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SUMMARY

We present a data augmentation scheme to perform Markov chain Monte Carlo inference for
models where data generation involves a rejection sampling algorithm. Our idea is a simple
scheme to instantiate the rejected proposals preceding each data point. The resulting joint prob-
ability over observed and rejected variables can be much simpler than the marginal distribution
over the observed variables, which often involves intractable integrals. We consider three prob-
lems: modelling flow-cytometry measurements subject to truncation; the Bayesian analysis of the
matrix Langevin distribution on the Stiefel manifold; and Bayesian inference for a nonparamet-
ric Gaussian process density model. The latter two are instances of doubly-intractable Markov
chain Monte Carlo problems, where evaluating the likelihood is intractable. Our experiments
demonstrate superior performance over state-of-the-art sampling algorithms for such problems.

Some key words: Bayesian inference; Density estimation; Gaussian process; Intractable likelihood; Markov chain
Monte Carlo; Matrix Langevin distribution; Rejection sampling; Truncation.

1. INTRODUCTION

Rejection sampling allows sampling from a probability density p(x) by constructing an upper
bound to p(x), and accepting or rejecting samples from a density proportional to the bound-
ing envelope. The envelope is usually much simpler than p(x), with the number of rejections
determined by how closely it matches the true density.

In typical applications, the probability density of interest is indexed by a parameter 6, and
we write it as p(x | #). A Bayesian analysis places a prior on #, and, given observations from
the likelihood p(x | 6), studies the posterior over 8. An intractable likelihood, often with a nor-
malization constant depending on 6, precludes straightforward Markov chain Monte Carlo infer-
ence over 0: calculating a Metropolis—Hastings acceptance probability involves evaluating the
ratio of two such likelihoods, and is itself intractable. This class of problems is called doubly-
intractable (Murray et al., 2006), and existing approaches require the ability to draw exact samples
from p(x | 8), or to obtain positive unbiased estimates of p(x | 0).
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We describe an approach that is applicable when p(x | €) has an associated rejection sampling
algorithm. Our idea is to instantiate the rejected proposals preceding each observation, resulting
in an augmented state-space on which we run a Markov chain. Including the rejected proposals
can eliminate any intractable terms, and allows the application of standard techniques (Adams
etal., 2009). We show that, conditioned on the observations, it is straightforward to independently
sample the number and values of the rejected proposals: this just requires running the rejection
sampler to generate as many acceptances as there are observations, with all rejected proposals
kept. The ability to produce a conditionally independent draw of these variables is important when
posterior updates of some parameters are intractable while others are simple. In such a situation,
we introduce the rejected variables only when we need to carry out the intractable updates, after
which we discard them and carry out the simpler updates.

A particular application of our algorithm is parameter inference for probability distributions
truncated to sets like the positive orthant, the simplex, or the unit sphere. Such distributions
correspond to sampling proposals from the untruncated distribution and rejecting those outside
the domain of interest. We consider an application from flow cytometry where this representa-
tion is the actual data collection process. Truncated distributions also arise in applications like
measured time-to-infection (Goethals et al., 2009), where times larger than a year are truncated,
mortality data (Alai et al., 2013), annuity valuation for truncated lifetimes (Alai et al., 2013),
and stock price changes (Aban et al., 2006). One approach for such problems was proposed in
Liechty et al. (2009), through their algorithm samples from an approximation to the posterior
distribution of interest. Our algorithm provides a simple and general way to apply the machinery
of Bayesian inference to such problems.

2. REJECTION SAMPLING

Consider a probability density p(x |0) = f(x, 8)/Z(0) on some space X, with the parameter
0 taking values in ®. We assume that the normalization constant Z(6) is difficult to evaluate,
so that naive sampling from p(x | 0) is not easy. We also assume there exists a second, simpler
density g(x |6) > f(x, 60)/M for all x and some positive M.

Rejection sampling generates samples distributed as p(- | €) by first proposing samples from
q(-10). A draw y from ¢ (- | 9) is accepted with probability f(y,0)/{Mq(y|0)}. Let there be r
rejected proposals preceding an accepted sample x, and denote them by YV = {y1, ..., y,-} where
r itself is a random variable. Write |)/| = r, so that the joint probability is

(VI
i 0 ,0
pV,x)= Hq(y,-l@){l f(y)} q(x|9){f(x)}
i=1

- Mq(i 1) Mq(x 16)
fGx.0) i 0)
== H{(q(inG)— M } M

i=1

This procedure recovers samples from p(x |8), so that (1) has the correct marginal distri-
bution over x (Robert & Casella, 2005, p. 51). Later, we will need to sample the rejected
variables ) given an observation x drawn from p(- | 6). Simulating from p(}) | x, 0) involves
the two steps in Algorithm 1, which relies on Proposition 1 about p()|x,6); see the
Appendix.
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Algorithm 1. Algorithm to sample from p() | x, 9)

Input: A sample x, and the parameter value 6.
Output: The set of rejected proposals ) preceding x.

