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Background. To investigate whether one ormore SAMHD1 genemutations are associatedwith cerebrovascular disease in the general
population using a Chinese stroke cohort. Methods. Patients with a Chinese Han background (𝑁 = 300) diagnosed with either
cerebral large-artery atherosclerosis (LAA, 𝑛 = 100), cerebral small vessel disease (SVD, 𝑛 = 100), or other stroke-free neurological
disorders (control, 𝑛 = 100) were recruited. GenomicDNA from thewhole blood of each patient was isolated, and direct sequencing
of the SAMHD1 gene was performed. Both wild type and mutant SAMHD1 proteins identified from the patients were expressed
in E. coli and purified; then their dNTPase activities and ability to form stable tetramers were analysed in vitro. Results. Three
heterozygous mutations, including two missense mutations c.64C>T (P22S) and c.841G>A (p.E281K) and one splice site mutation
c.696+2T>A, were identified in the LAA group with a prevalence of 3%. No mutations were found in the patients with SVD or the
controls (𝑝 = 0.05). Themutant SAMHD1 proteins were functionally impaired in terms of their catalytic activity as a dNTPase and
ability to assemble stable tetramers. Conclusions. Heterozygous SAMHD1 gene mutations might cause genetic predispositions that
interact with other risk factors, resulting in increased vulnerability to stroke.

1. Introduction

Increasing evidence suggests that there is a significant genetic
predisposition to cerebrovascular disorders, and these genetic
risk factors may account for some portion of the unexplained
risk of stroke [1–4]. Identifying these genetic risk factors will
not only allow better risk prediction but also provide valuable
insights into the mechanism of disease development. The
discovery of novel genes associated with stroke may reveal
novel pathways involved in stroke pathogenesis, thereby

resulting in new targeted treatments and effective prevention
[5].

We have recently described a cohort of patients from the
Old Order Amish, an inbred population who present a func-
tional loss of the SAMHD1 (sterile alpha motif and histidine-
aspartate (HD) domain-containing protein-1) gene resulting
from a homozygous c.1411-2A>Gmutation [6]. Although this
autosomal recessive condition is heterogeneous, involving
multiple systems, the presence of cerebral vasculopathy
appears to be amajor hallmark of the condition [6, 7]. Similar
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cerebrovascular findings have also been reported in patients
with other SAMHD1mutations [8, 9].

The SAMHD1 gene was originally identified from a
human dendritic cell cDNA library as an ortholog of the
mouse IFN-𝛾-induced geneMg11 [10] andwas recently linked
to a rare genetic condition, Aicardi-Goutières syndrome
[11]. Recent studies have revealed that SAMHD1 is a dGTP-
regulated deoxyribonucleoside triphosphate triphosphohy-
drolase (dNTPase) [12–15], and its tetramerisation is required
for biological activity [16, 17]. Due to this structural feature, it
has been tempting to speculate that a single mutation in one
allele of the SAMHD1 gene may act in a dominant negative
manner with the potential to become pathogenic in humans
[18].

Considering the roles of the SAMHD1 gene in human
innate immunity [10], the clinical findings of monogenic
linkage studies [11], and its unique structural requirement
for catalytic and biological activity [12–18], we hypothesised
that the SAMHD1 gene may be associated with stroke in
the general population. In this study, we investigated this
hypothesis in a stroke cohort with a completely different
ethnic background from that of the original studies linking
SAMHD1mutations to cerebral vasculopathy.

2. Methods

2.1. Patients. Patients with a Chinese Han background were
recruited from Tiantan Hospital in Beijing, China, from June
2009 to September 2012, either as consecutive outpatients or
as inpatients admitted to the Neurology department. Com-
prehensive clinical evaluations, consisting of a stroke risk
assessment and routine hematologic and metabolic assays,
including C-reactive protein, erythrocyte sedimentation rate
(ESR), and a fasting lipid profile, were performed for each
subject. All subjects underwent brain MR imaging with
angiography or a CT scan, carotid artery ultrasound, and
transcranial Doppler screening. The study was approved by
the Ethics Committees/Institutional Review Board of Beijing
Tiantan Hospital, Capital Medical University, and written
informed consent was obtained from each participant or
his/her legal guardian.

