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In order to compensate for the increased oxygen consumption in growing tumors,

tumors need angiogenesis and vasculogenesis to increase the supply. Insufficiency in

this process or in the microcirculation leads to hypoxic tumor areas with a significantly

reduced pO2, which in turn leads to alterations in the biology of cancer cells as well

as in the tumor microenvironment. Cancer cells develop more aggressive phenotypes,

stem cell features and are more prone to metastasis formation and migration. In addition,

intratumoral hypoxia confers therapy resistance, specifically radioresistance. Reactive

oxygen species are crucial in fixing DNA breaks after ionizing radiation. Thus, hypoxic

tumor cells show a two- to threefold increase in radioresistance. The microenvironment

is enriched with chemokines (e.g., SDF-1) and growth factors (e.g., TGFβ) additionally

reducing radiosensitivity. During recent years hypoxia has also been identified as a major

factor for immune suppression in the tumor microenvironment. Hypoxic tumors show

increased numbers of myeloid derived suppressor cells (MDSCs) as well as regulatory T

cells (Tregs) and decreased infiltration and activation of cytotoxic T cells. The combination

of radiotherapy with immune checkpoint inhibition is on the rise in the treatment of

metastatic cancer patients, but is also tested in multiple curative treatment settings.

There is a strong rationale for synergistic effects, such as increased T cell infiltration in

irradiated tumors and mitigation of radiation-induced immunosuppressive mechanisms

such as PD-L1 upregulation by immune checkpoint inhibition. Given the worse prognosis

of patients with hypoxic tumors due to local therapy resistance but also increased rate

of distant metastases and the strong immune suppression induced by hypoxia, we

hypothesize that the subgroup of patients with hypoxic tumorsmight be of special interest

for combining immune checkpoint inhibition with radiotherapy.
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INTRODUCTION

Solid tumors are prone to encounter chronic or intermittent
hypoxic microenvironment. Hypoxia results from an imbalance
of O2 consumption by the tumor and O2 delivery by
perfused tumor vessels. The latter is limited since tumor
vasculogenesis and angiogenesis usually lags behind expansion
of tumor mass. In addition, tumor vessels often show aberrant
architecture, may have dilated or blind-ending lumina, and lack
normal vessel walls (1). As a consequence, increasing intra-
tumoral pressure may compress the vessel lumen accentuating
malperfusion of the tumor. Concomitant to insufficient O2

and nutrient supply, this malperfusion restricts delivery of
systemically administered drugs such as chemotherapeutics or
immunomodulating antibodies limiting the efficacy of these
therapies in hypoxic tumor areas (2). Beyond that, hypoxia
attenuates DNA damages conferred by ionizing radiation.

Oxygen tensions vary considerable in areas of diffusion-
limited chronic hypoxia or perfusion-limited cycles of
intermittent hypoxia and reperfusion, hence, triggering a
plethora of different cellular adaptation processes (3). Oxygen-
sensing processes comprise stabilization of hypoxia-inducible
factor (HIF), nutrient depletion-induced down-regulation of
the mTOR (mammalian target of rapamycin) pathway (4),
impairment of oxidative folding of proteins in the endoplasmic
reticulum and unfolded protein response (5), DNA replication
stress (6), or oxygen-dependent remodeling of chromatin (7–9).
Adaptations to hypoxia include metabolic reprogramming that
maintains structural integrity (10), as well as energy (4), redox
(11, 12), pH (13), and lipid (14) homeostasis of the hypoxic
tumor cell. These complex adaptations, however, induce tumor
heterogeneity and may be accompanied by adoption of more
malignant phenotypes (15).

Therefore, intratumoral hypoxia has major implications in
cancer biology and treatment resistance. Based on the knowledge
of an increased radioresistance of hypoxic cancer cells and
impaired prognosis for patients with hypoxic tumors, imaging
modalities for hypoxia and treatment strategies to overcome
the disadvantages of hypoxia have been developed in radiation
oncology. With the rise of immunotherapy in cancer over
the recent years and the establishment of immune checkpoint
inhibition as a standard treatment for several cancer entities,
well-known concepts in cancer and radiobiology have been
evaluated for their effects on immune responses to cancer. For
hypoxia, pronounced immunosuppressive properties have been
described by several groups. This article aims at giving an
overview and converging the knowledge about tumor hypoxia
in the context of radiotherapy and immunotherapy of cancer
patients, hypothesizing that patients with hypoxic cancers
might benefit most from combination treatments in curative
treatment settings.