Sample y; independently from ¢ (- | #) until a point X is accepted.
Discard x, and treat the preceding rejected proposals as ).

ProproSITION 1. The set of rejected samples ) preceding an accepted sample x is independent

ofx: p(Y10,x)=p)|06).

3. BAYESIAN INFERENCE
3-1. Sampling by introducing rejected proposals

Given observations X = {x1, ..., x,}, and a prior p(f), Bayesian inference typically uses
Markov chain Monte Carlo simulation to sample from an intractable posterior p(0 | X). Split
0 as (01, 6>) so that the normalization constant factors as Z(0) = Z(61) Z,(02), with Z; simple
to evaluate, and Z intractable. Updating 61 with 6, fixed is easy, and there are situations where
we can place a conjugate prior on 0;. Inference for 8; is a doubly-intractable problem.

We assume that p(x | 0) has an associated rejection sampling algorithm with proposal density
q(x|0) = f(x,0)/M. For the ith observation x;, write the preceding set of rejected samples as
Vi =1{yi1, ..., Yijy;|}- The joint density of all samples, both rejected and accepted, is

1Yil

L f(xi, 0) { f(yij,e)}
p(xlvyla"'9xnvy}’l): q(y1|9)_7 .
ll;[l M 1131 / M

This involves no intractable terms, so standard techniques can be applied to update 6. To introduce
the rejected proposals );, we simply follow Algorithm 1: draw proposals from ¢ (- | 6) until we
have n acceptances, with the ith batch of rejected proposals forming the set ;.

The ability to produce conditionally independent draws of ) is important when, for instance,
there exists a conjugate prior p1(01) on 0 for the likelihood p(x | 81, 67). Introducing the rejected
proposals ); breaks this conjugacy, and the resulting complications in updating 6; can slow down
mixing, especially when 6; is high-dimensional. A much cleaner solution is to sample 6; from
its conditional posterior p(6; | X, 6»), introducing the auxiliary variables only when needed to
update 6. After updating 6,, they can be discarded. Algorithm 2 describes this.

Algorithm 2. An iteration of the Markov chain for posterior inference for 6 = (61, 6)

Input: The observations X, and the current parameter values (61, 6>).

Output: New parameter values (61, 6>).

Run Algorithm 1 |.X]| times, keeping all the rejected proposals ) = Ull.):(l1 Vi.

Update 6, to 6, with a Markov kernel having p(6; | X, )V, 61) as stationary distribution.
Discard the rejected proposals ).

Sample a new value of 6, from the conditional pO1 X, 52).

3.2. Related work

One of the simplest and most widely applicable Markov chain Monte Carlo algorithms for
doubly-intractable distributions is the exchange sampler of Murray et al. (2006). Simplifying an
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earlier idea by Mgller et al. (2006), this algorithm effectively amounts to the following: given the
current parameter Oy, propose a new parameter ey according to some proposal distribution.
Additionally, generate a dataset of n pseudo-observations {X;} from p(x | Onew). The exchange
algorithm then proposes to exchange parameters associated with datasets. Murray et al. (2006)
show that all intractable terms cancel out in the resulting acceptance probability, and that the
resulting Markov chain has the correct stationary distribution.

While the exchange algorithm is applicable whenever one can sample from the likelihood
p(x]0), it does not exploit the mechanism used to produce these samples. When the latter is
a rejection sampling algorithm, each pseudo-observation is preceded by a sequence of rejected
proposals. These are all discarded, and only the accepted proposals are used to evaluate the new
parameter 6ey. By contrast our algorithm explicitly instantiates these rejected proposals, so that
they can be used to make good proposals. In our experiments, we use a Hamiltonian Monte Carlo
sampler on the augmented space and exploit gradient information to make nonlocal moves with a
high probability of acceptance. For reasonable acceptance probabilities under the exchange sam-
pler, one must make local updates to 6, or resort to complicated annealing schemes. Of course,
the exchange sampler is applicable when no efficient rejection sampling scheme exists, such as
when carrying out parameter inference for a Markov random field.

Another framework for doubly-intractable distributions is the pseudo-marginal approach
of Andrieu & Roberts (2009). The idea here is that even if we cannot exactly evaluate the accep-
tance probability, it is sufficient to use a positive, unbiased estimator: this will still result in a
Markov chain with the correct stationary distribution. In our case, instead of requiring an unbi-
ased estimate, we bound Z(6) by choosing f(x,0) < Mg (x). Additionally, like the exchange
sampler, the pseudo-marginal method provides a mechanism to evaluate a proposed Gpeyw; mak-
ing good proposals (Dahlin et al., 2015) is less obvious. Other papers are Beskos et al. (2006),
based on a rejection sampling algorithm for diffusions, and Walker (2011).

