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Abstract: Olfaction is a valuable source of information about the environment that has not been
sufficiently exploited in mobile robotics yet. Certainly, odor information can contribute to other
sensing modalities, e.g., vision, to accomplish high-level robot activities, such as task planning
or execution in human environments. This paper organizes and puts together the developments
and experiences on combining olfaction and vision into robotics applications, as the result of our
five-years long project IRO: Improvement of the sensory and autonomous capability of Robots through
Olfaction. Particularly, it investigates mechanisms to exploit odor information (usually coming in
the form of the type of volatile and its concentration) in problems such as object recognition and
scene–activity understanding. A distinctive aspect of this research is the special attention paid to the
role of semantics within the robot perception and decision-making processes. The obtained results
have improved the robot capabilities in terms of efficiency, autonomy, and usefulness, as reported in
our publications.

Keywords: robotics; robotics olfaction; chemical sensors; gas source localization; e-nose; gas
distribution mapping; object recognition; semantic networks; machine learning; ontology

1. Introduction

The sense of smell is not the most vital one for humans, but we certainly use it every day.
When we face a cup with a dark-colored liquid, we can assure that it is a cup of coffee not only
from what we observe, but also from what we smell. When we detect an alarming odor that might
be associated to gas/butane, we do not look for the possible escape in the living room but we firstly
go to the kitchen, where we do not inspect randomly, but we turn our attention to those devices that
use gas (e.g., hob, oven, etc.). As in the last example, the smell sense usually triggers alerts: a possible
fire, a gas leak, food in poor condition, etc., but it is also associated to emotionally rooted processes [1]:
memories, attraction or repulsion, etc. Both facets are interesting in robotics, although the latter,
especially relevant in the long term for the so-called social robots [2,3], is beyond the scope of our current
research. The IRO project focuses on the usefulness of a mobile robot able to detect and measure gases
in the environment in order to identify the activities carried out in its surroundings, e.g., smoking,
cooking, mopping the floor, etc. Having identified the situation, the robot should be able to act
consistently, for example, locating and scolding the smoker, avoiding to pass by freshly mopped
areas or, perhaps, interacting in a social way to help the person who is cooking. Some related works
in this field [4,5] present mobile robots endowed with olfactory capabilities and applications to detect
odor sources. The work done within the IRO project combines olfaction with vision and semantic
knowledge to improve the robot abilities, which differs from such related works. To provide a mobile
robot with olfaction capabilities, we relied on electronic noses (e-noses) [6], i.e., electronic devices
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composed by a set of gas sensors and different software components that provide a measure of the type
and concentration level of the detected volatile substances. Despite the important advances in recent
years in the development of this technology, the performance of gas sensors and algorithms for
the classification of gases is still far from the olfactory capacity of humans, not to mention some
other animals with much more developed olfactory capabilities. Despite this limited performance,
the olfactory information interestingly increases the robot abilities when combined with other sensors
such as vision, and knowledge sources such as semantics. For example, if the robot detects smoke,
the utilization of vision would be crucial for identifying an oven and inspecting it as the possible object
releasing the alarming gas. Additionally, semantic information regarding the usual location of ovens,
i.e., kitchens, can improve the robot actuation.

The ultimate goal of our research is twofold: to enable a mobile robot to combine olfaction
and vision information, and to exploit semantic knowledge to smartly operate within human
environments. Although the individual results of the project have already been published
elsewhere [7–11], this paper contributes an overall and comprehensive view of all its findings and results
by: (i) summarizing the performed experiments; (ii) describing the different setups for both the gas
recognition and classification tasks, as well as for the combination of artificial vision and olfaction to
generate semantic information; and (iii) finally analyzing the potential advantages that e-noses can
provide for gas detection and scene understanding. Therefore, this document comprises in one place
all the knowledge built from the IRO project.