HYPOXIA-ASSOCIATED MALIGNANT
PROGRESSION OF TUMOR CELLS

Master regulators of metabolic reprogramming under hypoxia
are the O2-sensitive hypoxia-inducible transcription factors

(HIFs), the cellular nutrient sensing mTOR and the energy-
sensing AMP kinase, as well as the unfolded protein response.
They induce downregulation of anabolic metabolism, up-
regulation of nutrient import and glycolysis, a switch from
oxidative phosphorylation to lactic acid fermentation, up-
regulation of acid extrusion pathways such as monocarboxylate
transport, adaptation of glutamine metabolisms to maintain
fuelling of the citrate pool, alteration of lipid metabolism,
attenuation of mitochondrial reactive oxygen species (ROS)
formation and/or up-regulation of oxidative defense [for recent
reviews (4, 16, 17)].

Metabolic reprogramming may be paralleled by a HIF-
regulated phenotypic switch leading to cellular plasticity of
tumor and stroma cells which drives tumor heterogeneity. In
particular, a hypoxic microenvironment may stimulate in a
subset of tumor cells neuroendocrine differentiation, epithelial-
mesenchymal transition (EMT) (or neural/glial-mesenchymal
transition in brain tumors) or induction of cancer stem (-
like)/tumor initiating cells (CSCs) (11). Signaling cascades
that induce CSC phenotypes in distinct hypoxic niches are
probably triggered by ROS that are formed during the metabolic
adaptation to hypoxia (Figure 1). Notably, EMT and CSC
induction seems to be highly interrelated and involve HIF
signaling [for review see (18, 19)]. Importantly, EMT and
upregulation of CSC properties are accompanied by a change
from a “grow” to a “go” phenotype. As a consequence,
hypoxic tumors are at higher risk of tissue infiltration and
metastasis (18, 19).

Moreover, hypoxia and in particular ROS formation during
reoxygenation have been shown to favor genetic instability
and to increase mutagenesis in tumors by induction of DNA
damage and/or deregulation of DNA damage response and
apoptotic pathways fostering malignant progression of tumor
cells (10, 11). Notably, genetic instability has been associated
with response to immune checkpoint inhibition on the one
hand and decreased tumor immunogenicity by formation of
immune-evasive subclones on the other hand (20, 21). Beyond
malignant progression and immune evasion, hypoxia confers
resistance to chemo- (2) and radiation therapy as described in
the next paragraphs.

RADIORESISTANCE OF HYPOXIC TUMOR
CELLS

About half of all cancer patients undergo radiation therapy
often applied in fractionated regimens. Conceptually, a radiation
dose of 1Gy with high energy photons causes about 20 DNA
double strand breaks (DSBs) per nucleus on average in normoxic
tissue (22). Nuclear DNA DSBs have been proposed to be
most hazardous for the cell since when left unrepaired they
inevitably provoke chromosome aberrations in mitosis. Tumors
are thought to become eradicated if the quantity of radiation
induced DSBs exceeds the capacity of DNA DSB repair by
non-homologous end joining in G1 phase of cell cycles and
additional homologous recombination in S and G2 phase (23).
Hypoxia has turned out to be a negative predictive factor for the
response to radiation therapy (24) due to lowering the efficacy
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FIGURE 1 | Hypothesis of the influence of hypoxia on cancer cells and the

immune microenvironment in the context of radiotherapy of solid tumors.

Hypoxia may stimulate in a subset of tumor cells mesenchymal transition and

metastasis or induction of cancer stem(-like) cells. The radioresistant

phenotype of the latter together with the decline in radiation-induced DNA

damage with decrease in oxygen tension (oxygen enhancement factor)

contribute to the radioresistance of hypoxic tumors. Moreover,

hypoxia/radiation-induced migration may lower locoregional tumor control by

radiotherapy. In addition, tumor hypoxia recruits immunosuppressive cell types

such as regulatory T cells (Tregs) and myeloid derived suppressor cells

(MDSCs) that mature to M2-polarized tumor associated macrophages (TAMs)

via stromal cell-derived factor-1 (SDF-1) chemokine signaling. Dendritic cell

(DC) function is modulated to TH2 polarized immune responses which

suppress anti-tumor immunity. Finally, hypoxia may induce downregulation of

MHC class-I molecules and Natural Killer (NK) cell-activating ligands and

upregulation of programmed death-ligand-1 (PD-L1) on tumor cells. (ROS:

reactive oxygen species).

of ionizing radiation by a factor of 2–3. Mechanistically, this so-
called oxygen enhancement ratio (OER) most probably reflects
three processes in irradiated cells: O2 fixation of DNA damages,
O2-dependent formation of ROS by the mitochondria, as well as
hypoxia-induced acquisition of a radioresistant phenotype.

