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Genome-wide assessment of gene-
by-smoking interactions in COPD
Boram Park1, So-My Koo   2,3, Jaehoon An1, MoonGyu Lee1, Hae Yeon Kang4, Dandi Qiao5, 
Michael H. Cho   5,6, Joohon Sung1,7,8, Edwin K. Silverman5,6, Hyeon-Jong Yang3,9 &  
Sungho Won1,7,8

Cigarette smoke exposure is a major risk factor in chronic obstructive pulmonary disease (COPD) 
and its interactions with genetic variants could affect lung function. However, few gene-smoking 
interactions have been reported. In this report, we evaluated the effects of gene-smoking interactions 
on lung function using Korea Associated Resource (KARE) data with the spirometric variables—forced 
expiratory volume in 1 s (FEV1). We found that variations in FEV1 were different among smoking status. 
Thus, we considered a linear mixed model for association analysis under heteroscedasticity according 
to smoking status. We found a previously identified locus near SOX9 on chromosome 17 to be the most 
significant based on a joint test of the main and interaction effects of smoking. Smoking interactions 
were replicated with Gene-Environment of Interaction and phenotype (GENIE), Multi-Ethnic Study 
of Atherosclerosis-Lung (MESA-Lung), and COPDGene studies. We found that individuals with minor 
alleles, rs17765644, rs17178251, rs11870732, and rs4793541, tended to have lower FEV1 values, and 
lung function decreased much faster with age for smokers. There have been very few reports to replicate 
a common variant gene-smoking interaction, and our results revealed that statistical models for gene-
smoking interaction analyses should be carefully selected.

The spirometric measurement forced expiratory volume in the first second (FEV1) reflects the physiological and 
functional state of the lungs; this measure has been used as the gold standard for diagnosing a lung disease, clas-
sifying its severity, assessing its progression over time, and monitoring the treatment response1. Furthermore, 
this parameter is a predictor of other morbidities and mortality in the general population, even independent of 
smoking history2,3. Reduced FEV1 is a characteristic of chronic obstructive pulmonary disease (COPD), a leading 
cause of mortality and morbidity worldwide4,5. The prevalence and burden of COPD are expected to increase in 
the coming decades owing to continued exposure to COPD risk factors and the aging population5.

Multiple risk factors for COPD have been identified, and smoking has been recognized as the major risk factor 
for a rapid decline in lung function and consequent development of COPD. However, only a minority of smokers 
develop COPD6, and there are substantial differences in the sensitivity to smoking among individuals. These 
differences are partly attributable to genes and/or their interactions with smoking. Heritability estimates of lung 
function range from 39% to 66%7,8. Moreover, a hereditary severe deficiency in alpha-1 antitrypsin, encoded by 
SERPINA1 on chromosome 149, is the best known genetic risk factor for the development of COPD. However, 
severe alpha-1 antitrypsin deficiency accounts for only about 1% of the patients with COPD10. Thus, improving 
our understanding about disease pathogenesis and progression would require studies on genetic susceptibility 
loci and their interactions with smoking.
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Recently, many genome-wide association studies (GWASs) have been conducted to identify the genetic loci 
associated with lung function levels, and many genome-wide significant loci have been identified. The necessity of 
replication across populations with diverse ethnic or environmental characteristics has been reported11. However, 
loci identified from GWASs have often failed to be replicated in different populations12. There are many reasons 
for this inconsistency, and several studies have shown a partial relation with gene-environment interactions11,13. 
Smoking has a strong effect on lung function, and the effects of gene-smoking interactions on lung function have 
been repeatedly highlighted14–16. However, the effects of gene-smoking interactions on variability in lung function 
in different ethnicities are not clear. Furthermore, because COPD is expected to be the fifth most common disease 
worldwide, with the third highest mortality rate5 in 2020, and because its burden, including financial cost, is pre-
dicted to increase, early prediction of lung function may be important for developing individualized therapeutic 
strategies, and further studies are required to identify genetic factors that predict the risk for a subsequent rapid 
decline in lung function across ethnicities.

In this study, we aimed to identify the genetic variants interacting with smoking on FEV1 using genome-wide 
interaction studies (GWISs). We considered various models in terms of smoking-related variables and 
variance-covariance structure, and the best model was chosen by Akaike information criterion (AIC) for each 
dataset. GWISs were conducted using the Korea Associated Resource (KARE) data. We detected that SNPs with 
the smallest P-values are located near SOX9. The SOX9 has been reported to be involved in lung branching mor-
phogenesis17 and recovery of lung function after lung injury18. It should be noted that genetic association of 
SOX9 was firstly detected by Hankcock et al., but their interaction P-values were larger than 0.0519. We rep-
licated interactions in the Gene-Environment of Interaction and phenotype (GENIE), Multi-Ethnic Study of 
Atherosclerosis-Lung (MESA-Lung), and COPDGene studies. Our findings provide important insights into our 
understanding about lung disease prevention and control.

