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Abstract
EphB receptor tyrosine kinases, which play important roles in synaptic connection and plasticity
during development and in matured nervous system, have recently been implicated in processing
of pain after nerve injury and morphine dependence. Subtypes of the EphB receptors that may
contribute to the neuropathic pain and morphine dependence have not been identified. Here we
demonstrate that the subtype EphB1 receptor is necessary for development of neuropathic pain
and physical dependence on morphine. The results showed that peripheral nerve injury produced
thermal hyperalgesia in wild-type (EphB1+/+) control littermate mice, but not in EphB1 receptor
homozygous knockout (EphB1-/-) and heterozygous knockdown (EphB1+/-) mice. Hyperalgesia in
the wild-type mice was inhibited by intrathecal administration of an EphB receptor blocking reagent
EphB2-Fc (2 μg). Intrathecal administration of an EphB receptor activator ephrinB1-Fc (1 μg)
evoked thermal hyperalgesia in EphB1+/+, but not EphB1-/- and EphB1+/- mice. Cellularly, nerve
injury-induced hyperexcitability of the medium-sized dorsal root ganglion neurons was prevented
in EphB1-/- and EphB1+/- mice. In chronically morphine-treated mice, most of the behavioral signs
and the overall score of naloxone-precipitated withdrawal were largely diminished in EphB1-/- mice
compared to those in the wild-type. These findings indicate that the EphB1 receptor is necessary
for development of neuropathic pain and physical dependence on morphine and suggest that the
EphB1 receptor is a potential target for preventing, minimizing, or reversing the development of
neuropathic pain and opiate dependence.

Background
There are striking similarities between neuropathic pain
and opiate withdrawal-induced pain enhancement.
Mechanisms of neuropathic pain and opiate dependence
are complex and involve factors at the levels of receptors,

ion channels, the cell and neural networks. Roles of
diverse neurotransmitters, receptor systems and intracel-
lular signaling proteins have been demonstrated in both
neuropathic pain [1-12] and opiate dependence [13-24].
For instance, the system of glutamate/N-methyl-D-aspar-
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tate (NMDA) receptors/nitric oxide (NO) cascade is criti-
cally important to the development of neuropathic pain
and morphine dependence and withdrawal
[11,13,14,18,19,22-26]. However, the specific cellular
and molecular mechanisms that control induction and
maintenance of neuropathic pain and morphine depend-
ence remain unclear. We have recently demonstrated a
possibility that nerve injury or prolonged μ-opioid recep-
tor (MOR) activation may elicit neuronal alterations that
recapitulate events during development [27-29]. Certain
molecules and the molecule-mediated activities that are
important during development and "silent" in matured
nervous system may become activated after nerve injury
or prolonged MOR activation and therefore involve in
development of neuropathic pain and opiate dependence.

Receptor tyrosine kinases (RTKs) play vital roles in trans-
mitting external signals to the inside of many types of
cells. Eph RTKs and ephrins are involved in tissue-border
formation, cell migration, axon guidance, synapse forma-
tion and neural circuit assembly during development of
the nervous system [30-33]. EphB receptors can also regu-
late development of glutamatergic synapses and their
plasticity in adult nervous system by interaction with
NMDA receptors [34-36]. The NMDA receptors have an
established role in neural plasticity and are fundamental
mediators of expression, development and maintenance
of neuropathic pain and opiate dependence [21,37-40].
Activation of the NMDA receptors results in Ca2+ influx
through the NMDA receptor ion-channel complex. The
subsequent activation of various Ca2+-dependent
enzymes, such as Ca2+/calmodulin-dependent kinase
(CaMK) [41-43] and extracellular signal-regulated kinase
(ERK) [44] play a critical role in induction of neuropathic
pain and/or persistent opioid effects [40]. EphB receptors
continue to be expressed (at lower levels) in the adult
nervous system and, after neural injury [28,29] or pro-
longed MOR activation [27]. They are upregulated and
redistributed in neurons, reactive astrocytes and oli-
godendrocytes [27-29,45-50]. Recent studies have shown
that the EphB receptors can modulate sensory neuron
excitability and spinal synaptic plasticity in acute inflam-
matory pain [51], neuropathic pain [9,28,29,52] and opi-
ate dependence [27]. These studies demonstrate a critical
role of the EphB receptors in the development of neuro-
pathic pain and morphine dependence. Because of una-
vailability of the reagents and antibodies that could
selectively activate and/or block a subtype of EphB recep-
tor family, the specific EphB receptor that may play a key
role in neuropathic pain and/or opiate dependence has
not been identified. This study, using the EphB1 receptor
homozygous knockout (EphB1-/-) and heterozygous
knockdown (EphB1+/-) mice, provides the first evidence
that the EphB1 receptor is required for development of
neuropathic hyperalgesia and morphine dependence.

