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ABSTRACT

Increased scrutiny of artificial intelligence (AI) applications in healthcare highlights the need for real-world eval-

uations for effectiveness and unintended consequences. The complexity of healthcare, compounded by the

user- and context-dependent nature of AI applications, calls for a multifaceted approach beyond traditional in

silico evaluation of AI. We propose an interdisciplinary, phased research framework for evaluation of AI imple-

mentations in healthcare. We draw analogies to and highlight differences from the clinical trial phases for drugs

and medical devices, and we present study design and methodological guidance for each stage.
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INTRODUCTION

The history of artificial intelligence (AI) dates back to the 1950s

when Alan Turing introduced the idea of computers performing in-

telligent tasks.1 The term was coined by John McCarthy in 1956 at

a Dartmouth conference.2 Twenty years later, the field entered the

“AI Winter,” a consequence of optimistic promises and failures to

keep them.3 As AI makes possible applications that can learn, adapt,

and predict, blooming interest in AI offers the promise of an “AI

Spring.”4–6 However, recent events also reveal unexpected risks of

AI. A chatbot turned racist after training by online users, a racially

biased tool used to inform parole decisions, and a fatal accident

caused by an autonomous driving car are examples of unforeseen

and severe consequences of AI.

One of the most fertile fields for application of AI is healthcare,

enabled by vast data in electronic health records (EHRs) and en-

hanced computational power.7–11 AI applications offer enormous

potential to improve patient care, from identifying new drug tar-

gets12 to supporting clinical decision making13 and lifestyle changes

for disease prevention.14 Numerous in silico studies have assessed

the accuracy of AI model predictions or concordance between hu-

man experts and algorithms.15–17 However, many clinicians and

policy makers have criticized these foundational studies because the

benefits and risks of AI have yet to be adequately measured in clini-

cal practice.18 Such criticisms indicate a gap in the literature on the

steps needed for a comprehensive evaluation of AI based on risks

and benefits. In this article, we describe a phased approach for AI

evaluation in healthcare, leveraging both prior informatics evalua-

tion approaches and clinical trial phases required for approval of

drugs and medical devices. We elaborate the research activities

unique to AI in healthcare and draw parallels to the regulatory

framework—a comparison frequently drawn in isolated examples,

but not comprehensively articulated in the published literature.
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AI versus AI implementation in healthcare
Although definitions vary, AI is often characterized as sophisticated

mathematical models employing techniques (such as deep learning)

for learning and problem solving. Such tools can be assessed by sta-

tistical criteria quantified with computational experiments. In con-

trast, the implementation of AI in healthcare is AI-based software

that informs or influences clinical or administrative decisions and

can affect health or healthcare delivery. To determine the effects of

AI tools in healthcare settings, comprehensive evaluation beyond

computational performance is required. The evaluation focused only

on the technical aspects of AI neglects the challenges of using AI in

clinical practice, in which predictability, repeatability, explainabil-

ity, and transparency are paramount.19–22

The high-stakes, regulated domain of medical drugs and devices

can inform a structure for evaluation of AI solutions with a shared

goal of ensuring the safety and effectiveness of health interventions.

Table 1 shows a simplified view of the evaluation process for drugs

and devices in the United States. Drug ingredients undergo quality

control during preclinical development. After finding optimal dos-

age, toxicities, and evidence of efficacy in phases 1 and 2 trials, a

large-scale phase 3 trial is conducted to assess therapeutic efficacy.

Medical devices are evaluated through a cycle of development,

proof-of-concept tests, quality improvement, and trials. For both,

continuous surveillance is required to detect unexpected safety

issues.23,24

AI solutions for healthcare differ from drugs or medical devices

in that they are designed to affect human decision making. The util-

ity of conveyed information is determined by perception, compre-

hension, and subsequent actions of the user. Hence, assessing the

effects of AI in medicine cannot be done independently from its

intended users. Guidelines from the Food and Drug Administration

on the regulation of machine-learning or AI-based applications con-

tain high-level directions, but not specific guidance, on how to con-

duct each step of evaluation.25–27 We describe a framework for

evaluation of AI in healthcare and methodological considerations

for each phase (Table 2). This framework can help ensure that the

quality of AI interventions meets expectations. Suggested methods

derive from classic evaluation stages in the field of biomedical infor-

matics but have not been clearly articulated as phases of clinical tri-

als and research.28–31

Phase 0: Discovery and invention
Phase 0 evaluation contains two parallel efforts: assessment of user