2. Project Overview

The general objective of the IRO project is to investigate mechanisms for integrating olfactory data
into the robot sensing system, as well as the development of algorithms for decision making and task
generation that exploit the combination of the different sensor modalities. The key idea behind our
research here is that the perception of gases, including both their classification and the measurement
of their intensity or concentration, can improve the intelligent behavior of the mobile robot, upgrading
its performance in terms of efficiency, autonomy and usefulness. Within this global target we can
distinguish three partial objectives:

• Design and fabrication of an artificial nose (e-nose) adapted to the requirements of a mobile
robot. Most of the e-noses used in mobile robotics are designed for measuring only the chemical
concentration, aiming at tasks such as the creation of concentration maps and/or the search
of the emission sources. In the context of the present project, it is necessary that the electronic
nose is designed to also provide information on the type of gas, that is, be as effective as possible
in the classification of the detected chemical volatile. The objective is, therefore, to combine both
facets which requires integrating different sensor technologies into a single device.

• Gas classification and object recognition for robotics applications. The robot, equipped
with a vision system (e.g., one or multiple RGB or RGB-D cameras) and an electronic nose,
could successfully improve the vision-based recognition of simple objects, exploiting the odor
information gathered in the surroundings, as well as enhancing the gas classification when
considering the semantic information and the probabilistic categorization of the detected object.

• Exploiting high-level olfactory and visual semantic information in the planning
and execution of tasks. Semantics provide additional human-like information to the perceived
elements. For example, a high concentration of gases related to rotten food suggest that somebody
forgot about it. Semantic information can be exploited to automatically infer new robot tasks
in order to maintain a set of pre-stablished human-like norms, in this case, rotten food should
be taken out of the house [12]. Among the multiple tasks that can benefit from such inference
process, we focus on the challenging task of source localization with a mobile robot in indoor
environments, aiming at minimizing the necessary time to locate the object emanating the gases
in the environment.
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The following sections describe with more detail the work done to reach these partial objectives.
Section 3 describes the hardware involved in the project, both the electronic noses and the employed
mobile robots. Then, Section 4 summarizes the classification algorithms considered to recognize different
gases, analyzing the impact of the robot movements in the gas recognition. Finally, Sections 5 and 6
present our insights on combining olfaction, vision, and semantics abilities in mobile robotics.

3. Hardware Description

This section describes the hardware components employed in the set of experiments performed
during the IRO project, with a particular emphasis in the e-noses and the mobile platforms used
to carry them.

3.1. Electronic Noses

E-noses are devices designed to detect, measure and classify volatile chemical substances by means
of an array of gas sensors. Commonly, the gas sensors employed react to a wide range of different
gases (non-selective), but provide no specific information about the chemical identity. Therefore,
the output of the sensor array is usually further processed by some sort of machine learning algorithm
to classify [10,13] or quantify [14,15] the samples. However, it must be noticed that in the last decade
multiple advances have been made towards developing selective gas sensors [16,17], which could
reduce the complexity of e-noses in a close future by reducing the number of sensors to host
and the need of a post-processing stage to classify the gases. As a result, e-noses offer a relatively cheap
and fast tool to assess the presence of gases, but with a substantially greater error and uncertainty
margin than precise analytic methods, such as gas-chromatography or mass-spectrometry [18].

Common gas sensor technologies employed to build e-noses include Metal OXide (MOX),
Amperometric ElectroChemical (AEC), Quartz Crystal Microbalance (QCM), Conducting Polymers
(CP), and Surface Acoustic Wave (SAW). Each of these exhibits advantages and disadvantages in terms
of selectivity, sensitivity, response speed, influence by environmental conditions and drift over time,
among others [6,19]. However, no single technology excels in all categories. Thus, limiting the design
of an e-nose to a single sensor technology will restrict its performance and, quite often, prevent it from
reaching the demanded specifications [9]. This motivates the combination of different gas sensor
technologies into a single e-nose, which would result in a sensor array with better dynamic
capabilities and a more informative output than any single sensor technology. Since it is unfeasible
to install all possible gas sensors and technologies simultaneously on a single device, it also becomes
appealing to design an e-nose in such a way that its sensor array can be reconfigured depending
on the applications, keeping it cost-efficient and compact.

