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1 Abstract

Cloud computing provides the opportunity to store the ever-growing genotype-phenotype data sets
needed to achieve the full potential of precision medicine. However, due to the sensitive nature of this
data and the patchwork of data privacy laws across states and countries, additional security protections
are proving necessary to ensure data privacy and security. Here we present SQUiD, a secure queryable
database for storing and analyzing genotype-phenotype data. With SQUiD, genotype-phenotype data
can be stored in a low-security, low-cost public cloud in the encrypted form, which researchers can se-
curely query without the public cloud ever being able to decrypt the data. We demonstrate the usability
of SQUiD by replicating various commonly used calculations such as polygenic risk scores, cohort cre-
ation for GWAS, MAF filtering, and patient similarity analysis both on synthetic and UK Biobank data.
Our work represents a new and scalable platform enabling the realization of precision medicine without
security and privacy concerns.

2 Introduction

Precision medicine aims to tailor medical care to the characteristics of an individual’s unique genetic
makeup, lifestyle, and environment. This approach has garnered considerable attention worldwide due to
its potential to enhance patient outcomes and mitigate healthcare expenses[33]. But, several significant
obstacles impede the realization of the full potential of precision medicine. One such challenge is the
need for extensive and diverse patient genotype-phenotype datasets in order to advance the diagnosis
and treatment of future patients [69]. However, this need for large amounts of data is often in conflict
with the need to protect patient privacy [6]. This challenge is further complicated by the heterogen-
eous regulatory landscape governing privacy protection, with varying definitions and practices across
different jurisdictions (e.g., General Data Protection Regulation [GDPR] in Europe vs. frameworks in
USA) [27,67]. Furthermore, individual hospitals and institutions maintain their own policies due to the
prevalence of health data breaches and privacy attacks.

Genomic data plays a pivotal role in precision medicine research, enabling the customization of
medical care based on specific genetic variants, biomarkers, and inherited traits. Thus, there is a surge
in data generation, which has challenged the ability of local servers to accommodate the rapid growth
of data size and increased computational requirements [66]. Therefore, there is a pressing need and
significant push towards cloud computing. However, this exacerbates the concerns about the privacy
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and prohibitions on use of personal data due to local, global, and/or institutional privacy policies. For
example, with the introduction of the GDPR in Europe, the storage of genomic and related data in the
cloud has become more stringent with the requirement of appropriate security measures in place such
as encryption. Starting from 2023, many states in the US (California, Connecticut, Colorado, Utah, and
Virginia) are entering a new GDPR-like privacy era that will have similar requirements about storing
genomic and related data in the cloud [4]. Yet, the current state of privacy preservation through laws and
institutional policies is fraught with instability and unpredictability, which poses significant challenges
to the research community. If the data is kept in the encrypted form in cloud servers, then researchers,
who are approved for access, need to download large quantities of data locally and decrypt them to
perform analysis, which defeats the purpose of outsourcing the storage to the cloud. This situation
creates additional hurdles for scientists, especially when attempting to combine multiple data sets to
gain statistical power. Furthermore, it creates significant delays in research and requires large amounts
of resources, which impedes the democratization of data access. As a result, advances in medicine will
significantly be impacted if new privacy-preserving frameworks that comply with laws and policies are
not developed and implemented.

Homomorphic encryption is one of the cryptographic tools that enables direct computations of func-
tions on encrypted data in the public cloud. Homomorphic encryption has emerged as a useful approach
to keep the data secure at rest, at transit, and during analysis. But, this approach also has thus far
presented severe bottlenecks in its applicability, scalability, and performance [50,2]. However, recent ad-
vances in algorithm designs and computing power have enabled an increase in the use of homomorphic
encryption in genomics. For example, it has been shown that privacy-enhancing genome-wide association
studies (GWAS) can be possible [62,70,13,44]. It has also been shown that secure genotype imputation
is feasible and scalable using homomorphic encryption [71,20,36]. Homomorphic encryption was also
used for genomic variant querying [19], regression analysis for rare disease variants [68], and inference
using genetic variants in machine learning applications [60]. These methods have added tremendous
algorithmic advances to the field and paved the way for more practical privacy-preserving analysis of
genomes. However, their use in genotype-phenotype database settings has been limited. This is primarily
attributed to two factors. Firstly, homomorphic encryption relies on public key cryptography, which is
designed for client-server scenarios where the client owns the dataset and delegates computation to the
cloud. However, in the context of genotype-phenotype databases, the data owner encrypts the data while
multiple researchers access and analyze it. Secondly, the computational burden associated with homo-
morphic encryption makes it infeasible for applications involving large sample sizes. Both the storage size
of encrypted data (i.e., ciphertexts) and the computation times for homomorphic encryption are several
orders of magnitude greater than those for the original plaintexts [61].

Here, we developed Secure Query Protocols for Genotype-Phenotype Databases (SQUiD), a scalable
framework designed to store and query genotype-phenotype databases in an ultra-secure cloud-based set-
ting using homomorphic encryption. In our approach, we incorporate several key components: a ciphertext
packing storage method to minimize the required storage space for encrypted data, a set of optimiza-
tions we developed to reduce query processing time, and an innovative cryptographic primitive (public
key-switching) to enable homomorphic encryption for multiple users. We demonstrate that SQUiD is
capable of efficiently executing various types of queries on large scale genotype-phenotype datasets, all
the while maintaining the encryption of the data in the cloud. Specifically, it can perform tasks such
as counting the number of patients in a filtered cohort, computing the Minor Allele Frequency (MAF)
of genetic variants in a cohort, calculating Polygenic Risk Scores (PRS) for patients, and generating a
cohort of genetically similar patients in remarkably short timeframes. Our findings highlight the poten-
tial of SQUiD as a valuable tool for secure, timely, and efficient analysis and interpretation of genetic
and phenotypic data. At a time when data breaches are becoming increasingly common in healthcare
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settings, where data is a commodity, SQUiD provides a key resource to safeguarding patient privacy and
enabling data providers to adhere to evolving laws and regulations, while ensuring the democratization
of data.

3 Results

Figure 1: An architecture overview of SQUiD. Initially, the data owner uploads their encrypted genotype and
phenotype to the public cloud. Within the cloud, only authorized researchers are permitted to securely query the
data. Authorization is granted through possession of a key-switching key, which is stored in the key-switching
store. When a researcher initiates a query on the databases, the database responds by encrypting the query result
under the data owner’s public key. Subsequently, the key-switching store transforms this encrypted result to be
under the querier’s key. The encrypted result is then sent back to the querier, who can decrypt it using their own
secret key.

Our conceptual framework allows ultra-secure interactions with encrypted genotype-phen-
otype databases. Our conceptual framework is focused on solving real-world security challenges en-
countered in the storage and querying large-scale genotype-phenotype datasets. These challenges involve
safeguarding the confidential information contained within such data from third party cloud providers
and outside adversaries. Our framework is based on a scenario that involves three parties: the data owner,
the researcher(s), and the public cloud. The data owner, who in many cases could be an organization
such as the National Institutes of Health (NIH), possesses a vast amount of genotype-phenotype data
that can be used for various analyses. Due to the large size of this data and the limited computing power
and resources, the data owner encrypts the data and stores it in the public cloud. Their role is limited to
authenticating clients who have permission to access the encrypted data, and they do not participate in
the computation phase. The client, typically a researcher, seeks to perform computations on the data to
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obtain results. However, due to the large size of the data and the limitations of their computing power, it
is not feasible for them to download, decrypt, and analyze the data locally. The client, therefore, interacts
with the encrypted data deposited to the cloud. An overview of each parties role in the architecture of
SQUiD is visualized in Figure 1. To ensure the privacy and security of sensitive data, the client must
first obtain permission from the data owner to access the encrypted data. The cloud server does not
have knowledge of the information contained in the data and, therefore, performs computations on the
encrypted data using homomorphic encryption. This ensures that the sensitive information is protected
while computations are being performed and the output is provided to the client in the encrypted form.
Figure 2 describes the four key components of our framework: encrypted data storage, access author-
ization, query capabilities, and the API for user-friendly interactions with the database. Unfortunately,
this scenario cannot be realized with traditional homomorphic encryption, which is based on a two-party
(data owner and public cloud) system. In a traditional two-party system, the data owner encrypts the
data with their public key and decrypts the results with their private key. Thus, the researcher cannot
query and decrypt the results since they do not (and should not) have access to the data owner’s private
key. To overcome this challenge, we adopted the concept of the Proxy Re-encryption system and de-
veloped its theoretical realization and practical implementation in homomorphic encryption, which we
call a public key-switching technique [14,42,12,55].