Results
EphB2-Fc inhibits nerve injury-induced thermal 
hyperalgesia in WT mice
We began by confirming and extending our earlier dem-
onstrations in rats that multiple intrathecal administra-
tion (i.t.) of EphB receptor blocking reagent EphB1-Fc or
EphB2-Fc can inhibit production of CCI-induced thermal
hyperalgesia [29]. As shown in Fig. 1, repetitive daily
injection of EphB2-Fc (2 μg, i.t.) for 3 days, starting 30
min prior to injury, significantly inhibited CCI-induced
thermal hyperalgesia for at least 14 days, the last tested
day (Fig. 1A). The slight increase in thermal sensitivity of
the foot contralateral to CCI treatment on the postopera-
tive 5th and 7th day (groups of CCI + PBS and CCI + IgG-
Fc) also disappeared after EphB2-Fc treatment (Fig. 1B).
The EphB2-Fc treatment did not significantly affect ther-
mal sensitivity in the sham-operated animals. Injections
of PBS or IgG-Fc (2 μg, i.t.) did not significantly alter ther-
mal sensitivity in the CCI and sham-operated mice. These
results obtained in mice are similar to those we have
recently reported in rats [29].

Nerve injury-induced thermal hyperalgesia are prevented 
or largely diminished in EphB1-/- and EphB1+/- mice
Current available reagents, such as the ephrinB1-Fc,
ephrinB2-Fc, EphB1-Fc and EphB2-Fc used in the present
and previous studies [29,51], do not distinguish among
different types of the ephrinBs and EphB receptors. Here
we tested the role of the subtype EphB1 receptor in neuro-
pathic pain using EphB1-/- and EphB1+/- mice. The results
showed that CCI treatment induced thermal hyperalgesia
in more than 90% of the WT, but in less than 10% of the
EphB1-/- and EphB1+/- mice. Data are summarized in
Table 1. Before receiving CCI treatment, the EphB1-/- and
EphB1+/- and the WT mice exhibited similar thermal sen-
sitivity. The time courses and changes of thermal sensitiv-
ity in EphB1+/+, EphB1+/- and EphB1-/- mice are shown in
Fig. 2. The withdrawal latencies of the feet ipsilateral to
CCI treatment in EphB1+/+, but not EphB1-/- and EphB1+/
- mice were significantly decreased from the previous val-
ues each day after surgery, throughout the last test on the
day 14 after surgery (Fig. 2A). Withdrawal latencies of the
feet contralateral to CCI treatment in all of the three
groups of mice were not significantly changed before and
after surgery (Fig. 2B). Some of these mice were further
used for electrophysiological recordings 8–14 days after
nerve injury. In addition, 1/12 EphB1-/- and 1/11 EphB1+/
- mice (see Table 1) showed thermal hyperalgesia after
CCI treatment. The latencies of thermal withdrawal in
these two mice decreased from preoperative values of 10–
11 s to 7–8 s (~60%). Meanwhile, 1/12 WT mice that
received CCI treatment showed no hyperalgesia. These
three mice were not included in Fig. 2. We also observed
the posture and gait and motor behavior related to the
thermal test in those WT, EphB1-/- and EphB1+/- mice and
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did not find obvious differences between the WT and the
EphB1-/- and EphB+/- mice.

EphrinB1-Fc evokes thermal hyperalgesia in EphB1+/+, but 
not EphB1-/- and EphB1+/- mice
EphrinB1-Fc can activate EphB receptors and evoke ther-
mal hyperalgesia via interaction with the NMDA receptor
in rats [29,51]. The results here showed that a single injec-
tion of ephrinB1-Fc (1 μg, i.t.) caused a rapid onset
(within 2 h) and prolonged (at least 24 h) thermal hyper-
sensitivity in mice. EphrinB1-Fc-induced thermal hyper-
sensitivity was prevented by a prior injection of an NMDA
receptor antagonist, MK-801 (5 μg). IgG-Fc (2 μg, i.t.) did
not produce thermal hypersensitivity. Data are summa-
rized in Fig. 3A. These results in mice are similar to that in
rats we have recently reported [29,51].