O2 Fixation of DNA Damages
Radiation therapy damages cells by ionization of molecules.
Among those, H2Owith the far highest concentration (more than
50M) of all molecules in a cell absorbs the largest fraction of
the radiation energy. Energy transfer to H2O leads to formation
of hydrogen (•H) and hydroxyl radicals (•OH) in a process
referred to as radiolysis of H2O. Formation of •H radicals has
been proposed to confer reductive stress to the irradiated cells
(25) while the high reactivity and low lifetime of •OH radicals
may remove hydrogen atoms from neighboring macromolecules
resulting in formation of macromolecule radicals. With a lower
stochastic probability formation of macromolecule radicals also

occurs upon direct absorption of radiation energy by the
macromolecules. Now, the O2 tension comes into the play. Under
normoxia, at high O2 partial pressure in the cell, the radical
atom within the macromolecule has been suggested to become
oxidized which may be associated with the cleavage of molecular
bonds of the macromolecule. Under hypoxia, however, at low
cellular O2 tension and reductive cellular redox state (which
comprises a high ratio between reduced and oxidized glutathione
and a high capacity of oxidative defense), macromolecule radicals
have been proposed to become “repaired” chemically (Figure 1).

Thus, a high O2 tension may evoke DNA strand breaks
whenever radiation-induced radical formation occurs within
the phosphate deoxyribose backbone of the DNA. If radical
formation concurs in close vicinity in both anti-parallel DNA
strands, high oxygen pressure promotes formation of DNA
DSBs. This so-called oxygen fixation hypothesis which was
developed in the late 1950’s, however, explains only insufficiently
the oxygen enhancement ratio in radiation therapy. It neither
considers hypoxia-mediated effects on DNA repair (26) nor
radiation-induced secondary cell damages by mitochondrial ROS
formation. The latter are also highly O2-dependent as discussed
in the following paragraphs.

Mitochondrial ROS Formation
Early microbeam technologies which allow irradiation of
cellular substructures provided strong evidence for a much
higher efficacy of ionizing radiation when the nucleus was
targeted as compared to selective irradiation of the cytoplasm
(27). Therefore, as central dogma of radiation therapy, the
genotoxic effects of radiation has been attributed for many
years to an interaction between ionizing radiation and the
nucleus as primary mechanism (25). Notwithstanding, more
recent work, however, suggests that nuclear DNA damage
does not exclusively require irradiation of the nucleus and
even can be observed in unirradiated bystander cells [for
review see (28)]. Notably, inhibiting ROS formation reportedly
prevents nuclear DNA damage of the beam-targeted and
the bystander cells (29) indicating ROS mediated spreading
of the absorbed radiation energy. Furthermore, experiments
comparing cells with mitochondrial DNA-proficient (ρ+) and
-deficient (ρ0) mitochondria strongly suggest the involvement
of mitochondrial electron transport chain in genotoxic damage
mediated by radiation (29–33). Most importantly, the fraction of
mitochondrial ROS formation-dependent DNA damage has been
proposed to increase with O2 tension (34).

Mechanistically, ionizing radiation reportedly increase
intracellular free Ca2+ concentration in several tumor entities
such as lymphoma (35), leukemia (36, 37), or glioblastoma (38).
Intracellular Ca2+ buffering experiments demonstrated that
Ca2+, in turn, stimulates in the presence of O2 mitochondrial
ROS formation (30) probably in concert with the transient energy
crises observed in irradiated cells (39, 40). Both, low ATP/ADP
ratios and high Ca2+ concentrations disinhibit mitochondrial
electron transport chain, leading to hyperpolarization of
the inner mitochondrial membrane potential 19m which
is directly linked to superoxide anion (•O−

2 ) formation by
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slippage of single electrons to O2 [for review see (41)]. Ca2+-
mediated •O−

2 formation by the electron transport chain,
in turn, provokes mitochondrial membrane permeability
transition and eventually dissipation of 19m and mitochondrial
disintegration (42). Of note, radiation-stimulated permeability
transition of few affected mitochondria and consequent
local release of mitochondrial Ca2+ has been proposed to
stimulate Ca2+-overflow, ROS formation, and Ca2+ re-release of
adjacent mitochondria, thereby propagating radiation-induced
mitochondrial ROS formation through the mitochondrial
network in a spatial-temporal manner (30).

As a matter of fact, inhibitors of mitochondrial permeability
transition blocked radiation-induced mitochondrial ROS
formation (30) and in some but not all cell lines O2-
dependent radiosensitivity (43). Combined, these observations
strongly suggest that O2 tension-dependent mitochondrial
ROS formation and adjunct DNA damage contribute
significantly to the OER phenomenon. Beyond stimulation
of mitochondrial ROS formation, radiation has been reported to
up-regulate activity of uncoupling proteins (UCPs) in the inner
mitochondrial membrane (34). UCPs shortcircuit 19m thereby
directly counteracting radiation-stimulated mitochondrial
ROS formation [for review see (41)]. As described in the next
paragraph, adaptation to hypoxia may also involve up-regulation
of mitochondrial uncoupling.