The public key-switching operation serves as a cryptographic primitive facilitating the conversion of
ciphertexts encrypted under one secret key to ciphertexts encrypted under a second secret key, without
the need to decrypt the ciphertexts or possess access to the second secret key (see Methods section for the
mathematical details). This capability holds immense value in establishing secure interactions with an
encrypted database. For example, in SQUiD, the encrypted database can compute a researcher’s query
under the encryption of the owner’s key, convert the computed result from an encryption under the
owner’s key to under the public key of the researcher, and send this encrypted result to the researcher.
Importantly, this conversion takes place without the need to decrypt the query result or disclose any
information about it to the cloud. The researcher can effectuate this conversion by solely providing their
public key, thereby circumventing any security risks associated with sharing their secret key.

When granting access to a new researcher, both the data owner and the researcher collaborate to
create a public key-switching key, which is subsequently added to the key-switching store in the public
cloud (Figure 2B). The key-switching store offers two significant advantages. Firstly, it allows the data
owner to remain offline during any query, as the researcher exclusively interacts with the public cloud
where the pre-calculated and stored public key-switching keys reside. Secondly, the data owner retains
control over data access by managing the inclusion or exclusion of researchers’ public key-switching keys
within the store, thus ensuring the ability to govern data access. We show that performance overhead from
generating a key-switching key and key-switching a ciphertext under the encryption of one key to another
to be less than a second (Supplementary Figure 1). The public key-switching key of each authorized
researcher is stored in a dedicated key-switching store that dynamically expands to accommodate the
number of authorized researchers. We show that the extra storage required for the key-switching store
to be minimal (around 6.6 MB per researcher) (Supplementary Figure 2).
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Figure 2: (A) Data Storage. The owner encrypts their data with a public key, then uses vertical packing to
reduce storage costs before uploading the data to the public cloud. (B) Authorization. The onboarding process
for a new researcher starts with the creation of their public and private key. The researcher sends their public
key to the data owner for authorization. The owner authorizes the researcher by creating a key-switching key to
switch the encryption of data to the researcher’s key, and uploading this key to the key-switching key store in
the public cloud. The data owner can revoke a researcher’s access by removing the key-switching key from the
store. (C) Query. An authorized researcher can submit one of four queries to the public cloud, which performs
the necessary operations homomorphically on encrypted data under the data owner’s key. The result is then re-
encrypted under the researcher’s public key and sent back for decryption. (D) API. We created a command-line
API for researchers to use SQUiD easily. It generates a public and private key for the researcher, sends the public
key to the data owner for authorization, sends queries to the server, and decrypts any encrypted results received
via email or through a returned file.

Vertical packing allows efficient storage of encrypted large genotype-phenotype databases.
We designed SQUiD to handle sensitive genotype-phenotype data from a large number of patients. SQUiD
is specifically tailored to ingest data that has already undergone quality control and is stratified for
population structure correction. Here we represent the data as a table with columns for basic attributes
like age, sex, gender, etc; genotypes for single nucleotide polymorphisms (SNPs); and the phenotype
or disease status of the patients, and rows for each patient in the database (Figure 2A). While each
entry in the table needs to be an integer for the homomorphic encryption libraries we used, continuous
phenotypes can be discretized into integers via scaling (see Supplementary Material for more details). The
encryption of this data introduces additional storage requirements compared to its original unencrypted
form. Consequently, the storage expenses associated with storing large genotype-phenotype databases in
their encrypted state can be substantial. In order to optimize storage within the SQUiD framework, we
adopt a vertical packing approach for our data organization (see Methods). This method involves storing
the genotypes of multiple patients for a single SNP within a single ciphertext. By vertically packing our
data (Figure 2A), we effectively reduce the number of ciphertexts necessary to accommodate a substantial
volume of data, thereby minimizing the associated storage costs. Additionally, this approach enables us
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to perform high-throughput computations on the packed data efficiently, as operations involving packed
ciphertexts, such as the addition of two packed elements, can be executed simultaneously (see Methods
for details). Such packing still enables homomorphic updates (addition of new patients/SNPs/attributes)
to the encrypted database without the need for decryption (see Methods for details).

We benchmarked the storage requirements of SQUiD on four different types of SNPs: ClinVar SNPs,
Illumina Human1M-Duo v3.0 DNA Analysis BeadChip SNPs, Whole Exome Sequencing (WES) SNPs,
and Whole Genome Sequencing (WGS) SNPs. These SNPs can be stored either at a per-chromosome
level or genome-wide in SQUiD. Clinvar contains approximately 70,000 SNPs and Illumina BeadChip
arrays contain approximately 1,072,820 SNPs. We estimated that around 8.2 million and 84 million SNPs
would be observed in exomes and whole genomes at a population level, respectively, by using the data
from 1000 Genomes Project [5]. We have benchmarked the packed storage of SQUiD against an unpacked
homomorphic encryption storage, a storage encrypted with the industry standard AES-128-CBC, and a
plaintext storage that stores SNPs as single bytes for the various SNP sets (Figure 3). We found that the
storage cost for SQUiD is 16,384x better than the unpacked homomorphic storage cost (Figure 3), since
a single ciphertext corresponds to data from up to 16,384 patients. Furthermore, vertical packing also
allows the time for encryption to be reduced 16,384 fold compared to unpacked homomorphic encryption
as fewer ciphertexts need to be encrypted (Supplementary Figure 3).

Figure 3: Plots showing the storage space required to store the ClinVar, Illumina Beadchip, WES, and WGS
SNP genotypes with different schemes. The number of SNPs for WES and WGS is approximated using the 1000
Genomes Project.
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Enabling secure, scalable, and fast analysis of genotypes and phenotypes. We have devised
four encrypted query functionalities within the SQUiD framework. This modular design allows for seam-

(A) Count Query. The count query returns the number of patients that pass (patients that pass the filter in green with yellow
cells indicating passing a condition) a given filter in the query. A black line of best fit for a count query with 16 filters is given
as the equation time (s) = 0.0006(# of patients) + 9.575. Due to the strict linear scaling, the performance of our query can
easily be interpolated by this line of best fit.

(B) MAF Query. The MAF query creates a filtered cohort of patients (patients that pass the filter in green with yellow cells
indicating passing a condition) and computes the MAF of a target SNP for that cohort (purple SNPs). A black line of best fit
for a MAF query with 16 filters is given as time (s) = 0.0006(# of patients) + 14.360

(C) PRS Query. The PRS query returns the PRS score of all patients for a pre-determined PRS SNP set and their effect
sizes. A black line of best fit for a prs query with 4096 filters is given as time (s) = 0.0011(# of patients) + 18.43.
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(D) Similarity Query. The similarity query returns the number of patients with and without a disease from a cohort of
patients similar to a target patient (patients in green). The target patient’s genome is encrypted with the owner’s public
key when it is sent to the public cloud. A black line of best fit for a prs query with 4096 SNPs is given as time (s) =
0.1401(# of patients) + 896.1.

Figure 4: (A, B, C, D) For each query, the plots on the right show the end-to-end query time by varying the
number of filters for the count and MAF query, by varying the number of SNPs and effect sizes (k) for the PRS
query, and by varying the number of SNPs for the similarity query. The query time for SQUiD and the query
time of a plaintext solution are shown for comparison. The plaintext solution works on a database encrypted with
AES. For each plaintext query, the necessary components for the query are decrypted and then computed on.

less implementation of additional functionalities to accommodate diverse analysis requirements. Our
queries include count, MAF, PRS and similarity. Figure 2C depicts how querying works under the public
key-switching framework.