Methods
Data description.  Our analyses consisted of two phases—discovery and replication. For the discovery phase, 
we conducted GWISs on FEV1 using KARE data. For the replication phase, we considered GENIE, MESA-Lung, 
and COPDGene data, and replicated the significant results identified from the filtering step. Detailed procedure 
for genotyping, quality controls (QC), and imputations for each data are described in the Supplementary Text 1.

KARE.  Data collected by the KARE project were used for GWASs. Participants were recruited from the rural 
Ansung and urban Ansan cohorts. Initiated in 2001 as part of the Korean Genome Epidemiology Study (KoGES), 
the initial samples included 5,018 and 5,020 participants aged 40–69 years from Ansung and Ansan areas, respec-
tively. After QC of genotypes, there were 8,534 participants between the age of 40 and 69 years with at least one 
spirometry test and genotype data (see Supplementary Text 1 for detailed procedures about QC). Among these 
participants, 4,001 were men and 4,533 were women. The values of FEV1 were observed up to three times every 
two years, and 19,557 measurements were used for the analyses. Smoking history was obtained through a ques-
tionnaire, and smoking status and pack years were used for association analyses as covariates. Smoking status 
was categorized as never smokers, former smokers, and current smokers. Never smokers were defined as indi-
viduals who had never smoked, and former smokers were participants who had smoked previously, but stopped 
smoking prior to the survey. Current smokers were individuals who stated that they currently smoked during the 
investigation, or who had a record of smoking and did not belong to the other two categories. According to our 
categorization, there were 4,926 never smokers, 1,742 former smokers, and 1,866 current smokers in our cohort.

GENIE.  GENIE data were used to replicate SNPs identified from GWISs using KARE data. The GENIE cohort 
consisted of 7,999 participants, who had visited Seoul National University Gangnam Center during 201420. They 
agreed to participate in genetic studies and donated blood samples, and after QC, there were 5,971 participants 
(3,404 men and 2,567 women) with spirometry and smoking-related variables (see Supplementary Text 1 for 
detailed procedures about QC). Spirometry and smoking-related variables were repeatedly measured up to 11 
times. Smoking-related variables were obtained by questionnaire. Based on their responses, smoking status was 
categorized into three groups, similar to the smoking status categories used in the KARE data. The numbers of 
never smokers, former smokers, and current smokers were 3,396, 1,804, and 771, respectively.

MESA-Lung non-Hispanic whites.  MESA-Lung data were used to replicate SNPs identified from GWISs using 
KARE data. MESA was a prospective cohort initiated to investigate cardiovascular diseases. Participants consisted 
of 6,814 men and women aged 45–84 years. As a subgroup of the MESA cohort, the MESA-Lung study enrolled 
3,965 participants who were sampled from the MESA cohort, and agreed to participate in the genetic analysis 
and to measure their lung functions21. The MESA-Lung study was composed of four populations—non-Hispanic 
whites (NHWs; 35%), African-Americans (AAs; 26%), Hispanics (23%), and Chinese-Americans (16%)21—and 
we considered only NHWs. After QC of genotypes, 1,033 participants had both spirometry and smoking-related 
variables with genotype data, including 459 never smokers, 468 former smokers, and 106 current smokers (see 
Supplementary Text 1 for detailed procedures about QC).

COPDGene.  COPDGene was a multi-center study on smokers with and without COPD, and included AAs 
and NHWs. All participants had at least 10 pack years of smoking, and their ages were between 45 and 80 years. 
Pre- and post-bronchodilator spirometric data were obtained for all participants with standardized spirometry 
(EasyOne Spirometer; Zurich, Switzerland); to be consistent with other studies, we focused on pre-bronchodilator 
spirometry. After QC of genotypes, 7,760 NHWs and 3,300 AAs were enrolled for replication studies22 (see 
Supplementary Text 1 for detailed procedures about QC). AAs consisted of 2,643 current smokers and 657 former 
smokers, and NHWs consist of 2,616 current smokers and 4,054 former smokers.
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Statistical analysis.  Smoking has a significant effect on respiratory function, and it was found that vari-
ances of FEV1 can differ by smoking status. Linear mixed models which allow heteroscedasticity according to 
smoking status were computationally very intensive and we consider a two step approach; (i) filtering step and 
(ii) testing step. In the filtering step, participants were stratified according to the smoking status and a likelihood 
ratio test with 3 degrees of freedom which allow heteroscedasticity according to smoking status were applied 
to select the most significantly associated SNPs. Filtering step was considered only for discovery data, and the 
likelihood ratio test will be called 3 DF test in the remainder of this article. For testing step, we consider several 
variance-covariance structures for the linear mixed models, and the best model was chosen with AIC. Then for-
mer, current, and never smokers were pooled, and linear mixed models with the smallest AIC were applied to the 
SNPs selected from the filtering step.

