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Abstract: The Canadian Immunohistochemistry Quality Control

program monitors clinical laboratory performance for estrogen

receptor and progesterone receptor tests used in breast cancer

treatment management in Canada. Current methods assess

sensitivity and specificity at each time point, compared with a

reference standard. We investigate alternative performance

analysis methods to enhance the quality assessment. We used 3

methods of analysis: meta-analysis of sensitivity and specificity

of each laboratory across all time points; sensitivity and spe-

cificity at each time point for each laboratory; and fitting models

for repeated measurements to examine differences between lab-

oratories adjusted by test and time point. Results show 88 lab-

oratories participated in quality control at up to 13 time points

using typically 37 to 54 histology samples. In meta-analysis

across all time points no laboratories have sensitivity or spe-

cificity below 80%. Current methods, presenting sensitivity and

specificity separately for each run, result in wide 95% confidence

intervals, typically spanning 15% to 30%. Models of a single

diagnostic outcome demonstrated that 82% to 100% of labo-

ratories had no difference to reference standard for estrogen

receptor and 75% to 100% for progesterone receptor, with the

exception of 1 progesterone receptor run. Laboratories with

significant differences to reference standard identified with

Generalized Estimating Equation modeling also have reduced

performance by meta-analysis across all time points. The

Canadian Immunohistochemistry Quality Control program has

a good design, and with this modeling approach has sufficient

precision to measure performance at each time point and allow

laboratories with a significantly lower performance to be tar-

geted for advice.
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ceptor, meta-analysis, sensitivity and specificity
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S ince 2009, the Canadian Immunohistochemistry Qual-
ity Control program (CIQC, http://www.CIQC.ca),

endorsed by the Canadian Association of Pathologists, has
established an immunohistochemistry (IHC) quality con-
trol program including estrogen receptor (ER) and pro-
gesterone receptor(PR) freely available to Canadian clinical
IHC laboratories. Currently laboratories receive feedback
at each proficiency testing assessment (PTA). This research
explores using statistical modeling to provide more robust
understanding of performance at each PTA and individual
laboratory performance across time.

In breast cancer, pathology diagnostic results pro-
vide disease verification and biomarker predictive testing
(ER, PR, and human epidermal receptor 2) for personal-
ized targeting of adjuvant hormone therapy–based treat-
ments.1 For ER and PR tests, a false-positive test result
could lead to a patient having no opportunity of treatment
benefit but exposure to side effects, whereas a false-neg-
ative result may deny access to potentially life-saving
treatment. ER and PR IHC tests are complex with diag-
nostic performance depending on preanalytical factors
(tissue handling from surgery to processing), analytical
methods (IHC staining methods), and postanalytical per-
formance (interpretation, delivery of results).2–5 Previous
work has shown that most errors result from variability in
IHC staining rather than interpretation.6,7

Quality assessment programs have been set up in the
United States (College of American Pathologists Quality
Improvement Program, http://www.cap.org), United
Kingdom (UK-NEQAS, http://www.ukneqas.org.uk),
Nordic countries (Nordic QC, http://www.nordiqc.org),
Canada (Canadian Immunohistochemistry Quality
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Control, http://www.CIQC.ca), Australia (Royal College
of Pathologists of Australasia, http://www.rcpaqap.co-
m.au), and elsewhere.

There are 2 main types of PTA program, both
providing valuable information: (i) calibration of Class I
IHC tests providing descriptive information on lineage or
subclassification of lesion and (ii) level of concordance to
reference standard across a sample of IHC tests (ie, di-
agnostic accuracy) for Class II IHC tests as recommended
in guidelines for breast cancer IHC markers. Although
some EQA programs (eg, UKNEQAS, NordiQC) con-
tinue to design PTA challenges for Class II IHC markers
based on calibration, other programs (eg, CIQC, CAP)
follow guidelines reporting results for breast cancer
markers using concordance (accuracy). Both types of
PTA are very valuable, but do not replace each other.