Radioresistant Phenotypes Induced by
Hypoxia
Adaptation of cells to hypoxia has been described for highly
oxidative phosphorylation-dependent normal proximal tubule
cells. By repeatedly subjecting these cells to hypoxia and re-
oxygenation cycles over weeks strong up-regulation of oxidative
defense and mitochondrial uncoupling was induced. Besides
diminishing reoxygenation-induced 19m hyperpolarization,
•O−

2 formation, and consecutive cell damage, mitochondrial
uncoupling confers cross-resistance to ionizing radiation (44).
Importantly, tumors such as proximal tubule-derived renal clear
cell carcinoma show high upregulation of mitochondrial
uncoupling proteins (44) pointing to hypoxia-induced
mitochondrial uncoupling as one potential mechanism of
induced resistance in vivo. Similarly, cyclic hypoxia and
reoxygenation reportedly upregulates in vitro the mitochondrial
citrate carrier SLC25A1 in cancer cell lines that contributes to
an increased radioresistance-conferring oxidative defense (11).
Beyond that, further metabolic pathways up-regulated in hypoxic
cells such as glutamine-dependent glutathione formation (12)
or glycolysis-associated pyruvate accumulation [for review see
(4)] result in increased capacity of radical scavenging that may
confer radioresistance.

Moreover, the above mentioned hypoxia-triggered
induction/selection of CSCs reportedly associates with an
increased intrinsic radioresistance (Figure 1). CSCs have
been supposed to express higher oxidative defense, pre-
activated and highly efficient DNA repair and anti-apoptotic
pathways rendering them less vulnerable to ionizing radiation
[for review see (18)]. Beyond that, CSCs may overexpress

certain Ca2+ and electrosignaling pathways that improve
stress response upon irradiation (45, 46) as demonstrated
for the mesenchymal subpopulation of glioblastoma
stem cells (47).

Finally, at least in theory, the above mentioned hypoxia-
induced migratory phenotype of tumor cells might limit efficacy
of radiotherapy in fractionated regimens. One might speculate
that highly migratory cells evade from the target volume covered
by the radiation beam. In glioblastoma, stabilization of HIF-
1α stimulates auto/paracrine SDF-1 (CXCL12)/CXCR4-mediated
chemotaxis the programming of which strongly depends on
electrosignaling as one key regulator of chemotaxis (48).
Likewise, ionizing radiation stimulates the same pathways also
by activating the HIF-1α/SDF-1/CXCR4 axis (48). It is, therefore,
tempting to speculate that hypoxia and radiation cooperate in
stimulating hypermigration during fractionated radiotherapy.
Evidence, however, that hypermigration indeed has any relevance
for local tumor control by radiation therapy in the clinical setting
is missing. Nevertheless, tumor hypoxia is a severe obstacle
of radiation therapy. The next section deals with concepts of
visualization and effective treatment of hypoxic tumors for
radiation therapy.

TREATMENT MODIFICATIONS TARGETING
HYPOXIA IN RADIATION ONCOLOGY

Cellular effects on radiation-response under hypoxia in vitro
(49, 50) cannot be directly transferred to xenografts in vivo
and tumors in patients. The OER (determined to be 2–
3 in vitro (51), as described above) seems to be lower in
vivo. This is on the one hand due to the fact that parts of
the tumor volume are sufficiently oxygenated since oxygen
tension is decreasing only gradually around perfused blood
vessels (52–54). On the other hand, depending on the tumor
entity, decrease of the bulk tumor mass during fractionated
radiation may lead to tumor reoxygenation (55, 56). Extensive
research on the tumor microenvironment (hypoxia, vasculature,
necrosis and metabolism) and its impact on radioresistance
has been done in xenograft models for head and neck
squamous cell carcinoma (HNSCC), glioblastoma, non-small cell
lung cancer (NSLCL) and colorectal carcinoma and sarcoma
cell lines (51, 57–61). In vivo models were also used to
show the predictive value of functional tumor imaging with
hypoxia sensitive tracers for positron emission tomography
(PET) imaging (62–64). Based on hypoxia imaging, different
approaches including dose escalation, HIF1α-inhibitors, hypoxia
activated prodrugs and hyperbaric oxygen (HBO) or carbogen
breathing were studied to overcome treatment resistance with
promising results (65–67).