Filtering step: genome- wide interaction studies (GWISs) with KARE data.  We considered FEV1 (mL) as spiro-
metric measures, which were used to identify the genetic variants interacting with smoking. GWISs were con-
ducted using KARE data. We found that there were no substantial differences in spirometric measures between 
current smokers and former smokers for KARE data with AIC, and both groups were combined into a single 
group; ever smokers. To handle heteroscedasticity, we conducted stratified analyses which applied linear mixed 
models to never smokers and ever smokers separately for GWISs. For both groups, sex, age at baseline measure-
ment, height, body mass index (BMI), elapsed time from the baseline measurement, and interaction of age and 
sex were included as covariates. It was reported that lung function decline accelerates after he or she becomes 35 
years old23, and all participants in KARE data were around 40–69 years old at the baseline. Thus, effect of ages on 
the baseline pulmonary function measurements and that of elapsed time on their decrement were expected to be 
substantially different, and it is a main reason why the baseline age and elapsed time from the baseline measure-
ment were considered as different covariates. To adjust for population substructure strictly, principal component 
(PC) analyses were applied to the genetic relationship matrix, and the first 10 PC scores were included as covari-
ates24. FEV1 of each participant was measured up to 3 times, and FEV1 at each time point was included as response 
variables. The similarities among repeated spirometric measures for each participant were handled with a random 
intercept. We let yij be FEV1 values for participant i at time point j, and they were assumed to follow multivariate 
normal (MVN) distribution. We denote elapsed time from baseline measurement and PC scores for participant i 
and component k by timeij and pci

k. Then the linear mixed model for ever smokers becomes
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For never smokers, we consider
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It should be noted that pack years are 0 for never smokers and were included as covariates only for ever smok-
ers. We compared several structures for Σ and Σ′, and selected an unstructured covariance structure. The pro-
posed models were applied to detect gene-smoking interaction of FEV1 average levels. To identify SNPs 
interacting with smoking on spirometric measures, we considered H0: β β β′ = = = .07 8 9  This could be tested 
by summing a likelihood ratio test with 2 degrees of freedom (DF) for ever smokers and a likelihood ratio test 
with 1 DF for never smokers. The summed likelihood ratio test followed the chi-square test with 3 DF under the 
null hypothesis, and this statistic would be denoted as the 3 DF test. The most significant SNPs were selected for 
further analyses of gene-smoking interaction effects.

We compare the results from 3 DF test with the homoscedasticity model. For homoscedasticity model, ever 
and never smokers were pooled and linear mixed model was fitted. We assume the same variances between never 
smokers and ever smokers, and the same coefficients of covariates as follows:
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Then P-values for homoscedasticity model were obtained by likelihood-ratio tests with 3 degrees of freedom 
for H0: β β β= = = .010 11 12  This will be called homoscedasticity test in the remainder of this article.
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Testing step: estimating the effects of SNPs and SNP-smoking interaction effects with KARE data.  The 3 DF test 
provides P-values for overall effects about the main and interaction effects. However, it could not identify inter-
action effects of SNPs with smoking on lung function because never and ever smokers were separately analyzed. 
Furthermore, stratified analyses are usually less powerful compared to analyses using pooled data. Thus, former, 
current, and never smokers in KARE data were pooled and analyzed by a linear mixed model.

While building the linear mixed model, we first assessed variance-covariance structures by smoking status. If 
heteroscedasticity is not correctly taken into account, the false positive rates cannot be controlled with P-values25. 
Furthermore, modeling the relationship between smoking-related variables and FEV1 is not clear. If lung func-
tion of the participants worsens, they tend to quit smoking, and such indication biases make the relationships 
complicated. Thus, the appropriate choice of smoking-related variables may depend on sampling strategies. We 
considered various models with the choices of smoking-related variables and variance-covariance structure by 
smoking status for each dataset, and the best model was selected with the AICs. Notably, SNPs were not included 
for the model selection, and this step did not violate any statistical inference.