needs and development of AI algorithms. Similar to devices, proto-

types are developed prior to first in-human studies. Thus, activities

such as identifying target users, understanding workflow, ensuring

interpretability, and prototyping an initial design should begin in

phase 0 and continue into subsequent phases. Explainability and

user needs can be probed and assessed through an algorithm-

informed question-bank approach for user-centered explainable AI

design.32 Data quality checks must precede any other activity as the

main “ingredient” of AI. For example, researchers should examine

their data for validity (erroneous input), completeness (pattern and

extent of missing data), biases (representativeness of the data), and

timeliness (data reflecting current practice). Open-source toolkits,

such as Aequitas33 or AI Fairness 360,34 can be used to evaluate

metrics of bias and fairness in AI algorithms. Statistical performance

metrics can then follow as criteria for further evaluation. Measure-

ment of human performance is important to establish a baseline

from which the accuracy of AI solution replicating human task can

be judged.

Phase 1: Technical performance and safety
Phase 1 involves finding a balance between the benefits and side

effects of an intervention. For drugs, this phase determines the opti-

mal dosage and identifies toxicities. For AI algorithms, phase I opti-

mizes model performance for the application setting, such as

determining a tradeoff between precision and recall. This task often

requires domain knowledge to understand the clinical consequences

of false positives or false negatives. If models were developed using

previously collected data, Phase 1 is when real-world data evalua-

tion should occur. Like toxic drugs, AI models may produce harmful

results if algorithms are biased or based on incorrect informa-

tion.35,36 Even with valid model outputs, design of AI solutions can

lead to misperception or misunderstanding by users. The extent to

which the AI models are understood by users can be a checkpoint

for potential harm. In addition, what is deemed “intelligent” or

“useful” can differ among users, unlike drugs or devices that have

more clearly defined physical properties. Optimizing implementa-

tion of an AI model involves finding the most effective amount of in-

formation to provide to users, how and when to deliver it, and how

to convey the model’s confidence in its insights. Such adjustments re-

flect the complexity of delivery of AI solutions compared to drugs,

as the information provided may need to vary across different users.

Ethnography and applied social science methods from phase 0

can be used for understanding the interactions between users and AI

solutions. Usability evaluation includes ensuring users are able to

discover, understand, and use system features. Usability testing such

as simulation studies or scenario-based testing that impose hypothet-

ical clinical scenarios and ask the study participants to perform cer-
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tain tasks can be employed to detect a cognitive overload or over-

trust issues. Equally important is identifying potential risks, includ-

ing workflow disruption, patient safety concerns, or model outputs

that contradict clinician insights. Evaluation should also assess the

extent to which mechanisms exist for catching and correcting errors

including poor model fit, numerical instability, software malfunc-

tion, hardware malfunction, or human error.

Phase 2: Efficacy and side effects
While the mechanism of actions for drugs or physical effects of devices

are known by phase 2 trials, the ways in which AI solutions affect

users and outcomes of interest may differ from expectations. Both

unintended consequences and unintended benefits may be realized.

Study participants’ activities and thought processes should be probed,

externalized, and recorded to understand where and how the intended

efficacy is achieved. AI algorithms are dynamic and often involve ran-

domness during the course of insight generation. If users do not trust

AI algorithms, solutions will most likely be undervalued. On the other

hand, unforeseen adverse events may involve overreliance of decision

makers on generated insights despite inherent statistical inaccuracies

of AI models. Study designs such as A/B testing can evaluate relative

efficacy and uncover unintended consequences.37 Most usability test-

ing is done in laboratory settings, so what is measured in this phase is

often an intermediate outcome for the desired outcome. For example,

decisions more concordant with treatment guidelines would be

expected to improve patient outcomes, and reduced time spent in ad-

ministrative tasks would likely decrease costs. Validating improve-

ment of intermediate measures is a critical step to justify larger phase

3 trials and to estimate their sample sizes.

Phase 3: Therapeutic efficacy
The ultimate value of AI solutions in medicine is determined by clin-

ical studies that assess whether they can improve health outcomes in

real-world settings. The goal of phase 3 evaluation is to demonstrate

efficacy and safety compared to the standard of care through well-

designed, large-scale studies. In many cases, AI tools in healthcare

work to enhance user’s performance, not to replace humans. There-

fore, the comparison should be made between the performance of

decision makers with and without AI tools, not the performance of

decision makers versus AI models alone.