Additional experiments were performed in EphB1+/- and
EphB1-/- mice to test if the EphB1 receptor is required for
the ephrinB1-Fc-induced thermal hyperalgesia. The
results showed that ephrinB1-Fc (1 μg, i.t.) produced ther-
mal hyperalgesia in 100% of the EphB1+/+ mice tested,
while in only 16.7% of the EphB1+/- and none (0%) of the
EphB1-/- mice (Table 1). The time courses and changes of
thermal sensitivity in EphB1+/+, EphB1+/- and EphB1-/-

mice are shown in Fig. 3B. Data from the 16.7% (2/12) of
EphB1+/- mice that exhibited moderate thermal hypersen-
sitivity following ephrinB1-Fc injection were not included
in Fig. 3.

Nerve injury-induced DRG neuron hyperexcitability are 
prevented or largely diminished in EphB1-/- and EphB1+/- 
mice
Hyperexcitability of DRG neurons following nerve injury
contributes to sensitization of the central nociceptive neu-
rons in dorsal horn (DH) of the spinal cord, leading to
chronic pain and hyperalgesia. Hyperexcitability of DRG
neurons after CCI and other forms of injury is often man-
ifested as depolarization of resting membrane potential
(RMP), a decrease in action potential (AP) current thresh-
old, and increased repetitive discharge [5,11,25,29,53-
58]. We examined these three electrophysiological prop-
erties of the intact DRG neurons from WT and EphB1-/-
and EphB1+/- mice to test the possibility that the EphB1
receptor contributes to DRG neuron hyperexcitability.

A total of 235 medium-sized neurons [diameter (mean ±
SE): 39.6 ± 0.43 μm] were recorded from the intact L4 and/
or L5 DRG from the EphB1+/+, EphB1+/- and EphB1-/- mice
that previously received sham or CCI treatment (from

An EphB receptor blocking reagent prevents thermal hyperalgesia after nerve injuryFigure 1
An EphB receptor blocking reagent prevents thermal hyperalgesia after nerve injury. Repeated measurements are 
shown of thermal sensitivity of the foot withdrawal response in CCI- and sham-operated mice injected with EphB receptors 
blocking reagent EphB2-Fc (each 2 μg for continuous 3 days) and control vehicles PBS or IgG-Fc (2 μg). The arrow(s) indicates 
surgery (sham or CCI) or drug injection (i.t.) at the time point. Data represent changes of the withdrawals of the ipsilateral 
foot (A) and the contralateral (B). The numbers of mice in each group are shown in parentheses. **P < 0.01 indicate significant 
differences between sham group (Sham + PBS) and each of the other groups.
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those shown in Fig. 2), respectively. The results showed
that CCI treatment significantly increased excitability of
the neurons from the WT mice, the RMP was depolarized,
the AP current threshold lowered, the repetitive discharge
following depolarizing current increased. However, CCI
treatment did not significantly alter these properties of the
DRG neurons from EphB1+/- and EphB1-/- mice. Examples
are given and data summarized in Fig. 4. These results
indicate that a proper level of EphB1 receptor is required
for the development of hyperexcitability of DRG neurons
after nerve injury in mice.

Behavioral signs of naloxone-precipitated morphine 
withdrawal are largely diminished in EphB1-/- mice
Naloxone-precipitated morphine withdrawal results in a
characteristic morbidity, including anxiety, nausea,
insomnia, hot and cold flashes, muscle aches, perspira-
tion, diarrhea, etc. As shown in Figure 5, most of the
observed behavioral signs, the backward walking, chew-
ing, diarrhea, jump, ptosis, tremor, wet dog shake and
weight loss were significantly alleviated in EphB1-/- mice
compared to those in WT mice except that the paw tremor
in EphB1-/- mice was not different from that in WT mice
(Fig. 5I). Consistent with these changes, the overall with-

Nerve injury-induced changes of thermal sensitivity in EphB1-/-, EphB1+/- and EphB+/+ miceFigure 2
Nerve injury-induced changes of thermal sensitivity in EphB1-/-, EphB1+/- and EphB+/+ mice. The arrow indicates 
CCI treatment at the time point. Data represent changes of the hindpaw thermal withdrawals of the ipsilateral foot (A) and the 
contralateral (B). The numbers of mice in each group are shown in parentheses. **P < 0.01 indicates significant differences 
between groups of EphB1-/- and EphB1+/+ and groups of EphB1+/- and EphB1+/+.
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Table 1: Thermal hyperalgesia in wide type and EphB1 receptor knockout or knockdown mice after nerve injury (CCI treatment) and 
intrathecal administration of ephrinB1-Fc.