In a clinical setting of HNSCC and cervix cancer, an
association between oxygen tension and radioresistance could be
shown. For 35 patients with locally advanced HNSCC invasive
pO2-measurement with oxygen sensitive electrodes with >15%
of pO2 values below 2.5mm HG, was associated with reduced
local control at 2 years (68). In a prognostic validation study as
well as in a multicenter study with more than 390 patients, the
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results could be confirmed (69). There are matching results of
worse prognosis for patients with cervical cancer with decreased
pO2 values before radiotherapy (70, 71). With advances in
imaging methods, non-invasive measurement of hypoxia,
based on positron emission tomography (PET) with different
hypoxia specific tracers, e.g., [18F]fluoromisonidazole (FMISO),
[18F]fluoroazomycin arabinoside (F-AZA), [18F]fluortanidazole
(HX4) and [64Cu]diacetyl-bis(N4-methylthiosemicarbazone
(Cu-ATSM), and magnetic resonance imaging (MRI)
were established and could be correlated to outcome in
HNSCC, cervical cancer and NSCLC (72–81). Hypoxia
imaging is also closely related to other functional imaging
modalities such as FDG-PET or functional MRI (82–84).
Based on this evidence, there were major efforts to target
hypoxia in the curative setting of radiotherapy during the
last decades.

In parallel to the findings of hypoxia as a common
phenomenon in solid tumors in the fifties, efforts were started
to increase tumor oxygenation by HBO treatment under 2 to 4
atmospheres (85). Due to small numbers of patients in these trials
and difficulties of irradiation in pressure chambers, the promising
results could not advance into clinical use. Inhalation of carbogen
with nicotinamide was the topic of a large phase III trial, which
showed decreased regional failure (86). Another approach is the
use of hypoxia specific agents like nitroimidazoles. In a trial of
The Danish Head and Neck Cancer group (DAHANCA 5) the
addition of nimorazole to standard treatment showed an increase
in locoregional control (LRC) as well as disease-free survival
(DFS) for patients with increased osteopontin levels (87) or a
specific gene expression profile (88), both linked to hypoxia.
Since then nimorazole is standard of care in Denmark during
radiotherapy of HNSCC. To evaluate this combined approach,
a large European Organization for Research and Treatment of
Cancer (EORTC) phase III trial was conducted with results
pending (NCT01880359). With the possibilities of modern
radiotherapy techniques like intensity modulated radiotherapy
(IMRT) and image-guided radiotherapy (IGRT), first trials with
dose escalation based on [18F]fluorodeoxyglucose (FDG) or
FMISO are conducted with conflicting results for toxicity and
local control data pending (89, 90). A large meta-analysis of all
studies with hypoxic modification in HNSCC of 32 trials with
more than 4,800 patients included, showed a significant survival
benefit of the intervention vs. the control group (91). In a phase
II trial an increased radiation dose could not overcome the worse
prognosis of hypoxic NSCLC (92). In summary, the big hopes
of targeting hypoxia could not be translated directly into the
clinic (93).

IMMUNOSUPPRESSION IN THE HYPOXIC
TUMOR MICROENVIRONMENT

Hypoxia in the tumor microenvironment influences the
interaction between cancers and the immune system on all levels.
Cancer cells regulate the interaction surface with immune cells,
the cytokine microenvironment is altered, and immune cell
function is reshaped.

Immune-Relevant Changes in Cancer Cells
Under Hypoxia
Cancer cells under hypoxic conditions show a downregulation
of MHC class-I molecules (94) (Figure 1), which are crucial
for the immune recognition and immune mediated lysis of
tumor cells (95). Several immune checkpoints are upregulated
in hypoxic conditions. HIF-1α mediates the upregulation of
HLA-G (96), which has been described as immunosuppressive
(97, 98). In pancreatic cancer HLA-G is a negative prognostic
marker, and downregulation of ILT-2 (the receptor of HLA-
G) in immune cells activates anti-tumor immunity (99). In
addition, hypoxia induces upregulation of CTLA-4 and PD-
L1 on tumor cells via HIF-1α in several different mouse
and human tumor cell lines (Figure 1). Enhanced PD-L1
abundance could be linked to a HIF-1α binding site in the
PD-L1 promotor (100). In renal cell carcinoma elevated PD-
L1 levels were correlated with HIF1α levels linked to impaired
function of the Von-Hippel-Lindau (VHL) protein (101). In
patient samples, HIF1α genes and expression also correlated
with PD-L1 expression. The functional link of PD-L1 expression
and HIF1α was established by knock-down experiments (101,
102). In hepatocellular carcinoma patient samples PD-L1
expression also was linked to hypoxia and showed prognostic
value (103).