Clinical studies of drugs and devices are highly resource intensive

and often require multiple sites, where dedicated personnel must

gather data efficiently and track subjects reliably. Large-scale trials

are undertaken by contract research organizations or clinical trial

networks whose operations are separate from the health system.

This approach may not work for AI solutions, as the data needed to

create actionable information will be part of clinical practice, and

the delivery system must be embedded into the clinical workflow.

Timely evaluation requires research infrastructure to efficiently store

and process collected data such as that in an EHR.

Phase 4: Safety and effectiveness
Self-learning and self-improving capabilities throughout the lifecycle

are distinct features of AI tools. As underlying data and software

components can change and evolve over time, processes are required

to ensure that the validity and quality of AI software are not com-

promised, and adverse effects do not arise from these changes. For

example, the patient population affected by software may shift to-

ward disease groups for which it was not originally intended. Just as

antibiotic performance can be altered by emerging resistance, AI

must be re-evaluated for efficacy and safety over time.

Table 1. Evaluation for AI software compared to the approval processes of drug and devices for healthcare

Study phases Drug Device AI in healthcare Examples of study methods

Phase 0

Discovery and invention

Compound development

In vitro/animal tests

User needs and workflow

assessment

Prototype design and de-

velopment

User needs and workflow assess-

ment

Data quality check

Algorithm development and per-

formance evaluation

Prototype design

Ethnographic studies to identify

user needs, laboratory studies

on limited data sets to measure

algorithm prediction accuracy

Phase 1

Safety and dosage

Determine optimal dose

Identify potential

toxicities

Quality control

Design updates

In silico algorithm performance

optimization

Usability tests

Determination of thresholds to

balance sensitivity and specif-

icity for a particular clinical

use case, scenario-based testing

to assess cognitive overload

Phase 2

Efficacy and side effects

Early efficacy tests

Adverse event identifica-

tion

Proof-of-concept tests

Potential harm identifica-

tion

Design and quality im-

provement

Controlled algorithm perfor-

mance/efficacy evaluation by

intended users in medical set-

ting

Interface design

Quality improvement

Retraining and reassessing model

performance with larger real-

world data sets, measurement

of the efficiency of information

delivery and workflow integra-

tion with representative users,

pilot study of predictive algo-

rithm in a clinical setting

Phase 3

Therapeutic efficacy

Clinical trial

Adverse event identifica-

tion

Clinical trial

Adverse event identifica-

tion

Clinical trial

Adverse events identification

Randomized controlled trial to

test whether delivery AI-based

decision support affects clini-

cal outcomes and/or results in

user overtrust

Phase 4

Safety and effectiveness

Postmarketing surveil-

lance

Postapproval studies Postdeployment surveillance Measurement of algorithmic per-

formance drift
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Table 2. Study designs and considerations for each phase of evaluation of AI in healthcare

Study Methods Study phase Study objectives Considerations

Data quality con-

trol

Descriptive analy-

ses

Phase 0 Ensure data quality meets certain standards

and scope of data is relevant for the target

population

Data quality and scope can change while nu-

merous analytic choices are implemented

Algorithm testing Statistical analysis Phase 0 Evaluate AI algorithms for predictive accu-

racy or other performance metrics

The acceptable standard for accuracy

depends on the clinical consequences of

being incorrect across types of errors

Separate training and test datasets avoid

overfitting

It may be necessary to establish baseline hu-

man performance of task being replicated

Ethnographic re-

search

Observations

Workflow analy-

sis

Phase 0, 1 Identify user needs and understand work-

flow

Determine useful functionalities and design

options

Understand social and cultural background

which affect clinical decision making

Process is human resource intensive

Studies may not generalize across settings

This stage of activities should precede proto-

type development

Usability testing Simulation Phase 1, 2 Observe user activity in close-to-real scenar-

ios to understand why something does

and doesn’t work

Simulation cannot estimate the effect in the

real-world scenarios

Potential impact of artifacts from simulated

scenarios

A/B testing Phase 1, 2 Conduct controlled experiment to provide

an effect size estimate

Test efficiently using crossover design

Controlled experiment environments are

needed

Carryover effect can invalidate crossover

study results

Experts’ review Phase 1, 2 Consider usability testing by a small number

of experts when budget and time is limited

or direct reach to end user is difficult

Experts should take full context of use into

account, such as clinical workflow and cli-

nician mental models

Clinical trial Individual ran-

domized trial

Phase 3, 4 Can be blinded depending on the nature of

implementation

Most robust study design are employed

Without blinding, there’s a risk of contami-

nation between proximal patients

Cluster trial (par-

allel)