Group Total mice Number of mice (%)
with hyperalgesia without hyperalgesia

CCI treatment
EphB1+/+ 12 11 (91.7%) 1 (8.3%)
EphB1-/- 12 1 (8.3%) 11 (91.7%)
EphB1+/- 11 1 (9.1%) 10 (90.9%)

EphrinB1-Fc (1 μg, i.t)
EphB1+/+ 10 10 (100%) 0
EphB1-/- 10 0 10 (100%)
EphB1+/- 12 2 (16.67%) 10 (83.33%)
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drawal score significantly decreased in EphB1-/- mice com-
pared to that in WT mice (Fig. 5J). These results suggest
that the EphB1 receptor may be required for development
of morphine dependence.

Discussion
This study investigated roles of subtype EphB1 of EphB
receptors in development of neuropathic pain and mor-
phine dependence. The major findings are 1) peripheral
nerve injury (CCI treatment) produces significant thermal
hyperalgesia in WT, but not EphB1-/- and EphB1+/- mice.
Meanwhile, CCI-induced thermal hyperalgesia in WT
mice is inhibited by spinal administration of a reagent
that can block the EphB receptors; 2) spinal administra-
tion of a reagent that can activate EphB receptors evokes
thermal hyperalgesia in WT, but not EphB1-/- and EphB1+/
- mice; 3) EphB1 receptor knockout or down prevents
CCI-induced DRG neuron hyperexcitability; and 4)
behavioral signs of morphine withdrawal are greatly sup-
pressed in EphB1-/- mice compared to those in WT mice.
These findings provide the first evidence that the subtype
EphB1 receptor is necessary for development of thermal
hyperalgesia and the associated sensory neuron hyperex-

citability after nerve injury and pain enhancement follow-
ing morphine withdrawal.

EphB1 receptor is necessary for development of 
neuropathic hyperalgesia and morphine dependence
Recent studies have indicated that EphB receptors, which
play an important role in synaptic connection and plastic-
ity during development and in matured nervous system,
are involved in pain processing [28,29,51,52] and opiate
dependence [27]. We have recently shown that ephrinBs
and EphB receptor proteins are upregulated and redistrib-
uted in DRG and DH after nerve injury [28,29], EphB
receptor proteins upregulated in DH after chronic mor-
phine treatment [27], and activation of EphB receptors is
required for the development of neuropathic pain [28,29]
and morphine dependence [27]. The Eph-receptors con-
stitute the largest subfamily of RTKs in human genome,
with 13 members divided into an A-subclass (EphA1-
EphA8) and a B-subclass (EphB1-EphB4, EphB6) [59,60].
Although the importance of EphB receptors in neuro-
pathic pain and morphine dependence has been demon-
strated, the specific subtypes of EphB receptors have not
been identified because of the unavailability of reagents

EphrinB1-Fc-induced changes of thermal sensitivity in EphB1-/-, EphB1+/- and EphB+/+ miceFigure 3
EphrinB1-Fc-induced changes of thermal sensitivity in EphB1-/-, EphB1+/- and EphB+/+ mice. A: EphrinB1-Fc (1 
μg)-induced thermal hypersensitivity in WT mice is prevented by NMDA receptor antagonist MK-801 (5 μg, pretreated). Injec-
tion of IgG-Fc (1 μg) did not change the thermal sensitivity, nor did MK-801 alone affect the responses. B: EphrinB1-Fc (1 μg) 
induced thermal hypersensitivity in EphB1+/+, but not in EphB1+/- and EphB1-/- mice. The values of thermal withdrawal are 
mean values of both feet. The numbers of mice in each group are shown in parentheses. The arrow indicates drug injection 
(i.t.) at the time point. **P < 0.01 indicate significant differences between groups of the different treatments and the PBS con-
trol.
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and antibodies that could selectively activate and/or block
an EphB receptor subtype. This study, using EphB1 recep-
tor knockout (EphB1-/-) and down (EphB1+/-) mice, dem-
onstrates, for the first time, that the subtype EphB1
receptor is required for the development of neuropathic

hyperalgesia and morphine dependence. In addition, our
results show that knockdown of the EphB1 receptor pro-
duces similar effect on thermal sensitivity as knockout.
This result further suggests that a proper expression levels
of the WT EphB1 receptor (EphB1+/+) is necessary for