Most closely related to our ideas is a sampler from Adams et al. (2009); see also § 7. Their
problem also involved inferences on the parameters governing the output of a rejection sam-
pling algorithm. Like us, they augment the state space to include the rejected proposals ), and
like us, given these auxiliary variables, they use Hamiltonian Monte Carlo to efficiently update
parameters. However, rather than generating independent realizations of )V when needed, Adams
et al. (2009) outlined a set of Markov transition operators to perturb the current configuration
of ), while maintaining the correct stationary distribution. With prespecified probabilities, they
proposed adding a new variable to )/, deleting a variable from )’ and perturbing the value of an
existing element in ). These local updates to ) can slow down Markov chain mixing, require
the user to specify a number of parameters, and also involve calculating Metropolis—Hastings
acceptance probabilities for each local step. Furthermore, the Markov nature of their updates
require them to maintain the rejected proposals at all times; this can break any conjugacy, and
complicate inference for other parameters.

4. CONVERGENCE PROPERTIES

Write the Markov transition density of our chain as k(é | 6), and the m-fold transition density
as k™ (é | 6). The Markov chain is uniformly ergodic if constants p < 1 and C exist such that for
allm and 6, [, [p(0 | X) — k™ (016)|dd < Cp™. The term to the left is twice the total variation
distance between the desired posterior and the state of the Markov chain initialized at 0 after
m iterations. Small values of p imply faster mixing. The following minorization condition is
sufficient for uniform ergodicity (Jones & Hobert, 2001): there exists a probability density h(H)



Data augmentation based on rejection sampling 323

and a § > 0 such that for all 6, 6 e O,
k(16) = 8h(0). )

When this holds, the mixing rate p < 1 — 4, so that a large § implies rapid mixing.

Our Markov transition density first introduces the rejected proposals ), and then conditionally
updates 6. The set ); preceding the ith observation takes values in the union space U= U2 (X",
The output of the rejection sampler, including the ith observation, lies in the product space U x X
with density given by equation (1), so that any (), x) € U x X has probability

8%
, 0 iy 0
p.x 10y =740 ] {q(y,- 1) — LY )}Mdy,-). 3)
i=1

M M

Here, A is the measure with respect to which the densities " and ¢ are defined, and it is easy to
see that equation (3) integrates to 1. From Bayes’ rule, the conditional density over ) is

1l
_Z©) o) —
pYVlx,0)= w L {q(yIIG)

S i, ) _
i }/\(dyz)- “)

The fact that the right-hand side does not depend on x is another proof of Proposition 1.
Equation (4) also motivates the use of our algorithm outside the context of rejection sampling:
we can view ) as convenient auxiliary variables that are independent of x, and whose density is
such that Z(0) cancels when evaluating the joint density of (x, )).

The density from equation (4) characterizes the data augmentation step of our sampling
algorithm. In practice, we need as many draws from this density as there are observations. The
next step involves updating 6 given ()/, X, 0), and depends on the problem at hand. We simplify
matters by assuming that we can sample from p(0 | ), X) independently of the old 6: this is the
classical data augmentation algorithm. We also assume that the functions (-, 6) and g (- | ) are
uniformly bounded from above and below by finite, positive quantities (B, br) and (B, by)
respectively, and that fx A(dx) < oco. It follows that there exist positive numbers » and R that
minimize 1 — f(x,0)/{MZ(0)} and Z(0)/M. We can now state our result.

THEOREM 1. Assume that fX AMdx) < oo and that positive bounds by, By, by, B, exist with
r and R as defined earlier. Further assume we can sample from the conditional p(6 Y, X).

Then our data augmentation algorithm is uniformly ergodic with mixing rate p bounded above
byp=1—[bs/{Bsr(B+ R, where B = byr/ By and n is the number of observations.

Despite our assumptions, our theorem has a number of useful implications. The ratio b /B s
is a measure of how flat the function f is, and the closer it is to unity, the more efficient rejection
sampling for f can be. From our result, the smaller the ratio, the larger the bound on p, sug-
gesting slower mixing. This is consistent with more rejected proposals ) increasing the coupling
between successive s in the Markov chain. On the other hand, a small b,/ B, suggests a proposal
distribution tailored to f, and our result shows that this implies faster mixing. The numbers r
and 1/R are measures of mismatch between the target and proposal density, with small values
giving better mixing. Finally, more observations 7 result in slower mixing. We suspect that this
last property holds for most exact samplers for doubly-intractable distributions, though we are
unaware of any such result.
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Even without assuming we can sample from p(0 | ), X), our ability to sample ) inde-
pendently means that the marginal chain over 6 is Markovian. By contrast, existing
approaches (Adams et al., 2009; Walker, 2011) only produce dependent updates in the
complicated auxiliary space: they sample from p(JAJ |6,Y, X) by making local updates to ).
Consequently, these chains are Markovian only in the complicated augmented space, and the
marginal processes over 6 have long-term dependencies. Besides affecting mixing, this can also
complicate analysis.