All PTA programs use unstained slides of formalin-
fixed/paraffin-embedded tissue containing antigens of in-
terest. In calibration PTA, tissues usually contain both
positive cells (with range of antigen positivity) and negative
cells. The number of tissue samples could vary, but even a
single sample may be appropriate for calibration. There is a
great value in comparing participating laboratory test cal-
ibration with a reference laboratory or consensus results.

In PTA designed to assess level of concordance
(diagnostic accuracy), the design including the number of
samples and statistical analysis needs to consider the
statistical power, that is, the ability to make statistically
robust recommendations in combination with practical
considerations. In 2010, ASCO published the first official
guidelines on levels of concordance for ER and PR
testing,1 recommending laboratories should achieve 45
correct results from 50 biomarker tests each for bio-
marker-positive and biomarker-negative breast cancers
when introducing new tests. In addition, external quality
assessment testing was recommended with 90% minimum
concordance. Current diagnostic test accuracy for ER,
PR, and human epidermal receptor 2 is estimated to
include error rates of 10% to 20%1,8 when comparing
individual laboratories to reference laboratories.1,9–11

Statistically, a challenge for quality control programs
measuring concordance is how to present test perfor-
mance,12 given limits on feasible numbers of cases per PTA.
Monitoring clinical performance generalizable to clinical
practice requires thresholds based on 95% confidence in-
terval (CI) rather than an estimate of performance.

This research aims to enhance the quality of PTA
for laboratories participating in the CIQC program, by
investigating alternative analysis methods that overcome
the limitations of giving feedback solely based on sensi-
tivity and specificity from individual PTA.

MATERIALS AND METHODS

Study Population

Participating Laboratory Eligibility Criteria
All Canadian clinical IHC laboratories that provide

testing for breast cancer markers ER and PR are eligible.

Setting
CIQC Program 2008 to 2012.

Clinical Samples
For 12 of 13 PTA, we assembled clinical samples

from anonymized sequential clinical invasive breast car-
cinoma surgical cases (mastectomies, lumpectomies) from
490 cases from daily surgical pathology practice, aiming
to represent full clinical spectrum of breast cancer cases
by grade and histology, with tumors >5mm. We used
samples from reference laboratories with established in-
ternal preanalytical quality control (tissue procurement,
fixation, and processing) assembled into paraffin block
TMA of 37 to 54 samples, with single tissue cores 0.6mm
in diameter each containing 100 to 500 tumor cells, using
manual tissue arrayer MTA1 (Beecher Instruments Inc,
Silver Spring, MA). Same source tissues were used for ER
and PR. Within each round, all laboratories received
slides from the same cases. For run 12, duplicate samples
of formalin-fixed paraffin-embedded cell blocks of breast
carcinoma cell lines were used. Runs 6 and 11 are replica
TMAs of the same cases.

Laboratories Methods
Participating laboratories used and submitted in-

house validated protocols for IHC ER and PR assays
varying in primary and secondary antibodies, antigen
retrieval methods, and visualization chromogen en-
hancers (http://cpqa.ca).

Index test
Index test: CIQC sent serially cut unstained TMA

slides to each laboratory, 1 slide per biomarker. Labo-
ratories stain slides and return with local interpretation
conforming to ASCO2010 guidelines (positive tests >1%
positive tumor cells nuclei of any intensity).1 In addition,
results were assessed centrally by CIQC expert panel. Test
results were classified as positive, negative, or unin-
terpretable. Uninterpretable defined when tissue section
cannot be classified as positive or negative, including
missing sample due to detachment, damage, or no tumor/
insufficient tumor for biomarker evaluation, that is, gen-
erally fewer than 50 cancer cells.

Reference Standard
Benchmark consensus result using independent

staining and interpretation blinded to other test inter-
pretations, as a surrogate ER and PR reference, from
group of CIQC “reference laboratories.”6

Statistical Analysis
We initially performed a descriptive analysis of the

overall sensitivity and specificity for each laboratory, us-
ing analysis across all laboratories and time points with
simple pooling, as if all results from single study.