Among the 1765 patients with cerebral large-artery
atherosclerosis (LAA) and the 428 patients with cerebral
small vessel disease (SVD) recruited throughout this investi-
gation, 100 patients from each group were randomly selected
to participate in the study. In addition, 100 stroke-free
patients were selected as a control group. All 300 subjects
were of Chinese Han genetic background. Detailed patient
information is summarized in Table 1.

Large-artery atherosclerosis was defined as a stroke
caused by atherosclerosis and was categorised as carotid, ver-
tebral, or basilar artery stenosis of more than 50% according
to carotid artery ultrasound or MR angiography. A patient
with SVD was defined as having one of four imaging features
(lacunar infarcts, leukoaraiosis, microbleeds, and dilatation
of the perivascular spaces), whereas patients with subcortical
lesions of more than 1.5 cm in diameter, a cortical infarct
of any size, a potential cardioembolic source, parent artery
stenosis, and other large-vessel diseases were excluded. The

Table 1: Age and gender distributions among the patients.

LAA SVD Control
(𝑛 = 100) (𝑛 = 100) (𝑛 = 100)

Age (years) 59.3 ± 9.5 59.8 ± 9.1 62.9 ± 6.3
Gender (M/F) 76/24 55/45 50/50
LAA = cerebral large-artery atherosclerosis; SVD = cerebral small vessel
disease.
Control = stroke-free control.
The ages are expressed as the means ± SD, with𝑁 in parentheses indicating
the total number of patients in each group.

control group was recruited from stroke-free patients who
had another type of neurological disorder, such as epilepsy
or Parkinson’s disease, but were free of any symptomatic
cerebrovascular disease, such as transient ischemic attack.
Asymptomatic cerebrovascular diseases were also ruled out
in control individuals according to MR imaging or CT scans.

2.2. DNA Sequencing and Mutation Identification. Genomic
DNA from whole blood collected from each patient was
isolated as previously described [19]. PCR primers were
designed to amplify each of the 16 protein-coding exons of the
SAMHD1 gene and their flanking intronic sequences. Direct
sequencing of the PCR products was performed using an ABI
3130XL sequencer, and sequencing files were analysed using
PolyPhred software. Sample sequences were compared with
the reference sequences from GenBank to identify sequence
variants. GenBank accession numbers NM 015474.3 and
NP 056289.2 were used as the SAMHD1 cDNA and protein
sequence references.

2.3. Recombinant SAMHD1 Proteins and Activity Assays.
Wild type and mutant SAMHD1 proteins bearing mis-
sense mutations identified in patients from this cohort
were expressed in E. coli and purified to near homogeneity
as described previously [16, 20]. The effect of mutations
on SAMHD1 function was assessed using two assays: (i)
dNTPase activity in vitro and (ii) the ability to assemble
stable tetramers, the functional form of the enzyme [16, 17].
The dNTPase assays were performed in 10mMTris-HCl,
pH 7.5, 50mMNaCl, 5mMMgCl

2
, and 100 nM recombinant

SAMHD1 in the presence of the indicated concentrations
of dGTP at 25∘C. The dG nucleoside products in reaction
aliquots were collected at various time points and then
quantified by HPLC as described previously [16]. To assess
the tetramerisation ability of SAMHD1, 100𝜇L aliquots of
SAMHD1 (250 nM) were mixed with dGTP at the indicated
concentrations (0 to 200𝜇M), injected into the analytical
Superdex200 column (24mL), equilibrated with Tris-HCl,
pH 7.8, 50mMNaCl, 5% glycerol, and 0.02% sodium azide,
and separated at a flow rate of 0.8mL/min [16]. The elution
profileswere recorded bymonitoring fluorescence traceswith
an excitation wavelength of 282 nm and an emission wave-
length of 313 nm.The areas of the peaks corresponding to the
SAMHD1 tetramer (ordinate) were plotted as a function of
dGTP concentrations (abscissa).
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Table 2: Additional clinical features in patients with SAMHD1mutations.