Hypoxia has also been linked to downregulation
of DNA damage response proteins such as RAD51 in
prostate cancer (104), and RAD51 and BRCA1 in breast
cancer (105), respectively. BRCA1 downregulation has
been shown to be epigenetically regulated in different
cancer cell lines (106). Impaired DNA-double-strand-break
repair under hypoxic condition might lead to a higher
mutation rates and more malignant phenotypes (104). On
the other hand, more mutations might also lead to more
neoantigens possibly supporting tumor-immune responses.
Intriguingly, mutational burden is one of the most promising
predictive factor for treatment with immune-checkpoint-
inhibition (107). In concordance, the antigenic landscape of
prostate cancer is modified by the applied oxygen tension
(108) in vitro.

Hypoxic Immune Microenvironment
The immune microenvironment of tumors also undergoes
profound changes with the development of intratumoral hypoxia.
Hypoxia induced downregulation of ADAM-10 (109) and
upregulation of CCL28 (110, 111) and IL-10 (112) all lead
to immunosuppression via shedding of MHC class I chain-
related molecule A (MICA) and hampering cytolytic action
of immune cells, Treg recruitment and enhancing suppressor
MDSc, respectively. Hampered anti-tumor immunity in hypoxic
tumors is mainly mediated by adenosine receptor signaling
(113). Adenosine is formed by hydrolysis of tumor cell-derived
ATP in the extracellular space (114). Adenosine receptors are
a direct target of HIF1α and have been reported to enable
stem (like) cell enrichment in breast cancer (115). Clinical
data as well as in vivo data in an autochthonous mouse
model linked adenosine A2A receptor with carcinogenesis

Frontiers in Immunology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 407

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Eckert et al. Immunoradiotherapy for Hypoxic Tumors

and immune resistance of HNSCC (116). Tumor reactive
CD8+ cells express A2A receptors and show enhanced activity
upon downregulation or blockade thereof (117). Oral A2A
receptor inhibitors have been developed and tested preclinically
(118). Ex vivo testing suggests synergistic effects with immune
checkpoint blockade (119).

Consequently, several cell subsets required for efficient anti-
cancer immune responses have been described to be impaired
or inhibited by hypoxia. Mechanisms of the innate immune
system, such as NK cell-mediated killing of cancer cells is
disturbed due to downregulation of the respective activating
ligands on tumor cells (120). Concerning adaptive immunity,
several critical steps are hampered under hypoxic conditions.
Dendritic cell function is modulated to TH2 polarized immune
responses, consequently, T cells primed under hypoxia preferably
are TH2-polarized and thus suppress anti-tumor immunity (121)
(Figure 1). At the same time, the development of anti-cancer
TH1 cells is inhibited (122) and CD8+ effector T cells are
inhibited in their proliferative activity under hypoxia, possibly
via IL-10 (112).

Regulatory T Cells
In addition, major immunosuppressive cell types in the tumor
microenvironment are upregulated under hypoxic conditions,
such as regulatory T cells (Tregs) and myeloid derived suppressor
cells (MDSCs) and tumor associated macrophages (TAMs)
(Figure 1). Tregs have been described as major players in cancer
immunosuppression by inhibiting effector T cells and fostering
angiogenesis (123) and have been described to be increased in
hypoxic tumors (124). Several mechanisms for this phenomenon
have been proposed. In gastric cancer, FoxP3 (as a marker
for Tregs) is strongly associated with HIF-1α and TGFβ and
acts as negative prognostic factor. In vitro, TGFβ blockade
diminished the Treg induction under hypoxic conditions (125).
This has been linked to hypoxia-induced NANOG expression
(126). SDF-1/CXCR4 signaling induced by hypoxia also has been
linked to Treg recruitment (127). Another major mechanism
described for ovarian as well as for liver cancer is the induction
of CCL28. In ovarian cancer CCL28 recruits Tregs and leads
to accelerated tumor growth in vitro as well as in orthotopic
models of intraperitoneal tumors (110). These findings have
been confirmed for hepatocellular carcinoma (111). The interplay
of these different factors for Treg accumulation has not been
clarified yet.

Myeloid-Derived Suppressor Cells
(MDSCs) and Tumor Associated
Macrophages (TAMs)
Hypoxia leads to the recruitment of MDSCs (128) as well as their
accumulation (129) in a hepatocellular carcinoma model as well
as in gliomas (130). In the tumor microenvironment MDSCs
differentiate to macrophages (131). In hypoxia, macrophages are
preferably polarized to the immunosuppressive M2 phenotype
(132, 133). M2 macrophages support tumor growth directly
(134–136) and simultaneously prevent immune destruction (137,
138). Interestingly, myeloid cells have also been described to be

involved in the formation of pre-metastatic niches in secondary
organs (139, 140).