Supplementary Table S1 presents AICs for various models fitted to FEV1 for KARE data. Supplementary 
Table S1 shows that KARE data has the smallest AIC when smoking status had two levels (never versus ever 
smokers) instead of three levels, and different variances between never smokers and ever smokers were assumed. 
All covariates used for GWISs of KARE data were also included as covariates in our linear mixed model. We 
found that coefficients of some covariates differed according to smoking status, and interactions of some covari-
ates and smoking-related variables were considered. For example, interactions between smoking status and time 
effects were significant at the 0.05 level and included as covariate. Furthermore, to control the effects of con-
founders on interaction effects, the interaction between confounders and environmental factors of interest should 
be considered for gene-environmental analyses26. Therefore, we considered interactions between PC scores for 
adjusting the population substructures and smoking status regardless of significance at 0.05 level. We considered 
g = 1 and 2 indicate ever smokers and never smokers, respectively, and ni is the number of repeatedly observed 
measurements for participant i. The best model selected with AIC was as follows:

∑

β β β β β β

β β β

β β

β β

τ τ

ε ε ε σ

= + + + + +

+ + ⋅ +

+ ⋅ + ⋅

+ ⋅ + ⋅

+ + ⋅ +

+ ... Σ
=

~ ~

y

b

MVN b iid MVN

age sex BMI height time

pack year sex age smoking status

age smoking status sex smoking status
height smoking status time smoking status

pc pc smoking status

, ( , , ) (0, ), (0, ) (4)

gij i i ij ij ij

ij i i i

i i i i

ij i ij i

k
k i

k
i i gi

gij gij gin
t

g gi g

0 1 2 3 4 5

6 7 8

9 10

11 12

1

10

11
1

1
2

i

This model includes two smoking-related variables—smoking status, and pack years. Therefore, both were 
used to define the interactions between SNP and smoking. To test gene and environment interactions, we 
considered
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Replication studies.  SNPs selected from GWISs using KARE data were replicated with GENIE, MESA-Lung, 
and COPDGene data. For each dataset, we considered various variance-covariance structures, and the best model 
was selected with AICs. Supplementary Tables S2–S4 show AICs for GENIE, MESA-Lung, and COPDGene data, 
respectively, which were used as replication studies. The selected models with AICs were used to replicate the 
effects of SNPs and their interactions with smoking. Notably, SNPs and their interactions were not considered for 
model selection. A final model for replication data is described in Supplementary Text 2.

Data availability.  All data analyzed in this article were utilized in previously published articles (KARE: Cho, 
Go et al.27; GENIE: Choe, Lee et al.20; MESA-Lung: Hankinson, Kawt et al.21; COPDGene: Castaldi, Cho et al.22).

Results
Descriptive statistics.  Table 1 shows baseline characteristics of participants in the KARE, GENIE, MESA-
Lung, and COPDGene data. KARE and GENIE data were from the Korean population and included both baseline 
and longitudinal data. MESA-Lung and COPDGene were cross-sectional data, and participants in MESA-Lung 
were NHWs, whereas COPDGene data consisted of AAs and NHWs. In the KARE data, there were 8,534 par-
ticipants, of which 47% were men. In the KARE data, participants were 40–69 years old, and the percentage of 
never smokers, former smokers, and current smokers were 58%, 20%, and 22%, respectively. The GENIE cohort 



www.nature.com/scientificreports/

5SCIENtIfIC REPOrTS |  (2018) 8:9319  | DOI:10.1038/s41598-018-27463-5

composed of participants who were regularly screened for health, and their average lung function values were 
expected to be better than those of the general population. There were 5,971 participants, of which 57% were men. 
Participants were repeatedly measured an average of 3.13 times. In the GENIE data, participants were 30–84 years 
old, which explained the largest range of FEV1. In the GENIE data, the percentages of never smokers, former 
smokers, and current smokers were 56.9%, 30.2%, and 12.9%, respectively. MESA-Lung data consisted of 1,033 
participants, of which 50.5% were men. These participants were 45–84 years old, and 44.4%, 45.3%, and 10.3% 
were never, former, and current smokers, respectively. Lastly, COPDGene data consisted of AAs and NHWs. The 
number of AAs was 3,300, of which 56% were men; these participants were 45–80 years old, and the percentages 
of former and current smokers were 20% and 80%, respectively. The number of NHWs was 6,670, of which 52% 
were men. Participants were 45–80 years old, and 61% and 39% were former and current smokers, respectively. 
Unlike KARE, GENIE, and MESA-Lung data, there were no never smokers in the COPDGene data, and partici-
pants in the COPDGene data had the lowest mean FEV1 and the highest pack years.

Heterogeneity of FEV1 decline along ages.  Figure 1 shows the estimated FEV1 according to age and 
their 95% confidence intervals. The generalized additive models were applied for MESA-Lung and COPD gene 
data. KARE and GENIE data have the repeated measures of FEV1 levels, and the generalized additive mixed mod-
els were used. According to Figure 1, there were substantial differences among FEV1 according to the smoking 
status for each dataset. Current smokers in KARE and MESA-Lung data tended to have the lowest FEV1 values, 
followed by former smokers. For GENIE data, there were no differences in FEV1 values among never, former, and 
current smokers. Interestingly, for NHWs and AAs in COPDGene data, average FEV1 values of former smokers 
were smaller than those of current smokers, even though the differences were quite small for NHWs. This differ-
ence likely relates to selection bias, because participants with the worse lung function tended to quit smoking28,29, 
and only heavy smokers were considered for COPDGene. These results suggest that the same model could not 
be applied to different data to identify SNPs interacting with smoking, and the best model for the choice of 
smoking-related covariates and variance-covariance structures were selected with AICs.