5. FLOW CYTOMETRY DATA

We apply our algorithm to a dataset of flow cytometry measurements from patients subjected to
bone-marrow transplant (Brinkman et al., 2007). This graft-versus-host disease dataset has 6809
control and 9083 positive observations, corresponding to whether donor immune cells attack host
cells. Each observation consists of four biomarker measurements truncated between 0 and 1024,
though more complicated truncation rules are often used according to operator judgement (Lee &
Scott, 2012). We normalize and plot the first two dimensions, markers CD4 and CD8b, in Fig. 1.
Truncation complicates the clustering of observations into homogeneous groups, an important
step in the flow-cytometry pipeline called gating. Consequently, Lee & Scott (2012) propose
an expectation-maximization algorithm for truncated Gaussian mixture models, which must be
adapted if different mixture components or truncation rules are used.

We model the untruncated distribution for each group as a Dirichlet process mixture of Gaus-
sian kernels (Lo, 1984), with points outside the four-dimensional unit hypercube discarded to
form the normalized dataset. The Dirichlet process mixture model is a flexible nonparametric
prior over densities parameterized by a concentration parameter « and a base probability mea-
sure. We set « = 1, and for the base measure, which gives the distribution over cluster parameters,
we use a normal-inverse-Wishart distribution. Given the rejected variables, we can use standard
techniques to update a representation of the Dirichlet process. We follow the blocked-sampler
of Ishwaran & James (2001) based on the stick-breaking representation of the Dirichlet process,
using a truncation level of 50 clusters. This corresponds to updating 6, step 2 in Algorithm 2.
Having done this, we discard the old rejected samples, and produce a new set by drawing from a
50-component Gaussian mixture model, corresponding to step 1 in Algorithm 2.

Figure 1 shows the log mean posterior densities for the first two dimensions from 10000
iterations. While the control group has three clear modes, these are much less pronounced in the
positive group. Directly modelling observations with a Gaussian mixture model obscured this
by forcing modes away from the edges. One can use components with bounded support in the
mixture model, such as a Dirichlet process mixture of Beta densities; however, these do not reflect
the underlying data generation process, and are unsuitable when different groups have different
truncation levels. By contrast, it is easy to extend our modelling ideas to allow groups to share
components, allowing better identification of disease predictors.

Our sampler took less than two minutes to run 1000 iterations, not much longer than a typical
Dirichlet process sampler for datasets of this size. The average number of augmented points was
3960 and 4608 for the two groups. We study our sampler more systematically in the next section,
but this application demonstrates the flexibility and simplicity of our main idea.

6. BAYESIAN INFERENCE FOR THE MATRIX LANGEVIN DISTRIBUTION
6-1. The matrix Langevin distribution on the Stiefel manifold

The Stiefel manifold V), 4 is the space of all d x p orthonormal matrices, that is, d x p
matrices X such that X" X = I,,, where [, is the p x p identity matrix. When p = 1, this is the
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Fig. 1. Scatterplots of the first two dimensions for the control (left) and positive (right) group. Contours represent
log posterior-mean densities under a Dirichlet process mixture.

d — 1 hypersphere S¢~!, and when p = d, this is the space of all orthonormal matrices O(d).
Probability distributions on the Stiefel manifold play an important role in statistics, signal pro-
cessing and machine learning, with applications ranging from studies of orientations of orbits
of comets and asteroids to principal components analysis to the estimation of rotation matrices.
The simplest such distribution is the matrix Langevin distribution, an exponential-family distri-
bution whose density with respect to the invariant Haar volume measure (Edelman et al., 1998) is
pML(X | F) =etr(FTX)/Z(F). Here etr is the exponential-trace, and F is a d x p matrix. The
normalization constant Z(F) = oFi(d/2, F'F/4) is the hypergeometric function with matrix
arguments, evaluated at F'' F//4 (Chikuse, 2003). Let F = Gk H" be the singular value decom-
position of F, where G and H are d x p and p x p orthonormal matrices, and « is a positive
diagonal matrix. We parameterize pyp by (G, x, H), and one can think of G and H as orienta-
tions, with « controlling the concentration in directions determined by these orientations. Large
values of ¥ imply concentration along the associated directions, while setting « to zero gives
the uniform distribution on the Stiefel manifold. It can be shown (Khatri & Mardia, 1977) that
oF1(d/2, FTF/4) = oF1(d/2, "k /4), so that this depends only on k. We write it as Z («). In our
Bayesian analysis, we place independent priors on «k, G and H. The last two lie on the Stiefel
manifolds V), 4 and V), ,,, and we place matrix Langevin priors pmr (- | o) and pmp(- | 1) on
these: we will see below that these are conditionally conjugate. We place independent Gamma
priors on the diagonal elements of k. However, the difficulty in evaluating the normalization
constant Z («x) makes posterior inference for ¥ doubly intractable. Thus, in a 2006 University of
Iowa PhD thesis, Camano-Garcia keeps « constant, while Hoff (2009a) uses a first-order Taylor
expansion of the intractable term to run an approximate sampling algorithm. Below, we show
how fully Bayesian inference can be carried out for this quantity as well.