To attain the objectives identified in this project, our first step has been the design and fabrication
of e-nose prototypes for gas classification and concentration estimation, as well as their posterior
integration into a mobile robot. In the earliest stages of the project, we employed the so-called
Multi-Chamber Electronic (MCE) nose, developed in one of our previous works [20]. The MCE
nose is a device that comprises several identical sets of MOX sensors accommodated in separate
chambers so that it can alternate between sensing and recovery states, providing, as a whole, a device
capable of sensing changes in chemical concentrations faster than conventional e-noses. This overcomes
the main drawback of MOX sensors in terms of recovery time after being exposed to gases, which highly
restricts its usage in applications where the gas concentrations may change rapidly, as in mobile
robotic olfaction.

In subsequent stages, we exploited our experience with the MCE nose and proposed, as a central
contribution for the IRO project, a novel e-nose architecture [8] that combines self-contained
and intelligent sensor boards (i.e., modules) with a decentralized design offering a viable solution
to the problem of integrating heterogeneous gas sensors in a modular fashion. This allows us to create
different and specific gas-sensing devices from inter-connectable building blocks, which not only brings
versatility and reusability to the design of e-noses but also reduces development costs and ensures
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long-term serviceability, as new sensors can be added as needed. Moreover, the proposed e-nose
architecture also enables the integration of other electronic components such as GPS for geo-referenced
measurements, or wireless communications for remote readings, a feature which, despite not being
a technological contribution, provides an improvement over most commercial e-noses and facilitates
applications of mobile robot olfaction. Figure 1 shows a picture of the prototype built along the course
of this project. The particular configuration shown includes a power module (along with a 2200 mAh
lithium battery, useful for pre-heating the gas sensors when the robot is still not powering the e-nose),
an SD memory card module to keep a log of all measurements, and four gas-sensing modules (hosting
eight MOX sensors and two electrolytic sensors).

In terms of consumption, due to its modular nature, the total power needed by this e-nose
is highly dependent on its particular configuration. As an example, the setup shown in Figure 1 has
a maximum power consumption of ∼2.5 W, which is suitable for being supplied through a standard
USB2.0 port. This value is low enough to not significantly compromise our robot’s autonomy, as they
include high capacity lithium-ion batteries capable of powering all the electronic and mechanical
devices on the robot, including the on-board PC and the wheels’ motors. A thorough description
of the power consumption values for each module can be found in [8].

Figure 1. Picture of the e-nose prototype built for the IRO project. Its modular and compact design
allows it to be easily mounted on a mobile robot and adapted to the application requirements.

3.2. Mobile Robots

Along the course of the IRO project two different robotic platforms have been employed
for carrying out the multiple experiments, namely Rhodon and Giraff.

• Rhodon is a laboratory robot built upon a commercial PatrolBot platform (refer to Figure 2a),
capable of being tele-operated or even to autonomously navigate (i.e., self localization and obstacle
avoidance) by using a pair of 2D laser scanners: a SICK PLS (front) and a Hokuyo URG (back).
The on-board PC controls both the navigation and data acquisition by means of a set of software
modules running within a ROS framework. Since the experiments described in this paper
corresponds to different stages of the IRO project and aimed to different purposes, diverse robot
setups have been adopted, as specified in Section 4. The Rhodon robot has been available
from the beginning of the IRO project, and is capable of carrying heavy loads, becoming ideal
for the attachment of a robotic arm used in one of the experiments.
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• The second robotic platform employed is the so called Giraff robot [21,22]. It has been used
during the experiments regarding object recognition, as described in Section 6. In a nutshell,
it is a telepresence robotic platform equipped with a frontal 2D laser range finder for navigation
and localization, and a set of RGB-D cameras to capture 3D information from the environment
(see Figure 2b). The Giraff robot became available later during the project and, as it is lighter
and easier to transport than Rhodon, it was chosen for the experiments related to semantics,
due to the need for recording visual measurements in a real house.

RGB-D Cam.
Astra Orbbec

Touch Screen
13.3'' LCD

Microphone

GPU Board
NVIDIA Jetson TX2

Speaker

2D Rangefinder
Hokuyo URG-04LX

Onboard Computer
i7-CPU, 4GB-RAM, 60GB-SSD

Fish-eye Cam.
5Mpx, 2592x1944 res.