For ER and PR separately, we used meta-analysis
for each laboratory across all time points, using Stata
metandi13 bivariate meta-analysis of sensitivity and specifi-
city using complete case analysis.14 We used xtmelogit15
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when metandi did not converge. Binary outcome data
are typically modeled with logistic regression. We used
conditional logistic regression using Generalized Esti-
mating Equations method (GEE)16 extensions of gener-
alized linear models to accommodate correlated data. We
used alternative methods of estimation17 in to account for
missing data. We examined differences between labo-
ratories adjusted by test, time point, and also possible
interactions between them. With this approach, the rela-
tionship among the outcome variable and predictor var-
iables is estimated using all available data, including data
from individuals with missing observations.

A multilevel, longitudinal model was fitted using
GEE package in R18; multilevel clustering of individual
cases across laboratories within each time point, longi-
tudinal data from laboratories at up to 13 time points. All
independent variables in model are qualitative and in-
corporated as nominal or numerical, test at 2 levels (ER
and PR tests), laboratory with 78 levels (77 different
laboratories participating in both tests and the reference
test) and 13 time points. The result for each laboratory
for each test is the dichotomous dependent variable
(positive and negative outcomes). Statistical significance
was set at Pr0.05.

RESULTS
A total of 88 laboratories participated according to

CIQC workflow protocols (Fig. 1), taking part in up to 13
consecutive rounds of assessment (Table 1). Initially, 18
laboratories participated increasing to 74 in 2012. Par-
ticipation is voluntary and most laboratories have fre-
quent participation following entry to the program.

Presence and Issues of Uninterpretable Results
ER and PR IHC stained slide sections are reported as

positive, negative, or uninterpretable. The percentage of
uninterpretable or missing results varied across assessment
runs (Supplementary Figure 1, Supplemental Digital Con-
tent 1, http://links.lww.com/AIMM/A86). Across all runs
16% of results are uninterpretable, and treated as missing
data in analyses. The presence of uninterpretable results
creates problems with analysis methods that ignore these
missing results, such as simplest methods to calculate sen-
sitivity and specificity. This was a key issue we considered
when designing appropriate analysis methods.

There was a noticeable correlation between the
percentage uninterpretable results in the reference stand-
ard and the laboratories, suggesting association with the
assessment run, rather than individual laboratories. On
the basis of the increase in uninterpretable results as the
number of participating laboratories increases, a likely
cause is an insufficient cancer cells per sample for valid
interpretation, as a larger number of sections are cut from
the same TMA block. Supporting this, there are no un-
interpretable data in the reference for run 12 which uses
cell culture lines.

Descriptive Analysis of Diagnostic Performance
A descriptive analysis of ER and PR sensitivity and

specificity averaged by simple pooling across all assess-
ment runs and samples for each laboratory is summarized
(Supplementary Table 1, Supplemental Digital Content 2,
http://links.lww.com/AIMM/A87). The percentage of
laboratories with values of sensitivity and specificity
above 95% are higher with ER test than with PR test
(62% and 44% vs. 51% and 40%, respectively).

Supplementary Figure 2 (Supplemental Digital
Content 3, http://links.lww.com/AIMM/A88) shows re-
sults for sensitivity and specificity for each laboratory
based on meta-analysis across all times. Both sensitivity
and specificity are higher than 90% (dotted lines) for al-
most all laboratories with both ER and PR, with no
values below 80%. Interpretation of 95% CI is complex
as it depends on both the number of PTA for each lab-
oratory and accuracy.

Limitations of Measuring Performance Using
Simple Methods at Each Time Point

Ideally, we would assess laboratory performance at
each PTA, to compare laboratories and to monitor each
laboratory over time. However, there are major limi-
tations with using simple methods such as sensitivity and
specificity at each time point, most importantly the
maximum number of cases feasible per PTA, and the
presence of uninterpretable data, which if ignored leads to
overestimation of test performance. For monitoring of
ER and PR, CIQC uses more cases at each time point
than most other quality-monitoring programs.

We show sensitivity and specificity for ER at in-
dividual times for 1 laboratory in Figure 2, with the
number of cases. The CIQC includes typically 37 to 54
samples per biomarker; sensitivity is calculated from ref-
erence-positive samples (median 27 ER+, 20 PR+) and
specificity is calculated from reference-negative samples
(median 12 ER� to 16 PR�). The CIQC PTA prevalence
of ER+ and/or PR+ cases (range, 61% to 88% ER+;
45% to 70% PR+) reflects clinical practice, except at time
point 12 which uses formalin-fixed paraffin-embedded cell
blocks of breast carcinoma cell lines.