6-2. A rejection sampling algorithm

We first describe a rejection sampling algorithm from Hoff (2009b) to sample from pyr. For
simplicity, assume H is the identity matrix. In the general case, we simply rotate the resulting
draw by H, since if X ~ pmp(- | F), then XH ~ pmp(- | FHT). At a high level, the algorithm
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sequentially proposes vectors from the matrix Langevin on the unit sphere: this is also called the
von Mises—Fisher distribution and is easy to simulate (Wood, 1994). The mean of the rth vector
is column r of G, G|, projected onto the nullspace of the earlier vectors, N,. This sampled
vector is then projected back onto N, and normalized, and the process is repeated p times. Call
the resulting distribution pseq; for more details, see Algorithm 3 and Hoff (2009b).

Algorithm 3. Proposal pseq(- | G, k) for the matrix Langevin distribution (Hoff, 2009b)

Input:  Parameters G, «; write G[;;] for column i of G, and «; for element (7, i) of k.
Output: An output X € V), 4; write X|.;) for column i of X.

Sample X[.17~ pmL(- | €1G1p)-

Forre{2, .- p}
Construct N, an orthogonal basis for the nullspace of {X[.1, - - - X[. —17}.
Sample z ~ pmL(- | k- N} Gp))-
Set X[:r] = ZTNV/”ZTNr Il

Letting /;(-) be the modified Bessel function of the first kind, pseq is a density on the Stiefel
manifold with

p T (d-r—1)/2
llcr N G/ 2
Pseq(X | G, k) = { I I d—r+r1 L] T
1 PEEE ) L a—r—1 2l NGl

} etr(k GT X).

Write D(X, k, G) for the reciprocal of the term in braces. Since /i (x) /xk is an increasing func-
tion of x, and || N, Gl < [|G1ll = 1, we have the following bound D (k) for D(X, k, G):

P d— r+
DX, k, G) < HF(

=1

Y a—r—1y2(lkr 1)
|/c /2||(d r—1)/2

= D(k).

This implies that etr(k G'X) < D(k) pseq(X | G, &), allowing the following rejection sampler:
sample X from pgeq(-), and accept with probability D(X, x, G)/D(k). The accepted proposals
come from pmp (- | G, «), and for samples from pny (- | G, k, H), post multiply these by H.

6-3. Posterior sampling
Given a set of n observations {.X;}, and writing S = Z?:] X;, we have:
p(G.k, H| X;}) cetr(Hk G'S) p(H) p(G)p(k)/ Z(k)".

At a high level, our approach is a Gibbs sampler that sequentially updates H, G and «. The
pair of matrices (H, G) correspond to the tractable 61 in Algorithm 2, while « corresponds to 65.
Updating the first two is straightforward, while the third requires our augmentation scheme.

1. Updating G and H: With a matrix Langevin prior on H, the posterior is
p(H | X, k, G) oxetr {(S"Gk + Fo)'H} .

This is just the matrix Langevin distribution over rotation matrices, and one can sample
from this following § 6-2. From here onwards, we will rotate the observations by H, allow-
ing us to ignore this term. Redefining S as S H, the posterior over G is also matrix Langevin,

p(G X} k) ocetr {(Sk + F1)'G}.
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2. Updating «: Here, we exploit the rejection sampler scheme of the previous section, and
instantiate the rejected proposals using Algorithm 1. From § 6-2, the joint probability is

etr {KGT <S+ Z'ﬁi‘l Yij)} n {D) - D(Y;;, G, )}
rAXi, Vi} G o) = D (i) 1+ I111 D(Yyj, GJ,K)

i=1j=1

.5

All terms in (5) can be evaluated easily, allowing a simple Metropolis—Hastings algorithm in
this augmented space. In fact, we can calculate gradients to run a Hamiltonian Monte Carlo
algorithm (Neal, 2010) that makes significantly more efficient proposals than a random-walk

sampling algorithm. In particular, let N=n + >/, [Vil,and S=>""_,(X; + Zl»y” Y;j). The

=1
log joint probability L =log{p({X;, Vi})} is ’
n Vil
L =trace(G"«S) + Z Z [log {D(k) — D(Y;;,k)} — log D(Yij, k)] — nlog { D(x).
i=1 j=1

In the Appendix, we give an expression for the gradient of this loglikelihood. We use this to
construct a Hamiltonian Monte Carlo sampler (Neal, 2010) for «. Here, it suffices to note that a
proposal involves taking L leapfrog steps of size € along the gradient, and accepting the resulting
state with probability proportional to the product of equation (5), and a simple Gaussian momen-
tum term. The acceptance probability depends on how well the e-discretization approximates the
continuous dynamics of the system, and choosing a small € and a large L can give global moves
with high acceptance probability. A large L however costs a large number of gradient evaluations.
We study this trade-off in § 6-5.