Int. Buttons
Accept/Reject

RFID Antennas
ARRTN5 3.5dBi

(a) (b)

Figure 2. The robots employed in the experiments: (a) Rhodon; and (b) Giraff.

4. Gas Recognition and Classification for Robotic Applications

The task of odor recognition deals with the problem of identifying a volatile sample among
a set of possible categories [23]. This process plays an important role in the development of many
applications, such as city odor mapping [24,25], pollution monitoring [26], breath analysis in clinical
environments [27], or the nowadays common estimation of blood alcohol content for drivers [28,29].
Among them, there are some applications such as pollution monitoring or leak detection that require
measuring the environment continuously and/or at different locations. For such scenarios, the use
of a mobile robot with the capability of identifying and measuring the volatiles’ concentration is of great
help, as already reported in [30].

4.1. Gas Classification

The classification of volatile substances is, possibly, the most studied application of e-noses.
Traditionally, this has been performed by analyzing the response of an array of gas sensors when exposed
to pulse-like gas excitation under well-controlled measurement conditions (i.e., temperature, humidity,
exposure time, etc.). Unsurprisingly, dozens of works report less than 10% classification error rate under
these specific circumstances. However, when the classification is to be performed on a real, uncontrolled
scenario, and particularly for the case where the e-nose is collecting samples on board a moving platform,
assumptions such as a perfect alignment or equal length of patterns do not hold [31]. This, which is due
to the dynamic and chaotic nature of gas dispersal, together with the strong dynamics shown by most gas
sensor technologies, notably increases the complexity of the classification problem [7].
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4.2. Continuous Chemical Classification

The discrimination of gases performed with a robot equipped with an array of gas sensors
presents a number of additional challenges when compared to standard identification applications.
While standard classification tasks usually host gas sensors inside a chamber with controlled humidity,
temperature and airflow conditions, in robotics olfaction, there is no control over the sensing conditions.
This entails that the sensor signals to be processed are noisy and dominated by the signal transient
behavior [32]. Under these challenging conditions, chemical recognition can be seen as a particular
case of time series classification, characterized by working on sub-sequences of the main data stream
(see [33] for a complete review). Nevertheless, most of these approaches are proposed for uni-variate
time series, while e-nose data are fundamentally multi-variate (i.e., based on an array of gas sensors
with different dynamic responses). This, together with the aforementioned challenges of real data,
make most segmentation approaches difficult to apply to e-nose data, which, in turn, affect negatively
the classification rate.

A novel approach was published in [34] as a partial result of the IRO project to address
the aforementioned issues. This approach is based on generative topographic mapping through time
(GTM-TT) and integrates supervised classification and relevance learning (SGTM-TT) to the problem
of volatile identification in mobile robotics. By exploiting the strong temporal correlation of the
e-nose data, the method is capable of classifying gases with high accuracy employing short data
sequences (1 s, 10 s and 20 s). Given the ephemeral nature of gas dispersion, the impact of the data
sequence length on the classification performance is also analyzed, trying to push the limits towards
a fast-response chemical recognition system. Furthermore, another remarkable advantage for robotics
applications is the introduction of a relevance value, by studying the relevance of the different
sensors composing the e-nose and the time points in the data sequence for predicting the class
label. Figure 3 shows an example of these magnitudes for an e-nose composed of five gas
sensors (Figaro TGS-2600, TGS-2602, TGS-2611, TGS-2620, and MiCS-5135) when exposed to four
different gaseous substances (gin, acetone, ethanol and lighter-gas). As can be seen, the relevance
in the classification process of each sensor drastically varies according to the gas being exposed,
sometimes being one sensor dominant over the others, while in other cases it would be necessary
to consider a combination of their outputs to achieve a good classification rate. Related to the time
points relevance (Figure 3e), it can be seen how the most relevant data match the exposure time,
while the relevance decays considerably during the recovery phase. However, due to the different
recovery times of the sensors composing the e-nose, we can find some time-periods with high relevance
that could also be used to get a high accuracy in the classification. In these experiments, the Rhodon
robot was equipped with a robotic arm that held an aspiration tube connected to the MCE nose,
as can be seen in Figure 4.
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Figure 3. Illustration of the sensor and time points relevance for the classification of gases:
(a–d) normalized sensor relevance of an e-nose composed of five gas sensors when exposed to four
different gas classes; (e) time points relevance profile averaged over all classes; and (f) mean prediction
accuracy over time for window lengths of ≈ {1, 10 and 20} s. These results correspond to an e-nose
dataset collected under semi-controlled measurement conditions as described in [34].