Count queries within the SQUiD framework ascertain the number of patients satisfying specific filters
or equality checks. For example, a count query could count the number of patients with type-2 diabetes
(T2D), whose SNP on gene TCF7L2 has a heterozygous alternative allele. MAF queries are employed
to compute the MAF for a given target SNP within a filtered patient cohort. For instance, SQUiD
can compute two MAF queries: one for a target SNP on the TCF7L2 gene within a cohort of patients
with T2D, and another within a cohort of patients without T2D to study correlations between SNPs
on the TCF7L2 gene and T2D. We can further add many different filters to build the cohort such
as constraining it to patients with homozygous SNPs on a gene of interest. PRS queries involve the
calculation and return of the PRS for all patients given a list of GWAS SNPs and their coefficients.
PRS queries require only the coefficients and SNPs to be supplied post training such as those found
on the PGS catalog [47]. Finally, similarity queries take a target patient’s encrypted genotype as input,
build a cohort of genetically similar patients in the database through a scoring function like the squared
euclidean distance, and output the number of similar patients with and without a particular disease
of interest (see Methods and Supplementary Material). To evaluate the performance of each query, we
conducted benchmarking against a plaintext implementation. The plaintext implementation keeps the
genotype-phenotype data encrypted at rest (as mandated by the policies) and decrypts the necessary
components of the data to compute the query in plaintext, while SQUiD keeps the data encrypted both
at rest and during computation, enabling much stronger security as the data no longer has visibility to
the computing party. This plaintext implementation models the current data access guidelines set by
initiatives such as the dbGaP and UK Biobank where researchers download encrypted data, decrypt the
data locally, and then analyze the data in plaintext [3].

On a dataset with 16,384 patients (i.e.,the maximum number of patients that can be stored in a single
ciphertext) SQUiD can perform a count query with 16 filters in 15 seconds (compared to 0.013 seconds
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in plaintext), a MAF query with 16 filters in 20 seconds (compared to 0.027 seconds in plaintext), a
PRS query with 1,024 SNPs in 5 seconds (compared to 0.8 seconds in plaintext), and a similarity query
with 1,024 SNPs in 19 minutes (compared to 0.9 seconds in plaintext). We also show that our queries
are easily parallelizable due to the linear nature of the queries. We benchmarked them in multi-thread
environment and observed that the performance is significantly improved with more cores (Figure 5).

Our data show that all the functionalities implemented in SQUiD exhibit linear scaling relative to the
size of their inputs. Specifically, the count and MAF queries scale linearly with the number of filters with
a slope of 0.62, the PRS query scales linearly with the number of SNPs with a slope of 0.001, and the
similarity query scales linearly with the number of SNPs given for the target patient with a slope of 0.068
(Figure 4). Our slopes consistently indicate a slow growth in runtime. Notably, the runtime of all protocols
is proportional to the number of patients in the database and independent of the total number of SNPs
in the database. A plaintext implementation of our protocols would also scale linearly with the number
of patients in the database and the number of filters and SNPs involved in the query. Thus, SQUiD
achieves optimal linear scaling as expected from a plaintext implementation, which signifies its ability to
efficiently adapt to larger datasets in the future. Furthermore, with the expected decrease in the price
of cloud computing in the future, the steady runtime observed for all queries ensures that increasing
the size of the databases beyond the limits benchmarked in this study will yield steady performance
outcomes, enabling real-world applications of SQUiD with biobank-scale data. We also show that the
SQUiD’s communication cost for all queries except PRS query is constant regardless of the number of
patients in the database while communication cost increases with the number of patients for all query
types in plaintext (Supplementary Figure 4 and 5). Overall the communication is minimal. Comparable
to an instagram post which has a maximum size of 4.3 MB (1,080 by 1,350 pixels) [1], most of our
protocols use less than 50 MB.

We also developed an API and a command line interface (CLI) to facilitate interaction with SQUiD,
thereby enhancing its usability for researchers (Supplementary Figure 6). The API and CLI enable
researchers to execute various queries and perform essential functions through simple commands. For
instance, researchers can generate private and public keys required for encryption and authorization, send
the public key to the data owner, execute all desired queries (See Supplementary Table 1 for API query
parameters), and decrypt the returned query results. The data owner computes a public key-switching
key, which is pushed to the cloud in the encrypted form. The API simplifies the deployment process for
researchers who are not experts in privacy and security when utilizing SQUiD.

SQUiD can reproduce known genotype-phenotype relationships in UK Biobank. We studied
the relationship between patients with T2D and a control group in the UK Biobank dataset to assess
the accuracy of the MAF and count queries in SQUiD. Firstly, we calculated the MAFs for the top five
SNPs with the largest difference between T2D patients and the control group patients (Figure 6A). We
compared the MAFs computed by SQUiD with the MAFs computed in plaintext to show there is no
difference between them. Secondly, for these same five SNPs, we computed a chi-square statistic by using
the allele counts for the control and case group (T2D in our case) [13]. We used the count query in SQUiD
to get the allele counts and then computed the chi-square statistic in plaintext. The chi-square scores
obtained from SQUiD queries are identical to the plaintext computation results (Figure 6B). Note that
SQUiD does not directly execute GWAS, it has the capability to generate cohorts with specific attributes.
We have shown that it can create accurate cohorts that will result in accurate GWAS demonstrated by
the GWAS for T2D (Figure 6).

We further evaluated the accuracy of SQUiD by replicating the sparse PRS calculations for standing
height and T2D performed in the UK Biobank PRS study [65] using both plaintext calculations and
the SQUiD PRS query. The standing height and T2D PRS use 51,209 and 183,830 SNPs, respectively.
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Figure 5: Plots of count, MAF, PRS, and similarity query time by the number filters, effect sizes (k), and SNPs
in a varying the number of threads. We benchmarked the time for each query on a database with 16,384 patients
using 2, 4, 8, and 16 filters for the count and MAF queries, and 1024, 4096, and 16384 SNPs for the PRS and
similarity queries.
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Figure 6: (A) Histograms of the MAFs of SNPs exhibiting the most substantial difference between control and
T2D patient groups. The MAFs were calculated with SQUiD (orange), and in plaintext (blue). (B) Plot of -log(p-
value) for the SNPs in (A).

They are the traits with the most number of SNPs involved in PRS calculations in the UK Biobank.
We performed these calculations for 20,000 randomly selected patients in the UK Biobank. Our analysis
revealed no observable difference in the PRS distribution and scores between plaintext and SQUiD queries
(Figure 7). Notably, the sole discrepancy between the calculations arose from a marginal loss in precision.
To accommodate the requirements of using integers in SNP effect sizes in SQUiD PRS queries, the effect
sizes were multiplied by 100,000 and converted to integers. However, the resulting precision loss was
minimal (Figure 7B,C).

4 Discussion

We introduce SQUiD, a novel, secure, and user-friendly queryable genotype-phenotype database imple-
mented using homomorphic encryption. We envision SQUiD as a valuable tool for data owners, including
hospitals, non-profit academic research institutions, and government health agencies, offering them a se-
cure means to store genotype-phenotype data in the cloud while enabling authorized researchers to
securely analyze this data. We propose that our system has the potential to replace existing genotype-
phenotype databases, delivering enhanced security measures without compromising functionality. By
employing homomorphic encryption, SQUiD offers a robust, scalable, and practical solution to mitigate
privacy risks associated with sensitive genetic and phenotypic data. We demonstrate this by showing that
SQUiD can scale with increasing numbers of patients and SNPs in a genotype-phenotype database, by
performing a simple GWAS study on UKBB data, as well as by replicating PRS calculations in UKBB
[65]. Note that we benchmarked SQUiD on a m5.8xlarge AWS instance with an Intel Xeon Platinum 8175
@ 3.1 GHz processor and 128 GB of memory. All our query protocols (count query, MAF query, PRS
query, and similarity query) and encryption protocols (setup of the database) were run on single-threads
unless otherwise indicated.

SQUiD leverages homomorphic encryption, which, to date, presented three key challenges. Firstly,
traditional homomorphic encryption was designed for a two-party setting involving a server and a client.
Secondly, it is known to incur a high storage cost. Lastly, analysis with homomorphic encryption tends
to be slow. To overcome the two-party limitation, we developed a novel public key-switching operation.
Note that this is significantly different than multi-key homomorphic encryption used in federated set-
tings [52] as in multi-key homomorphic encryption, all parties own a subset of a single secret key. We
anticipate that the public key-switching operation can be applied beyond our database design, offering
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Figure 7: (A) Boxplots of the PRS score distributions of UK Biobank patients for standing height and type 2
diabetes (T2D) calculated with SQUiD (orange) vs plaintext (blue). (B) A scatter plot of the height PRS calculated
by SQUiD vs. plaintext, where each point represents a patient. The black line is a line of best fit with an R2 of
0.99999996. (C) The same plot as (B) for T2D with an R2 value of 0.99999918.

broader applications in encrypted data sharing and encrypted computing that involve multiple inde-
pendent parties. Furthermore, we demonstrate a significant improvement in storage efficiency through
the application of a well-known vertical packing storage method, achieving a storage enhancement of
16,384 times compared to a naive homomorphic encryption solution. While storing SNP genotypes using
homomorphic encryption increases storage costs relative to state-of-the-art encryption methods like AES,
this approach is indispensable as homomorphic encryption allows execution of functions on encrypted
data. Moreover, although our queries exhibit slower performance compared to plaintext solutions, we
believe that the trade-off between security and performance is at acceptable levels. Moreover, multi-
threading implementation improves the performance significantly. While plaintext queries can execute
nearly instantly, our queries typically take seconds to minutes to complete. However, this performance
overhead is unlikely to significantly impact the usability and utility of the framework for researchers.
This is because the alternative is to download a large database and analyze the data locally, which is
a much more time-consuming and resource-intensive process. Therefore, we believe that our framework
offers a optimal balance of security and performance.