6-4. Vectorcardiogram dataset

The vectorcardiogram is a loop traced by the cardiac vector during a cycle of the heart beat.
The two directions of orientation of this loop in three dimensions form a point on the Stiefel
manifold. The dataset of Downs et al. (1971) includes 98 such recordings, and is displayed in
Fig. 2(a). We represent each observation with a pair of orthonormal vectors, with the cone of
lines to the right forming the first component. This empirical distribution possesses a single
mode, so that the matrix Langevin distribution seems a suitable model.

We place independent exponential priors with mean 10 and variance 100 on the scale param-
eter «, and a uniform prior on the location parameter G. We restrict H to be the identity matrix.
Inferences were carried out using the Hamiltonian sampler to produce 10 000 samples, with a
burn-in period of 1000. For the leapfrog dynamics, we set a step size of 0-3, with the number of
steps equal to 5. We fix the mass parameter to the identity matrix. We implemented all algorithms
in R (R Development Core Team, 2016), building on the rstiefel package of Hoft (2009b). Sim-
ulations were run on an Intel Core 2 Duo 3 Ghz CPU. For comparison, we include the maximum
likelihood estimates of ¥ and G. For «1 and k>, these were 11-9 and 5-9, and we plot these in
Fig. 2(b) as circles.

The bold straight lines in Fig. 2(a) show the maximum likelihood estimates of the components
of G, with the small circles corresponding to 90% Bayesian credible regions estimated from the
Monte Carlo output. The dashed circles correspond to 90% predictive probability regions for
the Bayesian model. For these, we generated 50 points on V3, for each sample, with parameters
specified by that sample. The dashed circles contain 90% of these points across all samples.
Figure 2(b) shows the posterior over k1 and «3.
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Fig. 2. (a) Vector cardiogram dataset with inferences. Bold solid lines are max-
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Fig. 3. Effective samples per second for (a) random walk and (b) Hamiltonian samplers. From
bottom to top at abscissa 0-5: (a) Metropolis—Hastings data-augmentation sampler and exchange
sampler, and (b) 1, 10, 5 and 3 leapfrog steps of the Hamiltonian sampler.

6-5. Comparison of exact samplers

To quantify sampler efficiency, we estimate the effective sample sizes produced per unit time.
This corrects for correlation between successive Markov chain samples by estimating the number
of independent samples produced; for this we used the rcoda package of Plummer et al. (2006).

Figure 3(a) shows the effective sample size per second for two Metropolis—Hastings samplers,
the exchange sampler and our latent variable sampler on the vectorcardiogram dataset. Both
perform a random walk in the x-space, with the steps drawn for a normal distribution whose
variance increases along the horizontal axis. The figure shows that both samplers’ performance
peaks when the proposals have a variance between 1 and 1.5, with the exchange sampler per-
forming slightly better. However, the real advantage of our sampler is that introducing the latent
variables results in a joint distribution with no intractable terms, allowing the use of more sophis-
ticated sampling algorithms. Figure 3(b) studies the Hamiltonian Monte Carlo sampler described
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Fig. 4. Errors in the posterior mean for the vectorcardiogram dataset. Each panel is a different component of «;
solid/dashed lines are the Hamiltonian/approximate sampler.

at the end of § 3-1. Here we vary the size of the leapfrog steps along the horizontal axis, with the
different curves corresponding to different numbers of such steps. This performs an order of mag-
nitude better than either of the previous algorithms, with performance peaking with 3 to 5 steps
of size 0-3 to 0-5, fairly typical values for this algorithm. This shows the advantage of exploiting
gradient information in exploring the parameter space.

6-6. Comparison with an approximate sampler

In this section, we consider an approximate sampler based on an asymptotic approximation to
Z(k)=0oF1(d/2, K"k /4) for large values of (x1, ..., k,) (Khatri & Mardia, 1977):

-1

1 1 —1
= ip(p+S)+hpd Pl — 41 L & -
Z (k) ~ {1,, etr(k) [ T (2) T T +xp7p I x

2 j=1 j=2i=1 i=1

We use this approximation in the acceptance probability of a Metropolis—Hastings algorithm; it
can similarly be used to construct a Hamiltonian sampler. For a more complicated but accurate
approximation, see Kume et al. (2013). In general however, using such approximate schemes
involves the ratio of two approximations, and can have very unpredictable performance.