In Figure 2, the smaller sample size for specificity
results in wider 95% CI, giving an unacceptable level of
uncertainty for the estimate of specificity when applied to
normal clinical practice. The 95% CI for sensitivity are
narrower, but more ER-positive cases would be needed to
assure the performance would be within acceptable limits
in normal clinical practice.

The large number of tissue samples needed in each
PTA for sufficiently precise 95% CI is beyond what is con-
sidered practically feasible. To follow ASCO guidelines on
ER and PR hormone testing, a sample size of 144 bio-
marker-positive cases would be necessary to ensure a lower
limit of 90% for sensitivity (ie, 90% as lower limit for 95%
CI) based on 95% average sensitivity. Similarly for specif-
icity, 144 biomarker-negative samples would be needed.
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Step 1: Case selection and Tissue Array Construction

A C

B Step 2. Serial Sections of Tissue Array Block 
are Distributed to Participating Laboratories

Step 3. Laboratories perform staining and submit the slides
and results for assessments

FIGURE 1. Project workflow. (A) Step 1: case selection and tissue array construction. (B) Step 2: serial sections of tissue array block
are distributed to participating laboratories. (C) Step 3: laboratories perform staining and submit the slides and results for
assessments.

TABLE 1. Number of Cases and Participating Laboratories at Each Proficiency Testing Assessment Time Point

Proficiency Testing Assessment

Time Point

No. Participating

Laboratories No. Cases

No. ER Cases*
(Negative, Positive)

No. PR Cases*
(Negative, Positive)

1 18 37 12, 25 16, 20
2 23 37 14, 22 18, 15
3 25 54 11, 42 20, 29
4 32 44 11, 28 18, 20
5 57 40 13, 27 12, 20
6 59 40w 14, 26 12, 28
7 61 43 8, 31 13, 26
8 59 54 14, 27 17, 16
9 67 46 5, 36 13, 28
10 70 40 12, 19 17, 15
11 72 40w 12, 25 16, 20
12 71 18z 12, 6 12, 6
13 74 46 10, 35 14, 31
Total across all assessments 88 490 136, 324y 182, 254y

*By reference standard.
wTest samples are the same in assessments 6 and 11, so are only counted once in totals.
zNine different test samples evaluated twice.
yNote that some cases have uninterpretable reference standard results, so the totals of negative and positive cases are lower than total cases. See Figure 2, where

uninterpretable results are shown as missing data.
ER indicates estrogen receptor; PR, progesterone receptor.
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Multilevel Longitudinal Statistical Modeling
Recognizing the limitations of the number of fea-

sible cases in each assessment and the unavoidable pres-
ence of uninterpretable results, we sought to develop
alternative performance analysis methods to enhance the
quality assessment using the current program design.

We investigated an alternative analysis method to
examine performance from individual PTA by including
data from all time points and all laboratories together in a
multilevel longitudinal regression model. We fitted a GEE
model comparing ER and PR tests with the reference
standard, allowing for data correlation within labo-
ratories over time and including interactions (laboratories
with test, laboratories with time). Interaction effects were
statistically significant (Supplementary Table 2, Supple-
mental Digital Content 4, http://links.lww.com/AIMM/
A89). We modeled ER and PR separately, to simplify
interpretation of model coefficients.

Figure 3 presents results for laboratories which do not
have significant differences between either PR or ER and the
reference standard, that is, the 95% CI includes zero. Values
closer to zero indicate better agreement with reference.
Laboratories A and B present good results with both PR
and ER (values close to zero for all time points), laboratories
C and D perform better with the ER, and laboratories E and
F have better results for the PR. It is important to realize
that when the CIs are very narrow, there is low variability
between individual cases indicating that cases with both
positive and negative test results closely match the reference.

However, some laboratories show significant dif-
ferences with the reference, with CIs not including zero
and values far from zero. In Figure 4, we show examples
of laboratories with significant differences to the reference
at Z3 time points.