Alteration of excitability of medium-sized DRG neurons from EphB1-/-, EphB1+/- and EphB+/+ miceFigure 4
Alteration of excitability of medium-sized DRG neurons from EphB1-/-, EphB1+/- and EphB+/+ mice. A, Examples 
of neural responses recorded intracellularly during the test sequence used to determine AP threshold. Only one of the depo-
larizing 50-ms pulses (bottom) and corresponding responses (top) are illustrated in each case. B, Examples of neural discharge 
patterns evoked by depolarizing current. Alterations of the RMP, AP threshold current and repetitive discharge are summa-
rized in C, D and E, respectively. The numbers of cells tested in each group are shown in parentheses. *P < 0.05, **P < 0.01 
indicate significant differences compared with the group of sham EphB1+/+. ##P < 0.01 indicate the significant differences com-
pared with the group of CCI-treated EphB1+/+.
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development of neuropathic hyperalgesia, and that reduc-
tion to approximately 50% normal levels in heterozygous
mice sufficient to prevent this form occurring.

The forward signaling of EphB1 receptor is involved in 
development of neuropathic hyperalgesia and morphine 
dependence
The ephrinB-EphB interaction is well known to lead bidi-
rectional signals which are propagated into the ephrinB-

EphB1 receptor knockout attenuates behavioral signs of morphine withdrawalFigure 5
EphB1 receptor knockout attenuates behavioral signs of morphine withdrawal. A-I: Behavioral signs of naloxone-
precipitated morphine withdrawal in EphB1+/+ (wild-type, WT) and EphB1-/- (EphB1 knockout) mice. Those mice were 
injected (i.p.) with repeated pulses of morphine given in 7 escalating doses every 8 h (20, 40, 60, 80, 100, 100, and 100 mg/kg). 
Two hours after the last morphine injection, mice were injected with naloxone (1 mg/kg, s.c.), and withdrawal symptoms were 
monitored for 30 min after naloxone administration. J: Overall withdrawal score. In addition to measuring individual with-
drawal signs (A-I), an overall opiate withdrawal score was calculated as (no. of backward walking steps × 0.1) + (diarrhea × 2) 
+ (no. of jumps × 0.1) + (paw tremor × 0.1) + (ptosis) + (tremor) + (% weight loss × 5) + (no. of wet-dog shakes) as described 
in the Methods. The numbers of mice in each group are shown in parentheses in A-J (the ten mice in each group of EphB1+/+ 
and EphB1-/- through A-J were the same mice). **, p < 0.01, indicate significant differences compared with the WT control 
group.
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expressing cells (reverse signaling) and the EphB-express-
ing cells (forward signaling). Depending upon context,
both forward signaling and reverse signaling play impor-
tant roles, either pre- or postsynaptically, in synaptic plas-
ticity. Upregulation and redistribution of the EphB
receptors in the DH after nerve injury [28,29] or pro-
longed MOR activation [27] may initiate a cascade of
postsynaptic effects, starting with EphB receptor activa-
tion, then intracellular signaling through Src-family
kinases[51,61], and resulting in NMDA receptor activa-
tion [1-4,6-12] with Ca2+ influx through the NMDA recep-
tor ion-channel complex. The NR2B subunit of NMDA
receptor activation may be important for morphine
dependence [27]. The subsequent activation of various
Ca2+-dependent signaling pathways [38,62] plays a cen-
tral role in neuropathic pain and morphine dependence.
The Ca2+/CaMKII protein can phosphorylate (activate)
cyclic AMP related element binding (CREB), which leads
to increases in c-Fos mRNA and c-Fos protein expression
[63]. Gene expression is thought to play an important role
in many forms of plasticity, including hyperalgesia and
morphine dependence. The present study further shows
that binding to the EphB1 receptor is required for
ephrinBs such as ephrinB1-Fc, which may also bind to
EphB1-4 and EphA4 receptors, to promote behavioral
hyperalgesia and that the EphB1 receptor protein-null
mutant mice fail to development hyperalgesia or mor-
phine dependence. These findings support a role of the
EphB1 receptor forward signaling in neuropathic hyperal-
gesia and opiate dependence.

In addition, we have noticed that a small proportion of
EphB1-/- and EphB1+/- mice (~10%) exhibit hyperalgesia
after nerve injury or spinal administration of ephrinB1-Fc
(see Table 1). Possible reasons may include that some
pain related signals, the neurotransmitters, neuromodula-
tors, receptors, ion channels and intracellular pathways
that we have not examined, might have been modified or
integrated in the EphB1-/- and EphB1+/- mice.