On the vectorcardiogram dataset, the approximate sampler is about forty times faster than the
exact samplers. For larger datasets, this difference will be even greater, and the real question is
how accurate the approximation is. Our exact sampler allows us to study this: we consider the
Stiefel manifold V3, with the three diagonal elements of x set to 1, 5 and 10. With this setting
of k, and arandom G, we generate datasets with 50 observations, with d taking values 3, 4, 5, 8,
and 10. In each case, we estimate the posterior mean of « by running the exchange sampler,
and treat this as the truth. We compare this with posterior means returned by our Hamiltonian
sampler, as well as the approximate sampler. Figure 4 shows these results. As expected, the two
exact samplers agree, and the Hamiltonian sampler has almost no error. For values of d around 5,
the estimated posterior mean for the approximate sampler is close to that of the exact samplers.
Smaller values lead to an approximate posterior mean that underestimates the actual posterior
mean, while in higher dimensions, the opposite occurs. Recalling that x controls the concentra-
tion of the matrix Langevin distribution about its mode, this implies that in high dimensions, the
approximate sampler underestimates uncertainty in the distribution of future observations.
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7. THE GAUSSIAN PROCESS DENSITY SAMPLER
7-1. Nonparametric density modelling with a transformed Gaussian process

Our next application is the Gaussian process density sampler of Adams et al. (2009), a nonpara-
metric prior for probability densities induced by a logistic transformation of a random function
from a Gaussian process. Letting o (-) denote the logistic function, the random density is

gx) xgo()o{f(x)}, f~GP,

with go(-) a parametric base density and GP denoting a Gaussian process. The inequality
go(x)a{ f(x)} < go(x) allows arejection sampling algorithm by making proposals from go(-). At
a proposed location x*, we sample the function value f(x*) conditioning on all previous evalua-
tions, and accept the proposal with probability o { /' (x*)}. Such a scheme involves no approxima-
tion error, and only requires evaluating the random function on a finite set of points. Algorithm 4
describes the steps involved in generating n observations.

Algorithm 4. Generate n new samples from the Gaussian process density sampler

Input: A base probability density go(-).
Previous accepted and rejected proposals X and Y.
Gaussian process evaluations f3 and f5 at these locations.
Output: n new samples X, with the associated rejected proposals Y.
Gaussian process evaluations fy and fy at these locations.

Repeat
Sample a proposal y from go(-).
Sample fy, the Gaussian process evaluated at y, conditioning on f¥, fy, fy and f5.
With probability o (f))
Accept y and add it to X. Add f) to fx.
Else
Reject y and add it to Y. Add f) to fy.
Until n samples are accepted.

7-2. Posterior inference

Given observations X = {x1, ..., x,}, we are interested in p(g | X), the posterior over the
underlying density. Since g is determined by the modulating function f, we focus on p(f | X).

While this quantity is doubly intractable, after augmenting the state space to include the pro-

posals ) from the rejection sampling algorithm, p(f | X, ) has density [[/_, o{f(x;)} HP;]

[1 — o {f(yi)}] with respect to the Gaussian process prior; see also Adams et al. (2009). In words,
the posterior over f evaluated at X U ) is just the posterior from a Gaussian process classification
problem with a logistic link-function, and with the accepted and rejected proposals correspond-
ing to the two classes. Markov chain Monte Carlo methods such as Hamiltonian Monte Carlo
or elliptical slice sampling (Murray et al., 2010) are applicable in such a situation. Given f on
X U Y, the Gaussian process can be evaluated anywhere else by conditionally sampling from a
multivariate normal.

Sampling the rejected proposals ) given X and f is straightforward using Algorithm 1: run
the rejection sampler until # accepts, and treat the rejected proposals generated along the way
as ). In practice, we do not have access to the entire function f', only its values evaluated on X
and ),;4, the locations of the previous thinned variables. However, just as under the generative
mechanism, we can retrospectively evaluate the function f/ where needed. After proposing from
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Fig. 5. Inferences for the Parkinson’s dataset: (a) posterior density for positive (solid) and

control (dashed) groups, (b) posterior distribution of the Gaussian process function for

positive group with observations. Both panels show the median with 80 percent credible
intervals.

go(+), we sample the value of the function at this location conditioned on all previous evaluations,
and use this value to decide whether to accept or reject. We outline the inference algorithm in
Algorithm 5, noting that it is much simpler than that proposed in Adams et al. (2009). We also
refer to that paper for limitations of the exchange sampler in this problem.

Algorithm 5. A Markov chain iteration for inference in the Gaussian process density sampler

Input: Observations X with corresponding function evaluations f Y.

Current rejected proposals ¥ with corresponding function evaluations ff,.
Output: New rejected proposals Y.

New Gaussian process evaluations fy and fy at X and Y.

New hyperparameters.