Figure 4. The Rhodon robot with the robotic arm used in the experiments.

Later, in [7], we advocated the use of the well known sliding window approach to avoid feature
based segmentation and to study up to which extent considering delayed samples contributes to exploit
the temporal correlation of e-nose’s data. This technique is attractive because it is simple, intuitive, and,
moreover, amenable to online applications, which is a primary focus of the IRO project. We analyzed
the impact of the window length on the classification accuracy (see Figure 5) for three state of the art
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classifiers, a variety of experimental scenarios, e-nose configurations and gas classes (employing three
different olfaction datasets). The main conclusion of such work is that, for online chemical classification
in uncontrolled environments, feeding the classifiers with additional delayed samples leads to a small,
yet important, improvement (up to 6% units) on the classification accuracy.
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Figure 5. Average classification accuracy of a naive Bayes classifier for different lengths and positions
of the sliding window within the time-series e-nose data.

4.3. Gas Classification in Motion

Having demonstrated that online chemical classification is feasible with a mobile robot, IRO also
investigated the impact of carrying such task while the robot is navigating. We analyzed the induced
changes in the gas sensor’s response and determined that the movement of the robot has an important
impact on the classification accuracy if not properly considered, resulting in a decrease of up to 30%
in some configurations [35]. We supported our conclusions with an extensive experimental evaluation
consisting of a mobile robot inspecting a long indoor corridor with two chemical volatile sources (ethanol
and acetone) more than 240 times, at four different motion speeds: low ≈ 0.2 m/s, medium ≈ 0.4 m/s,
high ≈ 0.5 m/s and very high ≈ 0.6 m/s. In these experiments, apart from the e-nose, the Rhodon
robot was equipped with a Gill WindSonic ultrasonic anemometer for measuring the wind flows
in the environment, and a miniRAE Lite photo ionization detector as an alternative gas detector.
The on-board e-nose, in turn, was composed of an array of 10 MOX gas sensors including Figaro
TGS26xx sensors for measuring gases such as hydrogen, ethanol, CO or Iso-butane, and Hanwei MQx
sensors for other substances such as LGP, propane or natural gas. This e-nose provided gas readings
at a rate of 5Hz. Further information about the dynamic conditions of these experiments can be found
in [35].

To analyze to which extent the motion of the gas sensing device may affect the classification
accuracy, we trained multiple classifiers with samples of each chemical volatile collected in a traditional
static setup (i.e., both robot and gas source standing still), and then, analyzed the classification
performance for a set of increasing motion velocities. Figure 6 (left) shows the results of the experiments
from which a noticeable reduction in the classification accuracy is observed when increasing the motion
speed. This confirms our suspicions about the negative impact that the motion speed of the robot has
over classification rate.
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To overcome, to a certain degree, the aforementioned effect, we also analyzed the classification
accuracy when the classifier is also trained with in-motion data samples, proposing different training
schemes. We showed that training a classifier with data collected in motion yields, on average,
more accurate outcomes (see Figure 6, right) than using a static setup (Figure 6, left). Moreover,
we found that it is not necessary to train the classifiers with data gathered at the same speed than
the testing data to remove this negative correlation, but it suffices to capture the underlying dynamics.
As a general conclusion, the absolute speed is not a determinant parameter, but the gap between
the speeds used to collect the training and testing datasets is an aspect to be taken into consideration
when deploying real olfaction applications with a mobile robot.
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Figure 6. Average classification accuracy for different motion speeds using two classifiers (Naive Bayes
and RBF SVM (Radial Basis Function for Supported Vector Machine)): (Left) classification accuracy
when training the classifiers with static data samples; and (Right) results when the classifiers have
been trained with data collected in motion.