RATIONALE FOR COMBINING
RADIOTHERAPY AND IMMUNOTHERAPY

Immune Checkpoint Inhibition for Cancer
Therapy
Immune checkpoint inhibition (ICI) gained increasing interest
as a new paradigm in cancer treatment as several encouraging
clinical trials were published (141–143). However, in some other
studies, ICI showed less promising results (144, 145). There is
still a considerable number of patients who do not response
at all, solely achieve a partial response or relapse in spite
of notable initial response, yet. Several other immunotherapy
approaches are being developed (146) [such as cytokine
based therapy (147–149) or vaccines (150, 151)], however,
the clinical development is most advanced for CTLA-4 and
PD-1/PD-L1 blockade.

As reviewed in Wolchok et al. (152) CTLA-4 has been
identified as a negative regulator of T-cell activation binding
to the B7 protein on antigen presenting cells. This interaction
prevents the binding of CD28 to B7, a necessary costimulatory
signal for T cell activation following the recognition of
respective antigens by the T-cell-receptor representing a very
early step in the immune cascade (153). CTLA-4 deficient
mice show massive lymphoproliferation, multi-organ tissue
destruction and early letality (154). Blockade of CTLA-4
has been shown to induce T cell activation (155, 156) and
anti-tumor immunity in preclinical models (157). These
findings translated into clinical benefits and long-term
cancer control first in patients with malignant melanoma
(158, 159). A recent compilation of finished and ongoing
clinical trial shows the application of CTLA-4 blockade in
numerous cancer entities, therapeutic settings and combinatorial
approaches (160).

In clinical cancer therapy, blockade of the PD-1/PD-L1 axis
has become even more prominent as indicated by the numbers
of ongoing clinical trials (160). The inhibitory effect of PD-
1/PD-L1 interaction is predominant during the inflammatory
phase in peripheral tissues (161). Similar to CTLA-4, mice
deficient for PD-1 developed severe autoimmune symptoms
indicating an inhibitory function of PD-1 on immune activation
(162). It was soon linked to immune-evasion of tumors as
cancer cells show a high expression of PD-L1 and thus directly
inhibit T-cell activation in the tumor microenvironment (163).
PD-1 also plays a major role in T-cell exhaustion in chronic
inflammatory processes and cancer (164). After initial signs
of safety and activity of blocking PD-1 for cancer treatment
(165), numerous randomized trials have shown clinical benefit
of single-agent or combined treatment using PD-1 or PD-L1
antibodies (166).

Immune Effects of Radiation
Rare abscopal effects (response of distant, non-irradiated lesions)
in irradiated patients have been described many years ago
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[reviewed in (167)], but the interaction of radiation and tumor
specific immune responses was increasingly understood later
on (168).

In addition to direct cytotoxic effects of radiotherapy
and reoxygenation in solid tumors during fractionated
radiation, local irradiation also affects the tumor immune
microenvironment. In contrast to the predominant perception
of radiotherapy being basically immunosuppressive, several
mechanisms have been identified how irradiation might lead to
better anti-tumor immune responses as summarized by Demaria
and Formenti (169). Radiation influences every step of the
“cancer immunity cycle” (170). The cancer cell death induced
by irradiation does not only lead to antigen release, but has
been characterized as immunogenic cell death characterized by
the release of danger signals (171, 172) such as membranous

FIGURE 2 | Hypothesis on radiation-induced immunogenic cell death in

normoxic tumors. In a normoxic tumor microenvironment, irradiation may lead

to effective anti-tumor immune responses by induction of upregulation of MHC

class-I on the tumor, immunogenic cell death, release of danger associated

molecular patterns (DAMPs) activating toll-like receptors (TLRs) and induction

of new tumor associated antigens (TAAs). Maturation of dendritic cells (DCs)

and upregulation of MHC-class II is followed by T cell priming in the draining

lymph node, cytotoxic T cells and natural killer (NK) cells travel back to the

tumor and lead to lysis of tumor cells. Please note, that radiation also induces

immunosuppressive processes in normoxic tumors (which are not depicted)

such as up-regulation of programmed death-ligand-1 (PD-L1) or Tregs (for

details, see chapter Immune effects of radiation).

calreticulin exposure and release of HMGB1 and ATP into the
extracellular space leading to activation of the innate immune
system (173, 174) (Figure 2). Radiation induces upregulation
of MHC-I complexes on cancer cells (175) and priming and
maturation of antigen-presenting cells (176, 177). After traveling
to draining lymph nodes, these antigen-presenting cells are
able to prime T cells specific for tumor associated antigens
(178). The primed and activated effector T cells show increased
infiltration into irradiated tumors (179–181). In addition to
the effects on T cell based anti-tumor immune responses,
irradiation is able to repolarize macrophages to a tumor
inhibiting M1-subtype (182) and activate natural killer cells
(183) (Figure 2).