Although encrypted database systems do exist, to the best of our knowledge, none of them offer the
same level of security guarantees and functionality as SQUiD. A developed secure database framework
named CryptDB [56] offers efficient secure data storage and query performance. However, it does not
offer the functionalities provided by SQUiD for two main reasons. Firstly, this framework is unable to
compute the same set of queries as SQUiD. For instance, CryptDB lacks the ability to add and multiply
encrypted database items, a necessary requirement for computing the linear combinations in PRS queries.
Secondly, and more critically, CryptDB exhibits significant information leakage during equality checks
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used in the filtering process in count and MAF queries. Specifically, CryptDB exposes the count of
unique items within the columns used for the equality checks. For genotype-phenotype databases that
store SNPs with just three possible genotypes with known allele frequencies, CryptDB would expose the
patients with the same genotypes for each SNP. This information could be combined with the known and
well-studied population frequencies of each SNP to devise a simple attack that reconstructs the genotype
values for each patient in the database, resulting in a complete breach of security. On the other hand,
SQUiD offers a solution for issues of data protection, data privacy and stigma for researchers, funders,
clinicians and patients. Furthermore the databases that keep data encrypted at rest with AES also do
not provide the same security and functionality as SQUiD. For any query, these databases first need to
decrypt the relevant data and then compute on them exposing the data to attacks. SQUiD can perform
all queries without the need for decryption, significantly improving the security over existing systems.

Privacy-preserving MAF calculations using homomorphic encryption were proposed before [45]. Not-
ably, SQUiD’s MAF query differs from this approach as it computes the MAF within a filtered patient
cohort, where the filtering is done via protocols developed in this work. For a detailed mathematical
exposition of these distinctions, refer to supplementary section 7.12.

We compared our patient similarity queries to existing private patient similarity queries (SPQ).
Many existing SPQ protocols such as Wang et al. [68]privately compute patient similarity under the
secure multiparty computation security assumptions, assuming non-colluding parties. Since SQUiD em-
ploys Homomorphic Encryption (HE), no assumptions about collusion between parties are necessary.
Additionally, our query process involves a single round of communication, with the querying researcher
sending a query to the cloud and receiving a prompt response. In contrast, the protocol outlined in [68]
necessitates multiple rounds.

We also empirically compared SQUiD to [59] due to the similar security settings. The latter pro-
poses a partial homomorphic encryption algorithm that supports only ciphertext addition and scalar
multiplication operations for computing patient similarity using a squared L2-norm. We implemented
the euclidean distance/squared L2-norm protocol [59] to the best of our understanding for comparison
purposes. Supplementary Figure 7 shows that SQUiD can compute the squared L2-norm faster for larger
datasets with an approximately 4x speed up for datasets with 50,000 patients.

We envision three use cases for this framework: 1- Funding agencies such as NIH can employ this
framework to disseminate data currently available through the NIMH Data Archive (NDA) or Database
of Genotypes and Phenotypes (dbGAP). 2- Multi-site consortia can employ this framework to dissem-
inate data to their members while keeping the data secure in cloud storage. 3- Learning health systems
can employ this framework to disseminate data to their researchers while keeping the data secure in
cloud storage. Our secure framework is designed to enable users to form specific patient cohorts based
on desired characteristics. Within this system, users can also determine the distribution of PRS for a
particular disease across various patient populations. For example, one can explore the PRS distribution
for schizophrenia among patients diagnosed with bipolar disorder. Additionally, the framework allows
for the analysis of disease outcomes in patients who share genetic similarities with a specific patient of
interest, facilitating more personalized and targeted approaches to healthcare and research.

In conclusion, SQUiD presents an innovative and impactful solution for a world grappling with es-
calating concerns surrounding security and privacy of genetic and clinical data. By circumventing the
challenges posed by the ever-changing, heterogeneous landscape of data protection laws, SQUiD offers a
robust framework to safeguard sensitive information. Moreover, we firmly believe that SQUiD has the
potential to enhance patient trust by ensuring the security and controlled utilization of their data for
specific research purposes, thus has the potential to increase participation in genetic research. Lastly,
although this study focused on genotype-phenotype analyses for proof of principle, SQUiD’s modular
design allows for the integration of other data modalities and analytic approaches, as the need arises.
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This adaptability will be critical at a time when precision medicine research is rapidly expanding to
encompass more complex molecular and clinical datasets.

5 Code Availability

The code for SQUiD, the SQUiD API, and the SQUiD CLI is available on GitHub for non-commercial
use at https://github.com/G2Lab/SQUiD/.
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7 Methods

7.1. Security and threat models. Our security assumption is based on the current data-sharing
policies within many public and private entities. That is, the data owner and authorized researchers are
mutually trusted. Thus, authorized researchers are allowed to query the genotype-phenotype data that
do not threaten the confidentiality of patients according to the data use agreements. The inherent data
leakage from query results and potential inference attacks from authorized researchers are therefore not
considered.

Meanwhile, genotypes and phenotypes as well as a subset of the queries are protected from the
public cloud and attackers. More precisely, we consider the following three threat models for database
management [35,10]:

– Snapshot attackers that obtain a snapshot of the database
– Persistent passive attackers that compromise the cloud server to obtain not only the database but

also queries and all server’s operations
– Active attackers that fully compromise the server to deviate from pre-designed protocols for queries

In our SQUiD construction, snapshot attackers receive ciphertexts of the BGV homomorphic en-
cryption scheme. We follow the Homomorphic Encryption Standard [8] to choose BGV parameters that
provide a 128-bit security level against known attacks. Consequently, the security towards snapshot at-
tackers inherits from BGV’s IND-CPA security, i.e., the ciphertexts are almost indistinguishable from
random characters.

For persistent passive attackers, there are many ways that querying encrypted databases can result in
private information leakage [29,41,49,53]. Most prominent ones include leakage through (1) access pattern,
which determines if certain records are consistently accessed; and (2) search pattern, which indicates if
and when an encrypted query is repeated. Many cryptosystems, including property-preserving encryption
(PPE) [7,48] and searchable encryption (SE) [26,64], fail to protect against these types of information
leaks. This is primarily due to their inherent functionality, which inadvertently discloses properties of
datasets, thereby compromising privacy. However, homomorphic encryption (HE) schemes such as BGV
provide a solution that does not leak access and search patterns [43]. Using HE to encrypt databases
propels algorithms that have to touch all the relevant records in the dataset for a single query. For
example, to find out whether an encrypted input is in the encrypted database, the input needs to be
compared with every single encrypted value in the database homomorphically. This prevents access
pattern leakages since the access pattern remains uniform for all queries. In addition, search pattern
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leakages are prevented due to the IND-CPA security under carefully selected parameters, since encrypted
queries are indistinguishable from one another, regardless of their contents [43].

It is worth mentioning that persistent passive attackers do not learn additional information about the
database from knowledge of the server’s computation patterns. Precisely, when an authorized researcher
sends a query f , the server performs a series of operations on the encrypted database Enc(m) to obtain
Enc(f(m)). The function f is in plaintext for Count, MAF and PRS queries and contains ciphertexts for
similarity queries. In all these cases, the computation pattern for the server is predefined and contains
operations such as homomorphic additions, multiplications, and key switching. As such, inference attacks
from persistent passive attackers are also prevented, as only computational patterns of different functions
are revealed but not any computation result f(m).