5. Object Recognition and Semantic Knowledge for Robotic Applications

From the object recognition side, the peculiarities of the acquisition process of visual data
by a mobile robot permits the inspection of larger portions of the robot workspace, gathering
rich semantic information. In this case, semantic information comes in the form of contextual
relations, i.e., objects that are found according to certain configurations: keyboards are usually in front
of computer screens, microwaves are in the same room as refrigerators, tables are typically surrounded
by chairs, etc. [36]. Thereby, during the object recognition process, the presence of a refrigerator
in a room helps to disambiguate the classification of a white, box-shaped object as a microwave and not
as a night stand [11,37].

To exploit these contextual relations in the IRO project, we make use of Conditional Random
Fields (CRFs), a model from the Probabilistic Graphical Models (PGMs) family [38], and combine
them with ontologies [39] to achieve a more robust performance. CRFs represent the objects
in the environment as nodes in a graph, where edges are used to link contextually related objects
(Figure 7). In [40], a survey on different learning approaches for these models is presented, performing
a comparative analysis focusing on the time needed for training and the achieved recognition accuracy.
This analysis is especially targeted at finding the most suitable one for scene object recognition,
providing Loopy Belief Propagation (LBP) the best results [41]. These comparisons were done with two
state-of-the-art datasets, including a particular one, called Robot@Home [42], specifically conceived
to serve as a testbed for the evaluation of semantic mapping algorithms, mainly those exploiting
contextual information (see Figure 8).

To combine different sources of contextual information, novel environment representations can
be used such as the so-called Multiversal Semantic Map [43]. This map is an extension of traditional
semantic maps for robotics [44], with the ability to coherently manage uncertain information coming
from, for example, object recognition or gas classification processes, and reference them to the location
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where they were acquired into a metric map. Additionally, it also comprises semantic information
codified by means of an ontology, enabling the execution of high-level reasoning tasks [45], which are
of special interest in this project.
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Figure 7. (Left) Scene from the NYUv2 dataset with segmented patches and their ids (x1 . . . x12).
(Right) Conditional Random Field (CRF) graph built according to the patches in the NYUv2 scene
(the node and relations of the wall, x10, have been omitted for clarity). The orange area illustrates
the scope of a pairwise factor modeling the relations between two objects, while the blue one stands
for the scope of a unary factor classifying an object according to its features. Black boxes represent
the expected results from a probabilistic inference process over such CRF.

Figure 8. Examples of information from the Robot@Home dataset. The first column presents
reconstructed scenes from the sequences within the dataset. The second column shows labeled
reconstructed scenes. The third to fifth columns are examples of individual point clouds from RGB-D
observations labeled by the propagation of the annotations within the reconstructed scenes.

6. Exploiting High-Level Olfactory and Visual Semantic Information in the Planning
and Execution of Tasks

Mobile robots operating in human environments such as offices, hospitals, or factories benefit
from the fusion of different sensing modalities to efficiently accomplish tasks that are hard or even
unfeasible to address if only one sensor is employed [46]. As mentioned, in the IRO project
we focus on two of these modalities, namely vision and artificial olfaction, and study their
application to a challenging problem: the localization of gas emission sources within real-world
indoor environments, commonly referred as gas source localization (GSL) [47]. For that, the robot
would need not only to detect the volatile chemical substance that is being release, but also pinpoint
the location of its release source. As stated, enriching the search process with visual sensory information
and considering semantic relationships through an inference process will enhance the current state
of art of GSL algorithms.

To demonstrate this claim, two parallel approaches were considered: on the one hand, we relied
on human intervention by means of a teleoperated mobile platform [48], delegating the inference
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of the most likely source location to the human tele-operator, and, on the other hand, we developed
a fully autonomous system able to infer the most likely source location based on the sensory
data available on the robot and high-level semantic reasoning [49]. Both approaches are detailed
in the following sections and were assessed through experiments with the Giraff mobile robot.