GWISs of FEV1 with KARE data.  In the discovery phase, associations of 310,515 SNPs were tested by apply-
ing the 3 DF test to KARE data. For the GWISs of FEV1, we included ten PC scores to adjust population substruc-
ture, and they explain 0.41% of genetic variances. Scatter plot for the first two PC scores and scree plot are provided 
in Supplementary Figure S1. Figure 2A presents the QQ-plot for 3 DF tests, and it shows that the proposed 3 DF 
tests generally preserve nominal significance levels. Variance-inflation factors (VIF) were estimated test was also 
applied30 and Figure 2B shows its QQ plot. Figure 2B reveals evidence of some inflation, and VIF of homoscedastic-
ity model, 1.22, is substantially larger than 1. Supplementary Figure S2 is a Manhattan plot of results from the 3 DF 
test. We further checked the effects of heteroscedasticity according to smoking status on FEV1/FVC by applying the 
same methods, and there were no significant results (Supplementary Table S5). Supplementary Figure S3A,B are 
based on their results from 3 DF test and homoscedasticity test, respectively. VIFs for both models were 1.01 and 
1.12. Therefore, we can conclude that heteroscedasticity according to smoking status should be carefully addressed 
for identifying the interaction effects between SNPs and smoking on lung function.

Table 2 shows the most significant SNPs from results of 3 DF tests for FEV1. These selected SNPs were 
located in the upstream region of SOX9 on chromosome 17 and had similar minor allele frequencies (MAFs). 
Furthermore the linkage distribution plot in Figure 3A reveals that these factors were highly correlated, which 
indicates that four significant SNPs actually indicate same association signal. Figure 3B shows the regional 
plot for this region. Those 4 SNPs are located within topologically associated domains (TAD) of SOX9 region 
(68.67~70.45 Mb of chromosome 17 in hg19)31–33. DNA sequences within a TAD physically interact with each 
other more frequently than with sequences outside the TAD, and thus our most significant SNPs may affect the 
expression of SOX9. Therefore, our results indicate that SOX9 may be functionally related with FEV1.

KARE GENIE MESA-Lung

COPDGene

AAs NHWs

Participants 8534 5971 1033 3300 6670

Males/females 4001/4533 3404/2567 521/512 1846/1415 3493/3177

Age (years) 52.1 ± 17.4 47.1 ± 16.9 66.4 ± 19.2 54.7 ± 14.1 62.1 ± 17.2

Height (cm) 160.0 ± 17.1 166.4 ± 15.1 168.7 ± 18.8 171.2 ± 19.0 169.7 ± 18.6

Body mass index (kg/m2) 24.6 ± 6.1 23.1 ± 5.9 27.9 ± 10.2 29.1 ± 13.1 28.6 ± 12.0

Baseline FEV1 (liters) 2.9 ± 1.4 3.1 ± 1.3 2.5 ± 1.5 2.2 ± 1.7 2.1 ± 1.8

Baseline FVC (liters) 3.6 ± 1.8 3.8 ± 1.6 3.5 ± 1.9 3.1 ± 1.9 3.3 ± 2.2

Baseline FEV1/FVC (ratio) 0.8 ± 0.16 0.82 ± 0.14 0.73 ± 0.18 0.70 ± 0.25 0.63 ± 0.31

Smoking status

never smokers 4926 3396 459

former smokers 1742 1804 468 657 4054

current smokers 1866 771 106 2643 2616

Pack years 9.4 ± 31.4 6.7 ± 38.8 16.4 ± 51.2 38.3 ± 42.3 47.3 ± 51.0

Table 1.  Descriptive statistics Means of variables and their 95% confidence intervals are calculated.
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Effects of SNPs and SNP-smoking interactions on spirometric measures in KARE data.  3 DF 
tests cannot separately estimate the main effects of SNPs and their interaction effects with smoking. In addition, 
ever and never smokers were separately analyzed, and such stratified analyses were less powerful than analyses with 
pooled data. Thus, all participants were pooled and analyzed with linear mixed models. Supplementary Table S1 
shows AICs for the various models, and the selected model assumed different variances between never and ever 
smokers, corresponding to the linear mixed model eq. (5). This method was computationally very intensive and 
was applied to the most significant SNPs from GWISs. The selected models are summarized in Supplementary 

Figure 1.  Changes of FEV1 along age Smoothing lines of FEV1 (L) according to age and their 95% confidence 
interval were estimated with generalized additive model.