While the problem of defending against active attackers is challenging and still unsolved [34,35], our
SQUiD construction provides reasonable mitigation towards active attackers. Namely, active attackers
can deviate from pre-determined operations in SQUiD and therefore send wrong computation results to
authorized researchers, but they can not learn information about the database.

7.2. Homomorphic Encryption. Encryption is a procedure that maps the plaintext data into its
ciphertext, such that the plaintext can not be deduced from the ciphertext without knowing the secret
key. Homomorphic encryption (HE) is a class of encryption schemes with an additional property: com-
putations can be performed over ciphertexts without knowing the secret key. Figure 8 visualizes this
property in a commutative diagram.

m1, . . . ,mt f(m1, . . . ,mt)

Enc(m1), . . . ,Enc(mt) Enc(f(m1, . . . ,mt))

f

Enc

f̃

Decsk

Figure 8: The homomorphic evaluation of a function f on ciphertexts

HE ciphertexts contain a noise component, whose value grows with homomorphic operations. This
is controlled by pre-fixed HE parameters, which is also used to set a noise budget. If the number of
operations in an algorithm is too large such that the noise consumption exceeds the budget, then the result
can no longer be decrypted correctly. To avoid this, a bootstrapping operation is introduced to refresh
the ciphertexts, enabling the fully homomorphic encryption (FHE) schemes that support evaluations of
arbitrary circuits for different operations including multiplications and additions (i.e., arbitrary f) [31].
Detailed realizations of homomorphic operations are included in the supplementary material.

7.3. Brakerski-Gentry-Vaikuntanathan scheme. The Brakerski-Gentry-Vaikuntanathan (BGV)
scheme is an FHE scheme that relies on the hardness of the Ring Learning-with-error (RLWE) prob-
lem [51]. Its basic building blocks are homomorphic addition ADD and multiplication MULT. Since any
computable function can be realized with additions and multiplications, the homomorphic evaluation of
any computable f can be realized with ADDs and MULTs. Bootstrapping in BGV is a very costly oper-
ation [22,39]. It is, therefore, common to use BGV in the levelled manner, i.e., to choose the HE noise
parameter with large noise capacity such that computations can be performed without bootstrapping.
Our study uses the levelled version of BGV.

BGV allows efficient computations in the amortized sense. It supports Single Instruction Multiple
Data (SIMD) operations, which allows multiple values to be packed into one BGV ciphertext, enabling
computations over a single ciphertext to be performed on all packed values in an efficient manner [63].
Details of the SIMD packing are included in the supplementary material.
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7.4. Public key-switching. In general, HE binary operations only support input ciphertexts that
are encrypted under the same key. Therefore, in the scenario of multiple users each holding their own
keys, there is a natural need to convert a ciphertext encrypted under one key to another ciphertext
that encrypts the same message under a different key. A naive approach is to decrypt and re-encrypt
with a different key, but this exposes the original secret key and the message to the party that performs
this procedure. To prevent such leakages, the above procedure can be done homomorphically such that
the evaluation party can not access the message in the clear. Such a technique is called key switching.
Mathematically, when converting the key system from (pk, sk) to (pkast, sk∗), the evaluation party does
not need to know sk, but a key-switching key ksk(sk→sk∗) which leaks no information about secret keys.

Our scenario exploits the key-switching key ksk(sk→sk∗). While the traditional key-switching key gener-
ation uses both sk and sk∗, only sk and pk∗ are needed in our design, hence it is called public key-switching.
This design preserves the confidentiality of sk∗ as it does not need to be shared to compute the key-
switching key. In our scenario, the secret key of the authorized researchers does not need to be sent to the
data owner to generate the key-switching key. Please see supplementary material for the mathematical
details of the realization of public key-switching with BGV and how we control the increasing noise.

7.5. Database construction with vertical packing. The dataset in SQUiD is represented as a
matrix M = {m(i,j)|1 ≤ i ≤ r, 1 ≤ j ≤ k}, where r is the number of patients, k is the number of
attributes (features), and the value in position (i, j) corresponds to the j-th feature of the i-th patient
(e.g., the genotype of j-th SNP of i-th patient). We use the term vertical or horizonal for the direction
in the matrix, which corresponds to a feature for all patients or attributes, respectively.

As we explained earlier, BGV supports packing multiple messages into one ciphertext. SQUiD packs
elements vertically : let ℓ denote the packing capacity in a ciphertext, then the r elements in the jth
column are encrypted into ⌈r/ℓ⌉ ciphertexts

ct(s,j) = Enc
(
{m(ℓ·s+1,j),m(ℓ·s+2,j), · · · ,m(ℓ·(s+1),j)}

)
where 1 ≤ s ≤ ⌈r/ℓ⌉ and mi,j is considered as 0 for i > r. Overall, entire dataset is encrypted into
C = {ct(s,j) | 1 ≤ s ≤ ⌈r/ℓ⌉, 1 ≤ j ≤ k}.

The update, insert, and delete operations on a vertically packed encrypted database vary slightly
from their typical implementations.

– Update: To update a single value m′ at index i, j, a new encryption of ct(s,j) where s = ⌈i/ℓ⌉ needs
to be uploaded where

ct(s,j) = Enc
(
{m(ℓ·s+1,j),m(ℓ·s+2,j), · · · ,m′, · · · ,m(ℓ·(s+1),j)}

)
– Insert: To insert a new row at r+ 1, if ciphertexts are not fully packed (i.e., ℓ ∤ r), then the last row

of packed ciphertexts contains zeros at row index r+1, which are updated. Otherwise, the following
k fresh ciphertexts are added, forming the last row of C.{

ct(s+1,j) = Enc
(
{m(ℓ·r+1,j), 0, · · · , 0}

)
, 1 ≤ j ≤ k

}
– Delete: To delete an entry at index i, j, a plaintext, which encodes zero at the i mod ℓ-th slot and

one elsewhere is multiplied with ct(⌈i/ℓ⌉,j).

Note that update and insert operations both upload new ciphertexts with low noise, but the delete
operation increases the noise with a plaintext-ciphertext multiplication. To bound the noise growth, we
set a number α for the maximum times of consecutive delete operations. On the (α+1)-th time to delete
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an entry, an update should be performed instead, after which α deletes are again allowed. For SQUID
with our experimental parameters, the value α is taken to be 1.

7.6. Functionalities. In this section, we describe the supported functionalities of SQUiD and the
evaluation procedures using homomorphic encryption.

Count queries The first category of queries is to count the number of patients whose attributes satisfy
certain conjunctive (AND) and/or disjunctive (OR) relations. Its evaluation contains two stages, filtering
and vertical aggregation.

Filtering Suppose the researcher specifies τ > 1 selection criteria (either in plaintext or ciphertext) and
their relation (AND and/or OR). The filtering stage outputs a predicate vector p composed of r encrypted
binary numbers. If the element p[i] decrypts to 1, then the patient i is in this pre-defined cohort.

First, we explain how to homomorphically check a single selection criterion, which amounts to per-
forming a homomorphic equality test between the given value in a query and a value in the matrix. The
key idea is to find a polynomial representation, which can be evaluated as a sequence of homomorphic
additions and multiplications.

Function EQTest⇐⇒ Polynomial⇐⇒ Sequence of ADDs and MULTs

Without loss of generality, we consider the inputs of EQTest as genotype values in {0, 1, 2}, and denote
them as u and v. As shown in Table 1, this function determines a unique truth table.

v
u 0 1 2

0 1 0 0
1 0 1 0
2 0 0 1

Table 1: The truth table of EQtest(u, v) for SNPs

We derive the polynomial representation of EQTest(u, v) as follows. Let v be an encrypted matrix
value, and u be the query value, which can be either in the clear or encrypted depending on the researcher.
If u is provided in the clear, then we can interpolate the u-th column of the truth table 1 into a degree-2
polynomial Fu with input variable v. If u is also encrypted, then we precompute a polynomial F of degree
4 that maps 0 to 1 and {±1,±2} to 0, whose input variable is u− v ∈ {0,±1,±2}.

Second, we explain how to homomorphically combine the results of multiple equality checks using
AND and OR. Let {(uk, vk)}τk=1 be the set of (encrypted or unencrypted) queries and (encrypted) matrix
values, then for each patient i we compute the expression homomorphically as Equation (1), where d and
b are constants in Table 2. The evaluation decrypts to 1 if the data of the patient i matches the selecting
criteria, and 0 otherwise.

xi = d+
τ∏

k=1

[b+ EQTest(uk, vk)] (1)

Vertical Aggregation Suppose each ciphertext provides ℓ SIMD slots, then the predicate vector for r

patients is batched into ⌈r/ℓ⌉ ciphertexts. The procedure of summing over these batched messages is a
vertical aggregation.