Roles of the reverse signaling of EphB1 receptor in 
development of neuropathic hyperalgesia and morphine 
dependence
EphB stimulation of reverse signaling through activation
of ephrinBs may also be involved in the development of
neuropathic hyperalgesia after nerve injury. Upregulation
and redistribution of ephrinBs in DRG and DH [28,29]
may be initiated/regulated by the nerve injury, but proba-
bly also caused by increased reverse signaling mediated by
EphB receptors in DRG and/or DH where EphB receptor
proteins are upregulated after nerve injury [28,29]. If so,
loss of postsynaptic EphB1 receptor in the EphB1-/- mice
may result in loss of reverse signaling and therefore the
subsequent activities. In contrast, chronic morphine treat-
ment causes significant upregulation of EphB receptor

protein in mice spinal cord, while expression of ephrinBs
(ephrinB1, ephrinB2, and PY99) remains unchanged
[27]. The behavioral and neurochemical signs of mor-
phine dependence are largely diminished by the EphB
receptor blocking reagent [27]. The present study further
shows that the behavioral signs of morphine withdrawal
are prevented in EphB1 receptor protein-null mice. Taken
together, these findings suggest that reverse signaling may
participate in development of neuropathic hyperalgesia,
but seems to be less important in development of mor-
phine dependence. The EphB1 receptor may act by inter-
action with the NR2B subtype of NMDA receptors [27]
and then activate the postsynaptic signals ERKs [27,64]
and CREB [27,65,66], or NO pathways [46,67], while the
ephrinBs do not seem to be necessary in this process.
However, at this point in our analysis there is no direct
evidence that allows us to definitively rule in or out a role
for reverse signaling in neuropathic hyperalgesia and mor-
phine dependence.

EphB1 receptor is necessary for development of sensory 
neuron hyperexcitability after nerve injury
Hyperexcitability of DRG neurons following nerve injury
contributes to the sensitization of central nociceptive neu-
rons in DH, leading to chronic pain and hyperalgesia. The
findings that reagents that can activate the EphB receptors
increase excitability and the reagents that can block the
EphB receptors suppress hyperexcitability of the nerve-
injured DRG neurons [29] suggest widespread effects of
these receptors on the excitability of presynaptic primary
sensory neurons and represent the first demonstration
that ephrinB-EphB receptor signaling can regulate excita-
bility in any neurons. This study provides further evidence
that the EphB1 receptor knockout or down can prevent
the DRG neurons from being hyper-excitable following
nerve injury, suggesting that the EphB1 receptor is
required for the development of DRG neuron hyperexcit-
ability. These findings also indicate a sensory neuron
mechanism underlying the behavioral analgesia in EphB1
receptor protein-null mutant mice. It remains unknown
how the EphB receptors, which are upregulated in DRG
and DH after nerve injury, regulate the DRG neuron excit-
ability. One possibility is that activation of the EphB1
receptor may modulate the sodium channel Nav1.7 via
regulation of the small G-protein Ras-ERK-mitogen acti-
vated protein kinase (MAPK) pathway [29,68-74]. The
EphB receptors on DRG neurons would be activated
directly by certain initial injury signals from peripheral
and/or by the upregulated ephrinBs, by the reverse signal-
ing of EphB receptors from DH through activation of
ephrinBs, and probably by other retrograde signaling
through ephrinBs. The signaling would be lost in the
knockout or down mice DRG due to loss of the postsyn-
aptic EphB1. There is lack of evidence supporting or
excluding these possibilities.
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EphB1 receptor is a potential therapeutic target for 
neuropathic hyperalgesia and morphine dependence
Both neuropathic pain and opiate dependence continue
to pose major challenges. Current drugs and nondrug
therapies offer very limited substantial pain relief to
patients. The present and several recent studies have pro-
vided evidence that the neuropathic hyperalgesia and
morphine dependence can be markedly suppressed by
knockout/down of EphB1 receptor and/or spinal admin-
istration of an EphB receptor blocking reagent or
ephrinB2 siRNA [27-29,51,52]. These findings, in addi-
tion to supporting a novel mechanism contributing to
neuropathic pain and opiate dependence and a novel role
for EphB receptor signaling in development of neuro-
pathic pain and morphine dependence, open up a new
avenue to preventing, minimizing, or reversing the devel-
opment of neuropathic pain and morphine dependence.
The similar analgesic effect of EphB1 knockdown
(EphB1+/-) to that of knockout (EphB1-/-) suggests a fur-
ther implication in development of new analgesics.