Figure 2.  QQ plots for FEV1 Figure 2A is obtained from the proposed 3 DF test on FEV1 and Figure 2B is 
obtained from the homoscedasticity model.
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Table S6, and the Wald test of selected models for rs17765644, which has the smallest P-value in filtering step, are 
provided in Table 3. These results were obtained with PROC MIXED in SAS(version 9.4). The results for the other 
three SNPs are provided in Supplementary Tables 7–9 The results also showed that P-value for testing H0: 
β β β= = =− − 0SNP SNP smoking SNP PY  was close to the Bonferroni-adjusted 0.05 significance level (1.61 × 10−7), 
and their SNP-smoking group interactions were significant at the 0.05 significance level, even though there were no 
significant interactions between SNPs and pack years. Coefficients for both the main association of rs17765644 and 
its interaction with smoking status were −0.025 and −0.029, respectively. This implies that the FEV1 of never 
smokers tend to be lower around (number of minor alleles) × 0.025 and ever-smokers are further lower around 
(number of minor alleles) × 0.029. Figure 4 shows the interacting effect of SNP with smoking status.

Replication studies with GENIE, MESA-Lung, and COPDGene data.  To validate the potential 
association of lung function with smoking, the four SNPs selected with KARE data were replicated in GENIE, 
MESA-Lung, and COPDGene data. According to the results from KARE data, the main effects of those four 
SNPs were negative, and their effects were more profound for ever smokers. Based on these factors, we conducted 
one-tailed tests for the main and interaction effects at the 0.05 significance level for replication studies.

Table 3 shows the results of replication studies for rs17765644. The best model for GENIE data was selected 
with AICs, and the selected model is shown in the eq. (1) of Supplementary Text 2 and Supplementary Table S6. 
According to Table 3, the main effect of rs17765644 was not significant for GENIE data. Smoking status had 
three levels, and two dummy variables were defined for GENIE data. Never smokers were used as the reference 
level, and P-value for overall test about the main effect of SNP, and interaction effects for SNP-smoking sta-
tus, and SNP-pack years was significant at the 0.1 significance level. Interaction P-values between rs17765644 
and dummy variables for former and current smokers were 0.052 and 0.049, respectively. The interaction effect 
between rs17765644 and dummy variables for current smokers was −0.024, which was much smaller than that 
between the SNP and dummy variable for former smokers. If former and current smokers were combined into 
ever smokers, and two levels were defined for smoking status, the estimated interaction effects between smoking 
status and rs17765644 and its P-values were −0.019 and 0.04, respectively.

The best model for MESA-Lung data was also selected with AICs, and the selected model is shown in the eq. (2)  
of Supplementary Text 2 and Supplementary Table S6. The smoking status for the best model has two levels, 
never and ever smokers. The dummy variable for smoking status is coded as 1 for ever smokers and as 0 for never 
smokers. As shown in Table 3, the P-value for overall effects was 0.0037. P-value for the main effect of rs17765644 
was 0.008. The interaction effect between rs17765644 and smoking status was not significant, but its interaction 
with pack years was significant (P-value = 0.014). Thus, we concluded that the FEV1 values of ever and never 
smokers were not proportional to the coded genotypes, but the amount of decrease according to the pack years 

SNP Chromosome
Associated 
gene

Minor/Major 
alleles MAFs

P-values for 
HWE test

P-values for 3 
DF tests

rs17765644 17 SOX9 C/T 0.384 0.604 4.45 × 10−7

rs17178251 17 SOX9 G/C 0.383 0.572 5.21 × 10−7

rs11870732 17 SOX9 G/A 0.384 0.636 6.15 × 10−7

rs4793541 17 SOX9 C/T 0.391 0.324 7.63 × 10−7

Table 2.  Results from GWISs with KARE data 3 DF tests are conducted and the most significant SNPs were 
summarized. -Definition of Abbreviations: SNP means single-nucleotide polymorphism, MAF means minor 
allele frequency, and HWE means Hardy-Weinberg equilibrium.

Figure 3.  Linkage disequilibrium among the four most significant SNPs and regional plots Figure 3A shows 
the LD plot generated with Haploview software and D’ values were used. Figure 3B is a regional plot r2 around 
rs17765644 SNPs created with LocusZoom. SOX9 TAD is located between 68.67 to 70.45 Mb.



www.nature.com/scientificreports/

8SCIENtIfIC REPOrTS |  (2018) 8:9319  | DOI:10.1038/s41598-018-27463-5

was proportional. Results for the other SNPs had a pattern similar to that of rs17765644 because they were highly 
correlated (Figure 3). These results are shown in Supplementary Tables 7–9