Our design fully exploits the advantages of parallel computing. Namely, we perform O(r/ℓ) homo-
morphic additions with additive depth O(log (r/ℓ)) to obtain one ciphertext, whose ℓ components are
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Query type b d

Conjunction 0 0
Disjunction 1 1

Table 2: Constants in circuit (1) [46]

then aggregated with O(log ℓ) homomorphic rotations and additions. Please see supplementary material
for details of homomorphic addition and rotations with BGV.

PRS queries The second category of queries is to obtain polygenic risk scores of all the patients.

Definition 1. The polygenic risk score (PRS) of a patient is a linear combination of values of attributes
in a subset S. For given coefficients (i.e.,effect sizes) {βj}j∈S, the PRS for patient i is fi =

∑
j∈S βj ·

m(i,j), where m(i,j) is the genotype of the j-th SNP for i-th patient.

The PRS for each patient can be calculated with homomorphic multiplication and additions. Please
see supplementary material for details of homomorphic addition and multiplications with BGV.

Horizontal aggregation PRS queries aggregate information horizontally. We use parallel computing to
minimize the execution time, and as can be seen from the Results section, answering PRS queries is
relatively fast.

MAF queries The third category of queries is to calculate the minor allele frequency for a target SNP
of a filtered cohort of patients.

Definition 2. Minor allele frequency (MAF) is the frequency at which the minor allele occurs in a given
population or a cohort. Let p be the predicate vector for r patients, where p[i] indicates whether the patient
i is in the cohort. Then, for the dataset M = {m(i,j)}, the MAF for SNP j with p is

AF(p, j) =

(
r∑

i=1

m(i,j) · p[i]

)
/

(
2

r∑
i=1

p[i]

)
.

MAF(p, j) = min(AF(p, j), 1− AF(p, j))

As the homomorphic division and minimum comparisons are currently expensive operations, the
cloud instead computes the numerator and denominator homomorphically and then returns the results
to the clients for decryption, division, and the minumum operation.

The plaintext modulus can be adjusted to be as low as the number of patients in the database,
the MAF query may produce the numerator distributed across multiple slots if twice the number of
patients exceed the plaintext modulus. These slots adding up to the overall numerator value, and it is
the responsibility of the client to aggregate these values, calculating the final numerator. The subsequent
steps for finalizing MAF calculations remain unchanged.

Similarity queries The fourth category of queries determines whether a specific individual (denoted
as d) is genetically similar to patients with a certain disease or those without. There are two similarity
metrics for researchers to choose from.

Definition 3. Suppose the database stores k attributes and the last attribute is the disease.
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1. The L2-distance similarity score SL2(i, d) is defined as

SL2(i, d) =
k−1∑
j=1

(m(i,j) − dj)
2

2. The Jaccard similarity score SJcd(i, d) is defined as

SJcd(i, d) =
k−1∑
j=1

EQTest(m(i,j), dj)

where EQTest(·, ·) equals to 1 if two inputs are equal and 0 otherwise.

In other words, the similarity score S(·)(i, d) horizontally aggregates the result of the squared difference
or EQTest.

As a result of this query, the researcher will receive three encrypted values r1, r2, r3 from the cloud.
The value r1 is the number of patients with this disease, r2 is the number of patients that are genetically
similar to the target d, and r3 is the number of patients with this disease that are similar to the target d.
After decryption, the researcher compares the ratio r3/r1 with (r2−r3)/(r−r1) and determines whether
the individuals similar to target individual d are more likely to have the disease.

These three values are homomorphically computed as follows.

1. Similar to the filtering method in Section 7.6, the cloud computes a predicate p for patients with
this disease, whose vertical aggregation gives r1.

2. To count similar patients, the cloud computes the similarity score S(·)(i, d) between the target d

and patient i. Then the cloud homomorphically checks if S(·)(i, d) is greater than the pre-determined
threshold t, which is done by evaluating the interpolation polynomial of degree Range(S(·)(i, d))−1. In
our implementation, We use the Paterson-Stockmeyer method [54] to evaluate polynomials efficiently.
As such, we get a predicate ps whose vertical aggregation gives r2.

3. Multiplying the two predicates p and ps component-wise realizes the AND relation and leads to
another vector, whose vertical aggregation gives r3.
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Supplementary Information

7.7. Security of Homomorphic Encryption and RLWE. Most widely-used homomorphic encryp-
tion schemes [17,16,28,23], including the BGV scheme we employed, rely on the hardness of a mathem-
atical problem called the Ring Learning With Errors (RLWE) problem, i.e., the ring version of Learning
with Errors (LWE) problem. The hardness of the LWE problem has served as a common assumption due
to its quantum reduction to a hard lattice problem proposed by Regev [57] and its robustness against
various attacks [15,11]. Later, Lyubashevsky et al. [51] introduced the RLWE problem and demonstrated
its reduction to the worst-case lattice problems over ideal lattices.

Compared to LWE-based cryptographic schemes, RLWE-based schemes are more efficient, especially
for power-of-2 cyclotomic rings [58].

To delve deeper into the RLWE problem, we introduce the following notation: Φ2n(X) represents
the 2n-th cyclotomic polynomial, an integer-coefficient polynomial ring R = Z[X]/Φm(X) where Φm(X)

represents the m-th cyclotomic polynomial. a modulus Q, an error distribution χ, and ← for a uniform
sampling.

Given a secret s ∈ RQ where RQ = R/QR, the hardness of RLWE guarantees that the following two
distributions in RQ ×RQ are (computationally) indistinguishable:

Ds = {(a, b) : a← RQ, e← χ, b = as+ e},Drand = {(a, b) : a, b← RQ}

As such, the secret s is masked using a pair of elements, which are indistinguishable from two uniform
elements. Parameter choices of RLWE-based HE schemes depend on the state-of-the-art attacks on the
LWE problem. Concrete parameters are generally estimated following [9], which are also standardized in
the white paper [8].

7.8. Experimental Setup and HE parameters. We benchmarked SQUiD on a c4.8xlarge AWS
instance with an Intel Xeon E5-2666 v3 @ 2.9 GHz processor and 60 GB of memory. All our query
protocols (count query, MAF query, PRS query, and similarity query) and encryption protocols (setup
of the database) were run on single-threads.

For all our benchmarking, we employed parameters conforming to the 128-bit security standards set
by the Homomorphic Encryption Standard [8]. Specifically, we set n to 32,768, logq to 880, and p to
131,071, where n is the dimension, q is the ciphertext modulus, and p is the plaintext modulus. With
these parameters, the slot size is 16,384, enabling us to store up to 16,384 patients in a single ciphertext.

7.9. API Parameters for Queries. Count : Our simplest query counts the number of patients who
pass a filter. This filter can be either conjunctive (And) or disjunctive (Or) and consist of only equality
causes. For example in figure 3, we have the query “COUNT WHERE SNP1 == 1 and sex = 1” which will
count the number of female patients where the first SNP is 1. We compute this query by first computing
a predicate for each patient if they pass the filter. Since homomorphic encryption only supports addition
and multiplication, we compute the filter consisting of AND gates, OR gates, and equality function using
polynomial approximations. The domain of the inputs to all these functions is limited to (0,1,2) for SNPs
and (0,1) for all other variables in our database. Thus, the degree of these polynomials is small which
keeps SQUiD performant.

MAF : Our minor allele frequency (MAF) query computes the MAF of a target SNP on a filtered
cohort of patients filtered using a similar filtering technique from the count query. Our MAF queries
return two values, the allele count and the number of filtered patients times two. The researcher has to
finalize the MAF computation by dividing the returned allele count by the returned number of filtered
patients times two. We move the division operation to the research because division is an expensive
operation to perform homomorphically.
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Query Parameters Query

Count Filter: array of pairs of ints
Conjunctive: boolean

Filter is [(1,1),(3,1),(4,0)]
Conjunctive is 1

Returns the number of patients in the
database that have a first SNP with value
1, third SNP with value 1, and fourth
SNP with value 0.

MAF
Filter: array of pairs of ints
Conjunctive: boolean
Target SNP: int

Filter is [(1,1),(3,1),(4,0)]
Conjunctive is 0
Target SNP is 2

Returns the MAF for SNP 2 of patients in
the database that have a first SNP with
value 1, third SNP with value 1, or
fourth SNP with value 0.