On the other hand (and explaining the scarce clinical
evidence for anti-tumor immune induction by radiotherapy
alone) irradiation induces immunosuppressive mechanisms
in solid tumors (184). One major mechanism is the
upregulation of PD-L1 in irradiated tumors (185–
187). Even combined treatment of CTLA-4 blockade
with irradiation led to upregulated PD-L1 level and
treatment resistance, which could be overcome by
adding PD-1/PD-L1 blockade to the regimen in a
preclinical model (188). In addition, radiation leads to the
accumulation of Tregs (189, 190) as well as the release of
immunosuppressive molecules such as TGFβ (191, 192).
Curative, normofractionated radiotherapy leads to significant
changes in the peripheral immune status of the patients
with a decrease of naïve CD4+ lymphocytes and an increase
in Tregs (193–195). These findings led to the rationale of

FIGURE 3 | Rationale for combining radiotherapy and immune checkpoint

inhibition to overcome therapy resistance of hypoxic tumors. Tumor hypoxia is

a key player for the prognosis of cancer patients and resistance to

radiotherapy and possibly also for anti-tumor immune response. Fractionated

radiotherapy may lead to reoxygenation. The profound immune suppressive

microenvironment (see chapter Immunosuppression in the hypoxic tumor

microenvironment) predominantly in hypoxic tumors as well as upregulation of

immune checkpoint molecules might hint at a rationale to combine fractionated

radiotherapy with immune checkpoint inhibition in patients with hypoxic

tumors to enhance local control and systemic anti-tumor immune effects.
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combining cancer radiotherapy with immune checkpoint
inhibition (196).

Combined Radiation and Immune
Checkpoint Inhibition
The rationale of combining immunotherapy and radiotherapy
has been discussed intensely in several review articles [e.g.,
(197, 198)]. Initial clinical signs of synergistic and abscopal
effects after combination therapy of radiotherapy and immune
checkpoint inhibition were reported in a patient with malignant
melanoma who had progressed on Ipilimumab but showed
a second systemic response after palliative radiotherapy for a
paraspinal lesion (199). Initial phase II studies in melanoma
showed an abscopal response rate of 18% (200). Immune
checkpoint inhibition has been combined with palliative
radiotherapy (201) as well as with ablative stereotactic
irradiation (202). Furthermore, a recent trial in stage III
non-small cell lung cancer encourages efforts of combining
both therapeutic strategies in curative settings as well
(203). Here, Durvalumab (a monoclonal PD-L1-antibody)
consolidation after definitive radiochemotherapy showed
significantly prolonged progression-free survival rates and
increased overall survival compared to the placebo group with
short time between end of radiochemotherapy and start of
checkpoint-blockade showing an even larger effect in a subgroup
analysis (203, 204).

However, in spite of first efforts (205), the optimal
regimen of timing, target organ, dosage and fractionation
remains elusive and future trials and translational research
need to address these important questions to maximize the
potentially beneficial combination effects of radiotherapy and
immunotherapy (206). The underlying molecular mechanisms
are being investigated intensely and might lead to more
promising designs for future clinical trials. PD-1 signaling
has been linked to abscopal responses by knock-out and
inhibition in in vivo models of stereotactic radiotherapy
(207). The identification of radiation fractionation schedules
leading to abscopal effects in combination with CTLA-4
blockade in an in vivo model of breast cancer was linked
to the induction of cytosolic double-stranded DNA. With
high radiation doses, the induction of the exonuclease TREX-
1 degrading the DNA fragments, no abscopal effects were
observed (208).

RATIONALE FOR SELECTING PATIENTS
WITH HYPOXIC TUMORS FOR
COMBINATION TREATMENT

To the best of our knowledge, there are no data on combined
radiotherapy and immune checkpoint inhibition focusing on
hypoxic tumors. However, as hypoxic tumors are intrinsically
more radioresistant than normoxic counterparts and show
reduced local control and higher rates of distant metastases, there
is a specific clinical need in this subgroup of patients for more
effective therapies. As hypoxia also leads to dramatically impaired
anti-tumor immune responses, enhancing immune-mediated
tumor control mechanisms might be a promising strategy,
especially because the combination of immune checkpoint
inhibition and radiotherapy has been described to improve
local control as well as to induce abscopal effects leading to
better systemic tumor control. The here described effects of
hypoxia with increased mutational load and upregulation of
immune checkpoints such as PD-L1 might even hint at improved
responsiveness of hypoxic tumors to immune checkpoint
inhibition, further strengthening the hypothesis that patients
with hypoxic tumors might be a subgroup of specific interest for
combination concepts of radiotherapy with immune checkpoint
inhibition (Figure 3).
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