Gender Age (years) Stroke risk factors Mutations identified

Case 1 M 58

Hypertension
Exon 1
c.64C>T
(p.Pro22Ser)

Hyperlipidaemia
Hyperhomocysteinaemia
Smoking
Drinking

Case 2 M 39
Hyperlipidaemia Intron 6

c.696+2T>A
(putative aberrant splicing)

Smoking
Drinking

Case 3 M 56

Hypertension
Exon 7
c.841G>A
(p.Glu281Lys)

Hyperlipidaemia
Smoking
Drinking

2.4. Statistical Analysis. Age was summarised using means
and standard deviations, and gender was summarised using
frequencies for patient groups.The Fisher exact test was used
to compare the SAMHD1 mutation frequencies between the
groups. A two-sided 𝑝 value less than 0.05 was considered
statistically significant. All analyses were conducted using
SAS 9.2 (Cary, NC).

3. Results

Genomic DNA sequencing of the SAMHD1 gene in all
study subjects revealed numerous sequence variants in all
three groups (see Supplemental Table e-1 available online
at http://dx.doi.org/10.1155/2015/739586). However, of all
detected variants, only three variants identified in the LAA
group were predicted to affect the protein (Table 2, Figure 1).
In contrast, none of the other variants identified in the
SVD and control groups caused a change in the SAMHD1
amino acid sequence. The three mutations identified in
the LAA group included two missense mutations, c.64C>T
(P22S) and c.841G>A (p.E281K), and one splice site mutation
c.696+2T>A in intron 6, leading to a putative aberrant
splicing event. As shown in Figure 2, the two missense
mutations, P22S and E281K, caused amino acid substitutions
located proximally to the conserved SAM domain and in the
catalytic core of the enzyme, respectively.

The calculated prevalence of SAMHD1 mutations in the
patients of the LAA group was 3%, compared to none in
the primary SVD and control groups (𝑝 = 0.05). The
three patients identified with SAMHD1mutations in the LAA
group were all males. Stroke risk factors, such as hyperten-
sion, hyperlipidaemia, hyperhomocysteinaemia, and tobacco
and alcohol use, were also identified in all three patients
(Table 2).

None of the three variants has been reported previously or
is present in the 1000 Genomes Project database (http://www
.1000genomes.org/). In the ExACdatabase (http://exac.broad-
institute.org/), the P22S and E281K missense mutations have
only been observed in a frequency of 0.0008% and 0.002%,
respectively. In silico prediction programs predicted the

P22S variant to be deleterious (SIFT) or probably damaging
(PolyPhen-2), whereas the E281K was predicted as benign
variant by both programs.

The association of two missense mutations (P22S and
E281K)with stroke suggested that theymay have a deleterious
effect on SAMHD1-folding and/or function. As a first step
to assess this possibility, we examined the recently solved
crystal structure of the dGTP-bound SAMHD1 catalytic
core (residues 113–626) [17]. The E281 residue is located in
the SAMHD1 catalytic core in a loop that appears to be
disordered in the structure (Figure 3(a)). The P22 residue
resides in the N-terminus, proximal to the SAM domain,
and is not present in the structure. Hence, while revealing
that both stroke-associated SAMHD1 variant mutations were
likely located in unstructured regions, which are known
to be frequently involved in interactions with ligands, this
information unfortunately failed to provide any direct clues
regarding the possible impact of mutations on SAMHD1
structure and function.

We next investigated the biochemical activities of the two
substitution variants in the context of full-length SAMHD1
proteins. Biochemical and structural characterisation of
SAMHD1 established that the biologically active form is a
tetramer induced by dGTP binding at allosteric regulatory
sites of the enzyme [16, 17]. Therefore, to assess the possible
adverse effects of these mutations on SAMHD1 function, the
propensity of SAMHD1 to undergo dGTP-ligand-induced
tetramerisation was determined over a wide range of dGTP
concentrations. As shown in Figures 3(b) and 3(c), wild
type SAMHD1 and both mutants showed increased tetramer
content with increasing dGTP concentrations. However, both
the P22S and E281K substitutions led to a dramatic reduction
in ligand-dependent tetramerisation compared to wild type
SAMHD1, even in the presence of the highest dGTP concen-
tration, which indicates that these variants are functionally
defective.Thus, we determined the dNTPase activities of both
mutants and wild type SAMHD1 as a control (Figure 3(d)).
The catalytic activity of the E281K mutant was severely
diminished, as predicted by the results of tetramerisation
assays (Figures 3(b) and 3(c)). The P22S mutant also showed
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Figure 1: Radiologic findings of the cerebral large arteries in 3 patients with SAMHD1 gene mutations. In each panel (a–c) the abnormal
neuroimaging findings (upper) and sequence electropherogram with the identified SAMHD1 mutation (lower) are shown. The imaging
examination was performed with either contrast-enhanced magnetic resonance angiography (a) or magnetic resonance angiography (b and
c). Orange-coloured arrows indicate stenoses of the large arteries and black arrows show the mutations of the SAMHD1 gene.