PRS PRS: array of pairs of ints

Parameters are [(1, 4), (2, 10), (5, -4)]

Returns the PRS score for each patient by
summing up the multiplication of the first
SNP by 4, the second SNP by 10, and the
fifth SNP by -4

Similarity
Target patient: ciphertext
Threshold: int
Disease column index: int

Target patient is MO8v3J7kJt (Encrypted)
Threshold is 10
Disease column index is 100

Returns the number of patients with and
without a disease at column index 100
who are similar to the target patient by a
threshold of 10 using a L2 similarity score.

Supplementary Table 1: List of API parameters for count, MAF, PRS, and similarity queries with examples.

PRS : Our polygenic risk score (PRS) query computes a PRS given a set of SNPs and a set of effect
sizes. A PRS score is calculated with a linear combination of the SNP and the effect sizes which we
can naturally compute using homomorphic encryption. The effect sizes, which are often represented as
floating point numbers, are scaled to integers within SQUiD as SQUiD only supports integer inputs. The
resulting scores are scaled down accordingly.

Similarity : The similarity query counts the number of patients with and without a disease from a
cohort consisting of patients similar to the target query patient. This target patient is encrypted with the
data owner’s public key before it is sent to the cloud to protect the target patient data. To compute the
similarity query, we first compute a similarity cohort by scoring the similarity of the target patient with
every patient in the database. We score patients based on their squared Euclidean distance (squared L2
distance) from the target patient. If these scores are beneath a predetermined threshold, the patient is
considered similar to the target patient and added to the similarity cohort. Next, we count the number
of patients with and without a disease in this cohort.

7.10. The BGV scheme. Brakerski-Gentry-Vaikuntanathan (BGV) [17] is a well-known lattice-based
homomorphic encryption scheme that allows for computations over encrypted data. Its lattice-based
structure further provides reasonable quantum resistance. Realizing computations as sequences of addi-
tions and multiplications, BGV provides a large computation capacity with reasonable parameter choices.
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Furthermore, it supports computations in a SIMD manner, which significantly enhances the amortized
performance.

Below we describe the basic procedures in BGV, the realization of public key-switching and its noise
control. Mathematical and cryptographic notations are listed in Table 2.

Mathematical Basics:
t plaintext modulus
Q ciphertext modulus
Z set of integers
Zt the ring of integers modulo t, i.e., Zt = Z/tZ
ZQ the ring of integers modulo Q, i.e., ZQ = Z/QZ
X variable of polynomial
R the cyclotomic ring Z[X]/

(
Φm (X)

)
where Φm (X) is the m-th cyclotomic polynomial. The

degree of Φm (X) is n = ϕ (m), where ϕ(·) denotes the Euler totient function.
Rt Zt[X]/Φm (X)
RQ ZQ[X]/Φm (X)
HE Parameters:
χter uniform ternary distribution with coefficients from {−1, 0, 1}
χerr error distribution of scheme, typically a discrete Gaussian distribution unless specified oth-

erwise
Supplementary Table 2: Notations of BGV homomorphic encryption scheme

Key Generation, Encryption and Decryption Sample the secret key sk from χter, and the public
key is computed as follows

pk =
(
[a · sk + te]Q ,−a

)
∈ R2

Q

where a← uQ and e← χerr. Anyone can see the public key, but this leaks no information on the secret
key sk, as guaranteed by the hardness of the ring learning-with-errors (RLWE) problem.

With the public key, anyone can generate a ciphertext for a plaintext m by computing

ct = Encpk(m) =
(
[[m]t + u · pk0 + te0]Q , [u · pk1 + te1]Q

)
where u← χter and e0, e1 ← χerr. Due to the randomness in encryption, ciphertexts of the same plaintext
m are always not identical, reflecting the IND-CPA security which avoids the search pattern leakage.

The relationship between a message m and its ciphertext (ct0, ct1) always satisfies

ct0 + ct1 · sk = [m]t + tv (mod Q)

where v = u · e+ e1 · sk + e0 is the noise term.
Only those knowing the secret key sk will be able to decrypt. Decrypting a ciphertext ct = (ct0, ct1)

is to calculate
[ct0 + ct1 · sk (mod Q)]t ,

and it decrypts to the correct message m if the noise term v is lower than ⌊Q/t⌋.

Public Key-Switching The key-switching technique is used to switch the secret key of a given cipher-
text without decryption. Given a ciphertext ct that encrypts a message m under secret key sk, the goal
is to obtain a new ciphertext that encrypts the same message m under another secret key sk∗.

To compute this, the algorithm requires an additional ciphertext that encrypts the secret key sk under
sk∗, which is called the key-switching key ksk(sk→sk∗). In the BGV scheme, this key is derived from sk∗,
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but we propose an alternative derivation using pk∗, the corresponding public key of sk∗, as follows:

ksk =
(
[sk + u∗ · pk∗0 + te∗0]Q , [u∗ · pk∗1 + te∗1]Q

)
∈ R2

Q

where pk∗ = (pk∗0, pk∗1), u∗ ← χkey and e∗0, e
∗
1 ← χerr. In other words, ksk is just Encpk∗(sk), i.e. the

encryption of sk under pk∗.
With ksk and (ct0, ct1) which decrypt to m under sk, we can construct (ct∗0, ct

∗
1) which also decrypt

m but under sk∗. Precisely, we construct

(ct∗0, ct
∗
1) =

(
[ct0 + ct1 · ksk0]Q , [ct1 · ksk1]Q

)
.

Therefore,

ct∗0 + ct∗1 · sk
∗ = ct0 + ct1 ·Encpk∗(sk)0 + ct1 ·Encpk∗(sk)1 · sk∗

= ct0 + ct1 · (Encpk∗(sk)0 + ·Encpk∗(sk)1 · sk∗)

= ct0 + ct1 · (sk + tv∗)

= m+ t(v + ct1 · v∗) mod Q,

where v∗ = u∗ · e∗ + e∗1 · sk
∗ + e∗0, verifying (ct∗0, ct

∗
1) which also decrypts m but under sk∗.

Reducing noise during public key-switching The public key-switching above has noise component
ct1 · v∗, whose size can be further reduced by two methods: coefficient digit decomposition [18], and a
temporary enlargement of ciphertext modulus [32]. We combine the two methods in an approach similar
to the Section 4.3 of [37], where a ciphertext of modulus Q =

∏ℓ
j=1 Dj is decomposed into ℓ coprime

and odd digits and the expansion factor P is also odd and coprime to Q.
As such, the key-switching key ksk(sk→sk∗) is no longer a ciphertext with two components, but a matrix

of dimension 2×ℓ whose j-th column is Encpk∗(RD∗
j sk), where Ďj := D1 · · ·Dj−1 is the product of digits

up to but not including Dj . While [37] uses sk∗ to generate the key-switching matrix, our approach only
requires pk∗ in the new key system.

Homomorphic operations Adding two ciphertexts ct = (ct0, ct1) and ct′ = (ct′0, ct
′
1) that encrypt m

and m′ with a same key sk respectively gives

(ct0 + ct′0) + (ct1 + ct′1) · sk = [m+m′]t + t(v + v′ + u) (mod Q),

so the ciphertext ([ct0 + ct′0]Q, [ct1 + ct′1]Q) is an encryption of m + m′ (mod t) under almost additive
noise.
Multiplication of two ciphertexts is more complex, which involves taking the tensor product of two
ciphertexts as polynomial vectors to obtain (ct0ct′0, ct0ct

′
1 + ct1ct′0, ct1ct

′
1). One can check that

ct0ct′0 + (ct0ct′1 + ct1ct′0) · sk + ct1ct′1 · sk
2 = m ·m′ + tv0 (mod Q)

where v0 = m · v′ +m′ · v + v · v′.
Here, an additional step is needed for the term with sk2. If we consider (0, ct1ct′1) as a ciphertext with

secret key sk2, then performing the key switching procedure with the key ksksk2→sk gives a ciphertext
(ct′′0 , ct

′′
1). The noise control in this step is similar to the previous section. The final output of the

homomorphic multiplication is (ct0ct′0 + ct′′0 , ct0ct
′
1 + ct1ct′0 + ct′′1).