Run Algorithm 4 to produce | X| accepted samples, with X, Y, fx and fY as 1nputs
Replace Y and fY with values returned by the previous step; call these ¥ and fy
Update fy and fy using for example, hybrid Monte Carlo, to get fx and fy.
Update Gaussian process and base-distribution hyperparameters.

7-3. Experiments

Voice changes are a symptom and measure of the onset of Parkinson’s disease, and one attribute
is voice shimmer, a measure of variation in amplitude. We consider a dataset of such measure-
ments for subjects with and without the disease (Little et al., 2007), with 147 measurements with,
and 48 without the disease. We normalized these to vary from 0 to 5, and used the model of Adams
etal. (2009) as a prior on the underlying probability densities. We set g (-) to a normal N (i, a?),
with a normal-inverse-Gamma prior on (i, o). The latter had its mean, inverse-scale, degrees-
of-freedom and variance set to 0,-1,1 and 10. The Gaussian process had a squared-exponential
kernel, with variance and length-scale of 1. For each case, we ran a Matlab implementation of our
data augmentation algorithm to produce 2000 posterior samples after a burn-in of 500 samples.

Figure 5(a) shows the resulting posterior over densities, corresponding to 6 in Algorithm 2.
The control group is fairly Gaussian, while the disease group is skewed to the right. Figure 5(b)
focuses on the deviation from normality by plotting the posterior over the latent function /. We
see that to the right of 0-5, this deviation is larger than its prior mean of zero, implying larger
probability than under a Gaussian density. Figure 6 studies the distribution of the rejected propos-
als ). Figure 6(a) shows the distribution of their locations: most of these occured near the origin.
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Fig. 6. Rejected proposals for the Parkinson’s dataset: (a) kernel density estimate of loca-
tions of rejected proposals, and (b) histogram of the number of rejected proposals for the
positive group.

Here, the disease density reverts to Gaussian or even sub-Gaussian density, with the intensity
function taking small values. Figure 6(b) is a histogram of the number of rejected proposals: this
is typically around 100 to 150, though the largest value we observed was 668. Since inference
on the latent function involves evaluating it at the accepted as well as rejected proposals, the
largest covariance matrix we had to deal with was about 600 x 600; typical values were around
100 x 100. Using the same set-up as § 6-5, it took a naive Matlab implementation 26 and 18
minutes to run 2500 iterations for the disease and control datasets. One can imagine computa-
tions becoming unwieldy for a large number of observations, or when there is large mismatch
between the true density and the base-measure go(-). In such situations, one might have to choose
the Gaussian process covariance kernel more carefully, use one of many sparse approximation
techniques, or use other nonparametric priors like splines instead. In all these cases, we can use
our algorithm to recover the rejected proposals ), and given these, posterior inference for f can
be carried out using standard techniques.

8. FUTURE WORK

Our algorithm, while exact, also provides a framework for faster, approximate algorithms.
A priori, the number of rejected proposals preceeding any observation is unbounded: one can
bound the computational cost of an iteration by limiting the maximum number of rejected pro-
posals. Similarly, one might share rejected proposals across observations. We leave the study
of such approximate sampling algorithms for future research. Also left open is a more careful
analysis of Markov mixing rates for the applications we considered. There are also a number
of applications that we have not described here: particularly relevant are rejection samplers for
diffusions (Beskos et al., 2006; Bladt & Serensen, 2014).
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APPENDIX
Proofs

Proof of Proposition 1. Rejection sampling first proposes from ¢(x|6), and then accepts with
probability f(x, 0)/{Mq(x|6)}. Conceptually, one can first decide whether to accept or reject, and
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then conditionally sample the location. The marginal acceptance probability is Z(6)/M, the area under
f(,0) divided by that under Mg (-|6). An accepted sample x is distributed as the target distribution
f(x,0)/Z(0), while rejected samples are distributed as {Mq(x |0) — f(x,0)}/{M — Z(6)}. This two-
component mixture is just the proposal ¢ (x). While this mixture representation loses the computational
benefits of the original algorithm, it shows that the location of an accepted sample is independent of the
past, and consequently, that the number and locations of rejected samples preceding an accepted sample
is independent of the location of that sample. Thus, one can use the rejected samples preceding any other
accepted sample. O

Proof of Theorem 1. 1t follows from Bayes’ rule and the assumed bounds that for an observation X,

1Y
PO1XY) 2 p@1 0L by (“) .
f B

Let the number of observations | X| be n. Then,
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Thus k(0 | 0) satisfies equation (2), with § = [ {B (8 + R~")}]", and h(9) = p(@ | X). O

Gradient information
For n pairs {X;, Vi}, withi =n + 3_/_, [Vi],and S = 37_  (X; + S| ¥;), we have
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Then, writing L = log p({X;, V;}|x), and D’ for dﬁ/d/ck, we have

dz SR [ D) Dy DYy | D)
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