Conclusion
We here provide the first evidence that the subtype EphB1
of EphB receptors is necessary for the development of neu-
ropathic pain and morphine dependence. We hypothesize
that nerve injury and prolonged MOR activation can elicit
neuronal alterations that may result in activation of cer-
tain molecules, such as the ephrinB-EphB receptor signal-
ing, that are important in synaptic connection and
plasticity during development and "silent" in matured
nervous system. These molecules therefore become criti-
cal to the development of neuropathic pain or morphine
dependence. The activated molecules may be the thera-
peutic targets for preventing, minimizing and/or treating
neuropathic pain and physical dependence on opiate.

Methods
Animals
The generation of EphB1 receptor protein-null mutant
mice has been previously described [75,76]. For the
present study EphB1+/- heterozygous males and females
in the CD-1 background were bred to obtain a cohort of
homozygous knockout (EphB1-/-), heterozygous knock-
down (EphB1+/-), and wild-type (WT) (EphB1+/+) control
littermate adult mice (25–30 g-wt). All breeding was done
by the Henkemeyer group and adult mice were provided
to the Song group, who were blinded to the genotypes.
Additional WT, male CD-1 mice (25–30 g-wt) (Fig. 1, 2)
were obtained from Charles River Laboratories, MA, USA.
All experimental procedures were conducted in accord-
ance with the regulations of the ethics committee of the
International Association for the Study of Pain and
approved by Parker Research Institute Animal Care and
Use Committee.

Neuropathic pain model and assessment of thermal 
hyperalgesia
Neuropathic pain was produced by peripheral nerve
injury mimicked by modification of model of chronic
construction injury of the sciatic nerve (CCI) in rats [77].
In brief, the left common sciatic nerve of each mouse was
exposed at the mid-thigh level. Proximal to the sciatic
nerve's trifurcation, approximately 4 mm of nerve was
freed of adhering tissue and three ligatures (6-0 chromic
gut) were tied loosely around it with about 0.5 mm
between ligatures. All surgeries were done under anesthe-
sia induced by intraperitoneal injection (i.p.) of sodium
pentobarbital (50 mg/kg). After surgery, the muscle and
skin layers were sutured.

Thermal hyperalgesia was indicated by a decrease in the
latency of foot withdrawal evoked by a radiant heat gener-
ated and controlled by a IITC Model 336 Analgesia Meter
(Life Science, Series 8, Woodland Hill, CA). The protocol
was similar to that we have described previously [5,11].
Each mouse was placed in a box (10 × 12 × 12 cm) con-
taining a smooth, temperature-controlled glass floor. The
heat source was focused on a portion of the hindpaw,
which was flush against the glass, and a radiant thermal
stimulus was delivered to that site. The stimulus shut off
automatically when the hindpaw moved (or after 20 sec
to prevent tissue damage). The intensity of the heat stim-
ulus was maintained constant throughout all experi-
ments. The elicited paw movement occurred at latency
between 9 and 15 sec in control mice. Thermal stimuli
were delivered 3 times to each hind paw at 5–10 min
intervals. The change in latency of foot withdrawal to the
heat stimulus was used to judge the thermal sensitivity.
The mice were tested on each of two successive days prior
to surgery. The withdrawal latencies of the feet ipsilateral
and contralateral to nerve injury were expressed separately
(Fig. 1, 2). For the results expressing i.t. ephrinB1-Fc-
induced thermal hyperalgesia, the values are mean values
of both feet (Fig. 3). To examine effects of multiple
administrations of the drugs on CCI-induced thermal
hyperalgesia, the postoperative tests were conducted 3, 5,
7 and on the day of electrophysiological recording (days
9–14). To test the effects of ephrinB1-Fc on the thermal
sensitivity, the mice were tested on each of 2 successful
hours prior to injection and the postinjective tests were
conducted 2, 4, 8, 12 and 24 h after injection.

Opiate Withdrawal
Mice were injected (i.p.) with repeated pulses of mor-
phine (Sigma, St. Louis, MO) given in 7 escalating doses
every 8 h (20, 40, 60, 80, 100, 100, and 100 mg/kg). Two
hours after the last morphine injection, mice were injected
with naloxone (Sigma) (1 mg/kg, s.c.), and withdrawal
symptoms were monitored for 30 min after naloxone
administration. In addition to measuring individual with-
Page 9 of 12
(page number not for citation purposes)



Molecular Pain 2008, 4:60 http://www.molecularpain.com/content/4/1/60
drawal signs, an overall opiate withdrawal score was cal-
culated as (no. of backward walking steps × 0.1) +
(diarrhea × 2) + (no. of jumps × 0.1) + (paw tremor × 0.1)
+ (ptosis) + (tremor) + (% weight loss × 5) + (no. of wet-
dog shakes) [20].