Lastly, AAs and NHWs in COPDGene data for rs17765644 were utilized to replicate the main effect and its 
interaction with smoking. For COPDGene data, there were no never smokers, and smoking status had two lev-
els, former and current smokers. We found that former and current smokers had different FEV1 values, and the 
best model was selected with AIC. The selected models for AAs and NHWs are shown in the eqs (3) and (4)  
of Supplementary Text 2, respectively, and summarized in Supplementary Table S6. Former smokers were used as the 
reference level for smoking status. However, because there were no never smokers, and the directions of regression 
coefficients from the KARE data could not be considered, we used two-tailed tests. For AAs, the interaction effects of 
rs17765644 were significant at the 0.1 significance level (P-value = 0.082). Interestingly, rs11870732 (Supplementary 
Table S8) had significant interactions with smoking status (P-value = 0.037). For NHWs, the main effect of 
rs17765644 was significant at the 0.05 significance level, and the regression coefficient was −0.066, which was con-
sistent with the data from other studies. However, its interaction effect with smoking status had the opposite direction 
(P-value = 0.054). This result may be attributable to the selection bias, and former smokers may have smoked more 
than the current smokers. The results for the other SNPs showed patterns similar to those of rs17765644.

Data

Minor/
Major 
alleles MAF HWE

Main effects Interaction (SNP – smoking status)
Interaction (SNP – 
pack years)

Overall 
effectsβSNP (P-value)

never vs former 
βSNP–SM1 
(P-value)

never vs current 
βSNP–SM2 
(P-value)

former vs current 
βSNP–SM3 (P-value) βSNP-PY (P-value)

Discovery KARE (Koreans) C/T 0.384 0.604 −0.025 
(2 × 10−4) −0.029 (0.043) 0.0004 (0.185) 2.70 × 10−7

Replication GENIE (Koreans) C/T 0.380 0.164 −0.004 (0.336*) −0.018 (0.052*) −0.024 (0.049*) 0.0003 (0.981*) 0.0820

MESA-Lung (NHWs) C/T 0.438 0.521 −0.064 (0.008*) 0.078 (0.941*) −0.0021 (0.014*) 0.0037

COPDGene (AAs) C/T 0.177 0.377 0.042 (0.499) −0.097 (0.082) 0.0005 (0.555) 0.2205

COPDGene (NHWs) C/T 0.459 0.433 −0.066 (0.020) 0.049 (0.054) 0.0006 (0.200) 0.0746

Table 3.  Results for rs17765644 P-values for rs17765644 were obtained from the selected model for each data. 
βSNP indicates the coefficient of the main effect of SNP. The smoking status was coded as dummy variables and 
never smokers were used as reference level. If three levels were defined, then two dummy variables are used. 
SM1 indicates the dummy variable which is coded as 1 for former smokers, and otherwise 0. SM2 indicates the 
dummy variable which is coded as 1 for current smoker and otherwise 0. SM3 is utilized only for COPDGene 
because there are no never smokers. 1 and 0 are for current and former smokers respectively. βSNP–SM1, βSNP–SM2 
and βSNP–SM3 are the coefficients for the interaction between SNP and the corresponding dummy variables 
respectively. Since KARE and MESA-Lung data chose the smoking status with two levels (never vs ever 
smokers), βSNP–SM1 and βSNP–SM2 are shown. βSNP–PY indicates the coefficient for the interaction between SNP and 
pack years. For GENIE, MESA-Lung data, we conducted one-tailed P-value based on the coefficients from 
KARE data and *indicates the results of one-tailed P-value. Overall effects indicate P-values for testing the null 
hypotheses βSNP = β −SNP smoking = β −SNP PY = 0 by F test.

Figure 4.  SNP-smoking interaction Figure 4 visualize the effects of rs17765644 by smoking status. X axis 
presents the number of minor alleles, and left and right of Y axis represent mean FEV1 values of never smokers, 
and ever smoker, respectively.
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Discussion
We conducted GWISs of lung function (FEV1) to identify genetic variants interacting with cigarette smoking. We 
identified such an interaction using a joint test near the previously described SOX9 locus on chromosome 17 in 
KARE. These findings were further explored in GENIE, MESA-Lung, and COPDGene. In this report, firstly, we 
replicated the main effects of SOX9 on FEV1 values in Koreans, as shown in NHWs. Secondly, we found some 
evidence for SOX9 gene-smoking interaction effects on FEV1, and former/current smokers with minor alleles 
of the selected SNPs near SOX9 tended to have lower FEV1 values, even though the interaction effects were not 
strong. According to our results, the coefficient of gene-smoking interaction showed the same direction as the 
main SNP effect and its amount was almost the same. There have been very few studies showing a significant 
gene-smoking interaction effect, which could be replicated in other populations, though there were inconsist-
encies in the interaction effects for different ethnicities. Finally, we highlighted that the statistical model for the 
analysis of gene-smoking interactions should be carefully selected. The effects of smoking on FEV1 were very 
strong, and the means and variances could differ according to smoking status. Notably, when the mis-specified 
variance-covariance matrices were taken into account, QQ plots were inflated, and type-1 errors were not 
controlled.