Phase 3, 4 Evaluate the cluster effect on a group of

users or a healthcare facility

Possibly better than individual randomiza-

tion due to AI affecting a group or cluster

at a time

Cluster size should be large enough for infer-

ence

Potential effect of time-varying factors

Should adjust for clustering effects in analy-

ses

Stepped-wedge

trial

Phase 3, 4 Evaluate in real-world settings with staged

introduction of implementation to multi-

ple sites

Get time-adjusted effect estimates

All sites receive implementation—desirable

if implementation is thought to be benefi-

cial

This design is potentially more resource in-

tensive as all sites receive implementation

Pre–post compari-

son

Phase 3, 4 Evaluate using preimplementation data as

its own control for postimplementation

data of the same cohort

This design controls for time invariant fac-

tors, but can be subject to bias due to

time-varying factors or underlying disease

trends

Observational co-

hort study

Prospective cohort

study

Phase 3, 4 Evaluate for effectiveness in nonrandomized,

prospective cohorts

This design is less resource intensive than

randomized trials and a better control for

study design components than retrospec-

tive cohort studies

Confounding bias is possible

Retrospective co-

hort study

Phase 3, 4 Evaluate for effectiveness with fewer resour-

ces compared to trials or prospective stud-

ies by utilizing existing electronic health

records or healthcare claims database

Data are not collected for research purpose,

so requires knowledge of data generation

and collection process, nature of missing

data, etc.

Potentially more prone to biases

User feedback Feedback on

product

All study phases Understand any changes in user need related

to the developing/developed product

Assess satisfaction and perceived value of

the users over time

A system should be built with a functionality

to continuously collect user feedback and

update based on the information

Continuous moni-

toring

Surveillance with

data collection

All study phases Monitor for unexpected adverse effect and

adherence to the system
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Valid causal inference from observational data requires careful

adjustment for potential biases. There are numerous epidemiological

and machine-learning methods that can be employed to account for

confounding.38–41 In many cases, data collection can be automated

through EHR systems, resulting in a passively accrued dataset

reflecting outcomes and use. The efficiency of information delivery

and integration into the medical workflow can be examined using

such data. Additionally, AI applications can be instrumented to col-

lect information about how specific features are used in practice,

supporting the evaluation of their effect on outcomes. This large-

scale, continuous collection of data is fundamental to learn and im-

prove AI dynamically over time, but it can be complicated by the

data security and privacy issues. Further effort is necessary to ensure

that sensitive patient data are collected, stored, and used in appro-

priate ways.

CONCLUSION

Deploying AI in healthcare is a high-stakes, high-reward endeavor.

This manuscript proposes a comprehensive framework for the evalu-

ation of AI solutions in healthcare. As for drugs and medical devices,

research on AI requires sequential, long-term, and rigorous studies

to generate scientifically valid evidence that is reproducible over

time and across populations. In contrast to drugs and devices, the

performance of AI tools in medicine depends on the understanding,

trust, and subsequent behaviors of users. AI evaluation also requires

integration into the existing clinical environment and a platform to

collect, store, and process data, and to deliver the outputs to users in

a timely manner. The comparison to the evaluation of drug and

medical devices may facilitate an understanding of the evaluation of

AI for the clinical audience, but the framework has limitations, espe-

cially for adaptive AI systems. For example, changes in underlying

data and model performance from learning may necessitate concur-

rent revaluation of multiple phases. A comprehensive evaluation of

AI tools across phases of research will require multidisciplinary

teams with expertise in computer science, healthcare disciplines, and

the social sciences. To minimize potential biases, ideally, developers

should not evaluate their own tools, especially in the later phases of

evaluation. Creation of collaborations across academic, public, and

private institutions or dedicated evaluation teams without responsi-

bility for solution development or sales may be necessary. Although

certain AI tools in healthcare may be regulated, a commitment to

the systematic evaluation should be an ethical responsibility of infor-

matics professionals. Investing in the time, expertise, and resources

needed to conduct studies of AI may ensure that patients and health-

care systems receive the promised benefits and enjoy a long “AI

Summer” from these advancements.
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