Excised, intact ganglion preparation
In vitro preparations of DRGs were made from L4 and/or
L5 ganglia for electrophysiological studies from the WT,
EphB1-/- and EphB1+/- mice. The procedure was similar
to that described previously in rats [5,11]. Briefly, a lami-
nectomy was performed under anesthesia after the last
behavioral tests. Ice-cold, oxygenated, artificial cerebros-
pinal fluid (ACSF), consisting of (in mM) 130 NaCl, 3.5
KCl, 1.25 NaH2PO4, 24 NaHCO3, 10 dextrose, 1.2 MgCl2,
and 1.2 CaCl2 (pH = 7.3) was dripped onto the surface of
the ganglion during the surgical procedure. The ganglion
was removed from the mouse and placed in a 35-mm
petri dish filled with the ACSF. Under a dissecting micro-
scope, the perineurium and epineurium were peeled away
from the ganglion and the attached sciatic nerve and dor-
sal roots transected adjacent to the ganglion. The ganglion
was then placed in the recording chamber and mounted
on the stage of an upright microscope (BX50-WI, Olym-
pus, Japan). A U-shaped stainless steel rod with 4 pieces of
silver wire crossing from one side to the other was used to
hold the ganglion gently in place. The DRG was incubated
in the oxygenated ACSF at room temperature (21–22°C).

Electrophysiological recordings
Intracellular recordings were made from the intact DRG
somata 2–6 h after dissociation using conventional
bridge-balance techniques (Axoclamp-2B, Axon Instru-
ments, Foster City, CA) and analyzed with PCLAMP-8
under Windows 98 (Axon Instruments). Somata of the
DRG neurons were classified visually by their diameters.
Only the medium-sized (soma diameter 30–50 μm) DRG
neurons were included in this study. Glass microelec-
trodes were fabricated with a Flaming/Brown micropi-
pette puller (Model P-97/PC, Sutter Instruments.) and
filled with 2 M potassium acetate (pH = 7.2). The proto-
cols used to record and measure electrophysiological
properties of the DRG neurons were similar to those we
have described recently [5,11]. Resting membrane poten-
tial (RMP) was taken 2–3 min after RMP had stabilized.
All neurons accepted for testing exhibited a stable RMP of
-40 mV or more negative. Action potential (AP) current
threshold was examined by delivering depolarizing cur-
rents of 0.05–4 nA (50 ms duration) in increments of 0.1–
0.2 nA until an AP was evoked. Repetitive discharge of
each neuron was measured by counting the spikes evoked
by intracellular injection of standardized depolarizing
currents at 2.5 × threshold strength (×1000 ms).

Drug administration
For the experiments on CCI-induced hyperalgesia, the fol-
lowing vehicle and drugs were administrated intrathecally
(i.t., all in 5 μl) by means of lumbar puncture under brief
inhalational anesthesia: PBS, ephrinB1-Fc chimera (1 μg),
EphB2-Fc chimera (2 μg), human IgG-Fc fragment (IgG-
Fc, 2 μg) and MK-801 (5 μg). The PBS was used as vehicle
control. The molecule ephrinB1-Fc chimera (mouse
recombinant; E 0778, Sigma) was used as an EphB recep-
tor activator and it can bind to EphB1-4 and EphA4. The
molecule EphB2-Fc chimera (mouse recombinant; Sigma,
E9402) was used as an EphB receptors blocking reagent
and it can bind to ephrinB1-3. The IgG-Fc was used as Fc
control (Jackson Laboratory, Bar Harbor, ME). MK-801
was used as an NMDA receptor antag onist.

Statistical tests
SPSS Rel 15 (SPSS Inc., Chicago, IL) was used to conduct
all the statistical analyses. Changes in withdrawal laten-
cies over time were tested with two-way ANOVA with
repeated measures followed by Bonferroni post hoc tests.
One-way ANOVA followed by Bonferroni post hoc tests
was used to test the hypothesis that RMP, excitability
(including the AP current threshold and number of APs
evoked by 1 s pulse) in CCI groups of EphB1+/+ mice
were different from those of EphB1-/- and +/- and the
sham WT groups. Individual t-tests were used to test spe-
cific hypotheses about differences between EphB1+/+ and
EphB1-/- mice in behavioral responses to morphine with-
drawal. Chi-square tests were used to identify differences
in the incidence of effects. All data are presented as mean
± SE. Statistical results are considered significant if p <
0.05.
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