Negative values mean the rate of false-negative re-
sults is higher, that is, IHC understaining causes sig-
nificantly more false-negative results, compared with
reference. Similarly, positive values mean that the rate of
false-positive results is higher, that is, IHC overstaining
causes significantly more false-positive results, than the
reference standard. For example, results for the ER and/or
PR tests of the laboratories G, J, K, and L tend to be more
negative (higher rate of false-negative results, ie, lower
sensitivity) than the reference. Laboratories H, I, and M
have both positive and negative values. These laboratories
at some time points undercall positive cases (false-negative
results leading to lower sensitivity) but at other time points
overcall positive results (false-positive results leading to
lower specificity). CIs are wider (Fig. 4 vs. Fig. 3) due to
the high variability between individual cases and reference.

At most time points, most laboratories show no
significant difference of ER and PR results to the refer-
ence (82% to 100% of laboratories for ER, 75% to 100%
for PR, except 1 PR run at 63%; Supplementary Table 3,
Supplemental Digital Content 5, http://links.lww.com/
AIMM/A90 shows percentage laboratories with a sig-
nificant difference).

Comparison of Methods
We have compared results obtained with 2 more

advanced statistical approaches, meta-analysis and GEE
model. Figure 5 shows sensitivity and specificity from
meta-analysis across all time points, for laboratories G to
M identified with significant differences (Fig. 4).

Laboratories with mainly negative values, like J, K,
and L with ER test and G and J with PR (Fig. 4), show
below-average sensitivity (Fig. 5). Laboratories with
higher positive coefficients, H and I with ER test and I
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FIGURE 2. Sensitivity, specificity, and 95% CI for laboratory A with ER test by time points. CI indicates confidence interval;
ER, estrogen receptorFN, false-negative; FP, false-positive; TN, true-negative; TP, true-positive.
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FIGURE 3. Estimated coefficients and 95% CI obtained from GEE models for several examples of laboratories with no significant
differences to the reference standard. Each graph shows results from a single laboratory, with connected dots corresponding to PTA times
where the laboratory participated. 95% CI are shown for each time point; where 95% CI overlap to the zero line (same accuracy as
reference standard result), there is no significant difference between laboratory and reference standard results at that time point. Positive
values indicate a higher rate of positive results than the reference standard, that is, false-positive results caused by IHC overstaining.
Negative values indicate a higher rate of negative results compared with reference standard, that is, false-negative results caused by IHC
understaining. Results for ER and PR tests are shown on the left and right side, respectively. CI indicates confidence interval; ER, estrogen
receptor; GEE, Generalized Estimating Equations; IHC, immunohistochemistry; PR, progesterone receptor; PTA, proficiency testing as-
sessment.

Pérez et al Appl Immunohistochem Mol Morphol � Volume 24, Number 10, November/December 2016

684 | www.appliedimmunohist.com Copyright r 2015 Wolters Kluwer Health, Inc. All rights reserved.

Copyright r 2016 Wolters Kluwer Health, Inc. All rights reserved.



FIGURE 4. Estimated coefficients and 95% CI obtained from GEE models for some examples of laboratories with Z3 PTA results with
significant differences to the reference standard. Each graph shows results from a single laboratory, with connected dots corresponding to
PTA times where the laboratory participated. 95% CI are shown for each time point; where 95% CI do not overlap to the zero line (same
accuracy as reference standard results), there is a significant different between laboratory and reference standard results at that time point.
Positive values indicate a higher rate of positive results than the reference standard, that is, false-positive results caused by IHC over-
staining. Negative values indicate a higher rate of negative results compared with reference standard, that is, false-negative results caused
by IHC understaining. Results for ER and PR tests are shown on the left and right side, respectively. CI indicates confidence interval; ER,
estrogen receptor; GEE, Generalized Estimating Equations; IHC, immunohistochemistry; PR, progesterone receptor; PTA, proficiency
testing assessment.
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and M with PR test (Fig. 4), have below-average specif-
icity in Figure 5.