SOX9 has been extensively studied and shown to have pivotal roles in the lung epithelium during branch-
ing morphogenesis17. The epithelial-mesenchymal transition (EMT) is the process through which epithelial cells 
become mesenchymal-like, playing crucial roles in tissue repair and several pathological processes, including 
tissue fibrosis, tumor invasiveness, and metastasis. EMT is involved in specific steps in embryogenesis and organ 
development; however, this concept has been challenged by recent evidence showing that terminally differenti-
ated epithelium can be changed to mesenchymal cells, even in adulthood34. This process can be activated by tissue 
injury or pathological stresses, and inappropriately controlled processes may induce tissue fibrosis and cancer. 
SOX9 induces migratory fibroblasts responsible for extracellular matrix (ECM) deposition and tissue destruc-
tion by EMT35. SOX9 induces lung fibrosis mediated by transforming growth factor (TGF)-β1 repair signaling, 
characterized by inappropriate ECM deposition; this can result in the destruction of tissue architecture and func-
tion34,35. Recent studies have suggested that SOX9 activation is essential for the recovery of lung function after 
acute lung injury, and SOX9 inhibition induces impaired recovery18. Smoking, which includes exposure to several 
oxidants and free radicals, causes numerous pulmonary diseases through inflammatory processes, leading to cell 
recruitment to the lung, activation of signaling pathways, and upregulation of proteins, consequently contribut-
ing to disruption of the lung ECM. This process varies from person to person; therefore, genetic susceptibility 
and gene-smoking interactions have been suggested to contribute to disease progression. Previous genome-wide 
joint meta-analyses of SNPs by smoking interactions on FEV1 and FEV1/FVC across 19 studies (total N = 50,047) 
demonstrated that SOX9 was associated with FEV1 and was expressed at higher levels in the airway epithelium 
in smokers than in non-smoking adults of the European ancestry19. Our findings were consistent with the results 
of a previous study, and the SOX9 gene-smoking interaction effects were verified in several ethnicities (Korean, 
NHWs, and AAs).

However, despite our interesting findings, some inconsistencies were observed in our replication results. 
For example, an interaction between smoking status and SNPs was found for KARE and GENIE data; however, 
for MESA-Lung data, the interaction between pack years and SNPs was significant. For COPDGene data, there 
were no never smokers, and former/current smokers were compared. Coefficients of smoking status and SNP 
interactions were significant at the 0.1 significance level, but had different directions for NHWs and AAs. There 
were multiple explanations for these phenomena, including ethnic differences36,37. Genetic ancestry itself is not 
assumed to be a cause for this difference, but could account for differences in lung function and susceptibil-
ity to smoking. For example, the structures of smoking experience vary by population38 implying complicated 
relationships between genetics, ethnicity, smoking, and lung function39. Therefore, the effects of gene-smoking 
interactions can be heterogeneous among different populations. In our replication study, we considered diverse 
ethnicities. According to our results, the replication with GENIE data was quite consistent with that of KARE 
data, and both were based on the Korean population. However, MESA-Lung and COPDGene data consisted of 
NHWs and AAs. Small differences between GENIE and KARE data could be explained by the characteristics of 
the participants. For example, KARE data were based on rural and urban community populations, and GENIE 
data were composed of participants who underwent regular health screening and received routine medical care. 
Medical care and routine health check-ups are often positively related to socioeconomic status40.

Furthermore, the effects of smoking on FEV1 are substantial; however, modeling its relationship with FEV1 
is not clear. For example, we found that the effects of gene-smoking status were significant in the KARE and 
GENIE data, and in the MESA-Lung data, the effects of gene-pack years were significant. Smoking does not 
have a linear relationship with FEV1, and non-linear relationships41,42 have been reported frequently. The impor-
tance of various factors, such as smoking cessation time, smoking behavior, duration, and total dose, has been 
shown43,44 to explain the effects of smoking. In this report, we utilized the smoking status and pack years based 
on a self-reported smoking history. The prevalence of smoking from self-reporting surveys is usually underesti-
mated, and the degree of underestimation varies among different countries45–47. To minimize this heterogeneity 
among different studies, we selected the best model with AIC. However, the appropriate definition for smoking is 
still unclear, and further studies are still necessary.

COPD is expected to be the third leading cause of mortality worldwide within a few years, and identify-
ing genetic variants interacting with smoking would be beneficial in terms of social burden, aging, and the 
growing importance of personalized medicine48. However, statistical models that correctly model the effects of 
gene-smoking interactions based on lung function are complicated, and successful gene-smoking interaction 
analyses have been very limited. The proposed method illustrates the complexity of gene-smoking interaction 
analyses, and to identify consistent gene-smoking interactions, a statistical model should be developed that con-
siders the non-linear relationships between smoking history and lung function.
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