6.1. Olfactory Telerobotics

Since inferring the type of object (and the location in the environment) of the gas source that
is releasing the gases that have been detected by the robot is not straightforward, we simplified
the problem by introducing the human factor and its powerful reasoning capabilities to solve this
challenging problem [50]. In this context, olfactory telerobotics can be seen as the augmentation
of the sensing capabilities of a conventional teleoperated mobile robot to acquire information about
the surrounding air (i.e., gases, wind-speed, etc.) in addition to the usual audio and video streams
(see Figure 9).

Figure 9. Diagram of a traditional teleoperation system (in black) and extended olfactory telerobotics
(in blue). The latter requires equipping the mobile robot with additional sensors (e.g., an e-nose
or an anemometer), and enhances the teleoperation user-interface to display this new sensory data.

To evaluate whether the human reasoning can be exploited through a teleoperated robot
to efficiently locate the gas source, we collected a dataset comprised of 60 GSL experiments
with a teleoperated mobile robot [51]. The goal of the human operators was to identify and locate
the gas source among several visually-identical candidate objects (see Figure 10). Results demonstrate
that humans had over 75% success rate for search times between three to four minutes, supporting
our hypothesis that semantic reasoning is indeed used by humans when locating the gas source
with this configuration.

6.2. Semantic-Based Autonomous Gas Source Localization

The use of visual information when locating a gas source is not a novel approach, yet, it has been
only superficially explored in the literature with very simple problem domains where the robot
exploited prior knowledge about the source physical characteristics to reduce the locations to
search [52]. Moreover, a formal way to define and exploit the relationships among gases and objects
(i.e., their semantics) is still missing, aspect which could assist the GSL process in a more flexible
way. In [53], as a partial result of the project, presented a novel GSL system that pursues both
efficiency by exploiting the semantics between the detected gases and the objects in the environment,
and coherence through the consideration of the uncertainty in the identification of gases and objects.
To encode these semantic relationships (e.g., that heaters can release smoke), we rely on an ontology [39].
These factors make this approach particularly suitable for structured-indoor environments containing
multiple objects likely to release gases where semantic relationships can be exploited.

Fusing the classification results (from both the detected gases and the recognized objects
in the environment) together with the semantic information, a probabilistic Bayesian framework
is proposed to assign to each detected object a probability of being the gas source. Finally, a path planning
algorithm based on Markov Decision Processes (MDP) merges these probabilities with the navigation
distances from the current robot location to the different objects (i.e., a cost value related to the time



Sensors 2019, 19, 3488 12 of 15

the robot would spend to reach the candidate object), to produce a plan that minimizes the search time.
Both simulated (using computational fluid dynamic tools and GADEN gas dispersion simulator [54])
and real experiments demonstrate the feasibility of this novel approach by considerably reducing
the search times and producing more coherent gas source searches.

Figure 10. (Left) Ultrasonic scent-diffuser and one of the gas source candidates. (Middle) User interface
for teleoperating the robot running on a laptop. (Right) Giraff telepresence-robot equipped with an e-nose
and an anemometer for remote sensing, and a LIDAR for self-localization.

7. Conclusions

In this paper, we have described and reviewed the goal and main contributions of the IRO
project, focused on the improvement of the sensory and autonomous capability of mobile robots
through olfaction.

We have first reviewed the concept of electronic nose, raising some specific issues when used
on-board a mobile robot, and described a design of a modular e-nose suitable for mobile robotics
applications. Then, having in mind the final goal of fusing different sensing modalities, we have
focused on the intermediate tasks of visual object recognition and gas classification. Here, the project
contribution consisted of different algorithms and experimental evaluations towards improving
the recognition rates when these tasks are carried out with a mobile robot while navigating. Finally,
we have introduced semantic reasoning to successfully fuse multiple sensing modalities when
solving the challenging problem of gas source localization with a mobile robot. At this point,
the project contributed with a novel architecture able to exploit the information provided by the vision
and olfaction sensory sub-systems, as well as handling their respective uncertainties. For each detected
object in the environment, a probability of being the gas source is estimated and afterward fed
to a probabilistic framework that outputs the optimal path the robot should follow when inspecting
the different objects in the environment, minimizing the search time.
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