Comparison shows both methods identify the same
performance issues in the same laboratories; however, the
GEE method has an advantage that it allows the per-
formance of laboratories to be monitored at each time
point, whereas meta-analysis results are based on aver-
ages across all time points.

The GEE method also includes data from cases with
missing observations, in contrast to the meta-analysis of
sensitivity and specificity, where missing data are ex-
cluded resulting in overestimation of sensitivity and spe-
cificity.

DISCUSSION
This research investigates statistical modeling

methods to analyze diagnostic performance of ER and
PR IHC tests in CIQC participating laboratories. We
compare laboratories to a reference standard and can
distinguish those with satisfactory or different perfor-
mance. Using GEE analysis, graphical display for in-
dividual laboratories over time allows understanding of
consistency and direction (IHC overstaining or under-
staining) for test performance. Laboratories we identify
using our accuracy coefficients as having significantly re-
duced test performance correspond to laboratories iden-
tified as unsatisfactory based on meta-analysis of
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FIGURE 5. Percentage sensitivity, specificity, and 95% CI obtained in the meta-analysis for some examples of laboratories with
Z3 significant differences with reference standard according to GEE models for ER and PR tests. Meta-analysis results are shown
for laboratories across all time points, providing less detailed information than GEE at separate time points. Laboratories with
positive coefficients by GEE (H and I for ER) have lower values of specificity. Laboratories with negative coefficients by GEE have
lower values of sensitivity. Separate graphs are shown for ER and PR. CI indicates confidence interval; ER, estrogen receptor; GEE,
Generalized Estimating Equations; IHC, immunohistochemistry; PR, progesterone receptor.
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sensitivity and specificity results across all time points.
Our statistical modeling aids interpretation of laboratory
performance because we model diagnostic accuracy with
good precision (indicated by narrow width of 95% CI),
allowing both robust comparison at a PTA monitoring
over time.

ASCO 2010 guidelines on ER and PR hormone re-
ceptor testing1 specify external quality assessment testing
with at least 90% concordance for sensitivity and specif-
icity, but do not give guidance on acceptable 95% CIs for
generalizability of audit performance to normal clinical
performance. No current monitoring programs have a
sufficiently large number of cases at PTA to determine
whether decreases in sensitivity or specificity are due to
chance or to a real underlying difference in performance.

The CIQC program, where laboratories participate
regularly and each assessment round includes typically 37
to 50 samples, allows fitting of GEE models. We achieve
good precision by measuring performance using a single
coefficient (instead of both sensitivity and specificity) and
by appropriate analysis (clustering data from same patient
samples, tests, laboratories, and PTA). The precision of
our accuracy measure is sufficient to distinguish real (sig-
nificant) differences between laboratories as opposed to
statistical sampling error, which will avoid many overcalls
or undercalls of unsatisfactory performance caused by
variation between PTA. There is unavoidable variation
between PTAs based on the number of: “difficult” patient
samples, for example, lower biomarker expression result-
ing in lower intensity staining; tumor cells per slide
affecting the chance of identifying positive cells; and ER-
positive and PR-positive cases. We note there are alter-
native methods using a combined error rate, but these do
not indicate the direction of errors (overstaining or un-
derstaining). Another advantage of our modeling methods
is to account for missing data, although assumed as
missing at random. In contrast, methods using sensitivity
and specificity typically ignore missing data, causing
overoptimistic estimates of performance.

Conclusions and Implications for Practice, Policy
and Future Research

Assessment programs perform a vital role in providing
quality control and monitoring diagnostic performance of
pathology laboratories. The CIQC program has a high-
quality design, due to the reasonably large number of samples
in each PTA, using same test samples for a large number of
laboratories and across ER and PR tests, and the repeated
participation of laboratories. Our statistical modeling uses
these key design features to maximize monitoring potential,
by linking data from the same patient, laboratories, time
points, and tests. Our statistical modeling also increases pre-
cision of accuracy estimates by using a single indicator value
for overstaining or understaining by IHC, so individual as-
sessment rounds from CIQC can be robustly interpreted.
Monitoring laboratories over time can enhance feedback to
facilitate improvement in performance, while minimizing
overcalling or undercalling laboratory performance.
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