202.8;
0.078 −27.3

pH 1.2, 5 h, 15.2%;
pH 7.4, 5 h, 18.8%;

pH 7.4 (glucose
5 mM), 5 h, 80%

25 rBA,
3.1% [136]

Porous silicon
nanoparticles

Immersion
method

Poly (pyridyl
di-sulfide ethylene

phosphate),
Dodecyl sulfobetaine

~74;
10.3

241;
0.29 6.6 pH 1.2, 0~2 h, <1%;

pH 6.8, 2~8 h, 35% 50 rBA,
4.36% [137]

mPEG-b-PLLA: Poly (ethylene glycol)-block-poly(L-lactide); APBA: 3-amidophenylboronic acid.

It is difficult to prepare nanohybrid materials by combining the functions of organic
and inorganic materials. How to combine organic and inorganic materials, how to maintain
dispersion during preparation, and how to modify the inorganic component in a controlled
manner with organic materials are still challenging. These are issues that are worthy of
in-depth study.

With the development of nanotechnology, a variety of insulin-loaded nanostructures
have been constructed, which improves the bioavailability of insulin and lays a foundation
for the development of oral insulin.

4. Summary and Outlook

Oral insulin administration is one of the most ideal methods of administration in
terms of reducing pain and improving compliance for diabetic patients. However, the
bioavailability of oral insulin remains low because of the physicochemical properties of
insulin and the physiological barriers against absorption in the human gastrointestinal tract,
making it difficult to achieve high efficacy. Functional factors, such as permeation enhancers,
enzyme inhibitors, and pH regulators, are added to natural insulin formulation to improve
oral bioavailability, but the efficacy and safety of additives are controversial issues. Based
on the development of materials science, materials with different physical and chemical
properties are studied. A variety of insulin-loaded nanostructures have been constructed
to improve the bioavailability of oral insulin through nanotechnology, providing a basis
for the development of oral insulin. By combining these materials with nanotechnology,
oral insulin delivery nanosystems with various functions and delivery modes have been
developed. These oral insulin delivery nanosystems are designed to improve bioavailability
and effectiveness through pH responsiveness, glucose responsiveness, small size, charge
variation, and facilitation of absorption and adhesion. Through various characterization
experiments reported in literature, it was proved that these nanosystems have significant
advantages in avoiding gastric acid, breaking through the retention of the juvenile layer
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barrier, passing through the intestinal epithelial cell layer, and responsive release. Significant
improvements in oral bioavailability were also demonstrated in animal studies.

While the progress is seen, the deficiencies of the current oral insulin delivery nanosys-
tem should also be considered. The safety of materials used to construct oral insulin
delivery nan-systems needs to be further verified, and bioavailability is still not optimal.
Although a large number of nonclinical data have been reported, the clinical progress
of oral nano-insulin technology has not been satisfied due to the difficulty of delivering
proteins orally. In addition, the preparation process of oral insulin is still complicated,
which is not conducive to cost-effective commercial production. There is little data on the
storage stability of these preparations.

In general, oral insulin is certainly an active research area because of the large number
of diabetics and the disadvantages of insulin injection. The multifunctional delivery
nanosystems can effectively improve the oral bioavailability of insulin and provide a
promising strategy for oral insulin delivery. However, there is still a long way to go
for the transformation of oral insulin delivery nanosystems from laboratory to clinic. In
the future studies, more attention should be paid to material safety, precise control of
drug dose, feasibility of preparation process, and storage stability. If the insulin delivery
nanosystems can overcome these challenges, diabetics could be liberated from the pain of
insulin injections.
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38. Almáši, M.; Matiašová, A.A.; Šuleková, M.; Beňová, E.; Ševc, J.; Váhovská, L.; Lisnichuk, M.; Girman, V.; Zeleňáková, A.;
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