SIMD Batching The BGV scheme supports homomorphic operations on multiple plaintext slots
simultaneously. This follows from the fact that the cyclotomic polynomial Φm (X) of degree n splits
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modulo t into ℓ irreducible factors of same degree n/ℓ, i.e., Φm (X) =
∏ℓ

i=1 Fi (X). Leveraging the
Chinese Reminder Theorem (CRT), the following ring isomorphism is established.

Rt
∼=

ℓ∏
i=1

Zt[X]/
(
Fi (X)

)
,

which enables the encoding of ℓ messages {z1 . . . , zℓ} ∈
∏ℓ

i=1 Zt[X]/
(
Fi (X)

)
into a single plaintext in

Rt. Typically, each of the ℓ messages is called a slot, and altogether they are regarded as a length-l
vector. Since computations over a ciphertext are performed on all packed values, BGV provides efficient
computations in an amortized manner.

The Homomorphic rotation BGV supports an additional operation called rotation, which permutes
plaintext slots circularly. Specifically, let ct be an encryption of a plaintext vector z = (z1, z2, . . . , zℓ).
Performing a (right) rotation on ct by v results in a new ciphertext ctrot encrypting the plaintext vector
zrot = (zv+1, zv+2, . . . , zℓ, z1, . . . , zv) under the same secret key.

The homomorphic rotation consists of two key components: automorphism and key switching. We
refer interested readers to Section 3 of [37] for the general hypercube structures of rotations in BGV.

7.11. Polynomial Evaluation using the Paterson-Stockmeyer method. Polynomial evaluations
require numerous binary operations including additions, scalar multiplications (where one operand is a
constant), and non-scalar multiplications. The Paterson-Stockmeyer method [54] uses fewer non-scalar
multiplications, such that a degree-d polynomial is evaluated using O(

√
d) non-scalar multiplications.

In the homomorphic evaluation of polynomials, non-scalar multiplications are translated to ciphertext-
ciphertext multiplications, whose evaluation costs are much more expensive than the other two. According
to the benchmark in [30], it is around 160× and 15× the cost of homomorphic evaluations of additions
and scalar multiplications, respectively. Therefore, the Paterson-Stockmeyer method has been widely
used for polynomial evaluations in homomorphic encryption. [21,24,25,40].

Below we follow [25] to sketch the evaluation of a degree-d polynomial f(x) =
∑d

i=0 aix
i using

the Paterson-Stockmeyer method. Assume there exist integers L and H such that d = LH − 1 and
L ≈

√
2(B + 1). Then the polynomial can be rewritten into

f(x) =
H−1∑
i=0

(
L−1∑
j=0

aiL+j · xj) · xiL.

Therefore, the "low powers" {x, x2, . . . , xL−1} can be computed with L − 2 non-scalar multiplications,
whose linear combinations give the inner sum. The "high powers" {xL, x2L, . . . , x(H−1)L} are then
computed with H − 1 non-scalar multiplications, whose subsequent products with the inner sum require
another H − 1 non-scalar multiplications. In total, the procedure requires

L− 2 + 2(H − 1) = L+ 2H − 4

non-scalar multiplications, which is minimal and achieves O(
√
B) when L ≈

√
2(B + 1).

7.12. Comparison of SQUiD’s MAF Calculation with Existing Methods. In the MAF pro-
tocol by Kim and Lauter [45], the MAF for SNP j is computed as follows:

mj =

r∑
i=1

mi,j

MAF(j) =
min(mj , 2r −mj)

2r
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,
where r represents the number of patients in the database, and mi,j denotes the genotype of patient

i at SNP j

In SQUiD, a cohort is initially created before the MAF computation. The membership of the cohort is
defined by a predicate vector p, which is 1 for patients in the cohort and 0 otherwise. The key distinction
in the MAF computation between SQUiD and [45] lies in the need for multiplication of each mi,j term
within the summation by the corresponding predicate, ensuring the inclusion of only those patients who
are part of the cohort. Additionally, the total number of patients r in the denominator is a constant in
[45], but in SQUID it varies for different cohort sizes and needs to be computed as the sum of predicates.
All other parts of the MAF computation are the same in both SQUiD and [45]. That is, a SQUiD MAF
query without a filter has the same computation and result as [45]. Furthermore, in both SQUiD and
[45], the division and minimum operations are executed in plaintext. In summary, the total runtime and
accuracy of the SQUiD MAF calculation and that of [45] are expected to be exactly the same.

7.13. Continuous phenotype values. SQUiD supports continuous phenotype values such as weight,
blood pressure, heart rate, etc. However, as SQUiD exclusively processes integer data inputs, these values
need to be discretized into integers by scaling the values. This discretization occurs during the data
encryption by the data owner before transmitting it to the cloud. Once in the cloud, SQUiD effectively
filters these now integer values for counting and MAF queries using range filters. Range filters are set by
an upper and lower bound and are computed using the same comparisons thresholds from the similarity
query.

We benchmarked the range query performance in Supplementary Figure 8. We found that it took
approximately 25 minutes to compute a count query with a range filter on 16,384 patients and 28 minutes
to compute a MAF query with the same parameters.”
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Supplementary Figure 1: The runtime for key-switching key generation and key-switching by the number of
digits used in the decomposition (l). Digit decomposition is a technique to reduce the error growth in ciphertexts.
The more digits we decompose the ciphertext and key-switching key to, the more secure our system is and the less
error growth the ciphertext experiences[38] . Overall, it 200 ms to generate a key-switching key when the digits
are decomposed into three parts.

Supplementary Figure 2: The additional storage space for the public key-switching key store (with l = 3) by
the number of authorized researchers in the store. Since each key-switching key is a single ciphertext, the storage
required remains minimal at approximately 31 gigabytes (GB) for 1000 researchers.
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Supplementary Figure 3: The time to encryption databases with various SNP sets by the number of patients in
the database. We measured the setup time by encrypting the various databases using 35 threads running simultan-
eously. We compared the setup of SQUiD for the ClinVar SNP set to the setup time of an unpacked HE solution
(Blue) for the ClinVar SNP set.

Supplementary Figure 4: The communication cost for all queries by the number of features in the query
or the number of patients in the database. We benchmark our communication cost by measuring the end-to-end
communication of a single query. Each query needs one communication round thus the total communication is the
cost of receiving a query from a client and sending back the computation result. We separated the communication
performance into two plots because the scaling for our queries depend on different factors. (A) We show the
communication costs of the count, MAF, and similarity queries by the number of features (filters for the count
and MAF query, and SNPs for the similarity query). (B) We show the communication of the PRS query by the
number of patients in the database.
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Supplementary Figure 5: The communication cost for all queries and a plaintext solutions by the number of
patients in the database. The plaintext database keeps the data encrypted at rest, packing 16 one byte SNPs into
a single encrypted 128-bit AES block. When the database receives a query, it sends the encrypted data necessary
to compute the query. Thus, the client has to decrypt and compute the query themselves. We benchmarked for
all four types of queries with 16 filters for the count and MAF queries, 1024 effect sizes for the PRS query, and
the 1,024 SNPs for the similarity query. Compared to SQUiD, the plaintext communication always scales linearly
with the number of patients while this is only true for SQUiD for PRS queries (since a PRS score for each patient
needs to be returned).
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Supplementary Figure 6: Screenshot of SQUiD command line interface (CLI). (A) Welcome help message
about showing core SQUiD functionalities. (B) setConfig call sets the address, port, and API key used to commu-
nicate with the server for all successive calls. (C) getContext call that pulls the context from the server to ensure
the encryption schemes are synced locally and on the server. (DC genKeys call creates a public and private key
for the user. (E) authorize call sends the public key to the server for authorization. The server generates a key-
switching key which will be used to re-encrypt all query results sent back to the user to be encrypted under the
user’s public key. (F) count query call which counts the number of patients in the database with a first SNP that
has value 1. (G) failed query call that shows what parameters should be supplied for a correct query call. (H)
MAF query call that has the correct parameters.
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Supplementary Figure 7: The runtime of the L2 similarity score computation for SQUiD and [59] (Other) for
100 SNPs and 1,000 SNPs. For score computation with fewer than 4,000 patients, [59] exhibits faster performance
for both 100 and 1,000 SNPs. However, as the patient dataset scales up, SQUiD consistently outperforms [59],
demonstrating its superior efficiency in handling larger datasets.

Supplementary Figure 8: The query time for the count and MAF query with a range filter by the number of
patients in the database. Each query only had one range filter.
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