greatly reduced catalytic activity. Taken together, the results of
these functional analyses indicate that both mutations exert a
negative effect on the biological functions of SAMHD1.

4. Discussion

SAMHD1 was originally identified in a human dendritic cell
cDNA library as an ortholog of the mouse IFN-𝛾-induced
gene Mg11 and was previously called dendritic cell derived

IFN-𝛾-induced protein (DCIP) [10]. High expression levels
of the protein in human macrophage and dendritic cells
suggested a role in the innate immune response [10, 21, 22]. A
previous linkage study of SAMHD1 with Aicardi-Goutières
syndrome associated the gene with a human disease for
the first time [11]. Recent studies of SAMHD1 during HIV
infection have significantly increased our understanding of
its important role in restricting viral infections [12, 13, 23], as
well as its biochemical functions [14–18]. The present study
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Figure 2: SAMHD1mutations in LAA patients. Schematic representation of the 16-exon SAMHD1 gene (upper panel) and its 626-amino-acid
gene product (lower panel). Sixteen exons encode a 626-amino-acid protein that comprises two structural domains. The SAM (sterile alpha
motif) and HD (histidine-aspartate) domains are connected by a flexible linker. An oval indicates the location of a nuclear localisation signal.
Locations of the missense (P22S, Q281K) and exon 6 splice donor (spl) mutations found in LAA patients are indicated.

revealed that SAMHD1 gene mutations are associated with
LAA in a Chinese stroke cohort.

In this study, heterozygous mutations have been iden-
tified in three patients with LAA, representing 3% of the
patients in the group, whereas no mutations were found
among 200 patients with SVD or stroke-free controls. We
have previously described an autosomal recessive condition
in the Old Order Amish population in which a functional
loss of SAMHD1 occurs due to a homozygous c.1411-2A>G
mutation [6], with cerebral vasculopathy and an early onset
of stroke being major hallmarks. Hence, we have proposed
“SAMS (an acronym of cerebrovascular stenosis, aneurysm,
moyamoya, and stroke) association” as the name of the
disease [7]. The SAMS association seems to affect both large
and small cerebral vessels, although cerebral vasculopathy
is more predominant in large vessels [6]. In this study, we
found that the heterozygousmutations in SAMHD1were only
associated with LAA.

The phenotype of the patients with heterozygous
SAMHD1 gene mutations appeared less severe than that
of SAMS-associated patients. The three individuals with
SAMHD1mutations from the LAA group showed no signs of
other system involvements, unlike the patients with SAMS
association [6]. Therefore, based on the course and severity
of the disease, one might speculate that the patients with
heterozygous mutations manifest a mild type of SAMS
association.

However, it should be noted that, along with SAMHD1
mutations, multiple stroke risk factors, such as hypertension,
hyperlipidaemia, hyperhomocysteinaemia, and alcohol and
tobacco use, were also identified in all three patients. Thus,
we suggest that SAMHD1 mutations might create a genetic
predisposition for stroke that leads to an increased vulnera-
bility to stroke in those patients by interacting with other risk
factors.

The exact mechanism of how the SAMHD1 mutations
serve as a genetic predisposition for stroke remains unclear.
However, our functional studies indicate that the missense
mutations c.64C>T (P22S) and c.841G>A (E281K) identified

in the stroke patients impair the function of the SAMHD1
protein (Figures 3(b)–3(d)). It is interesting to note that
residue 281 was not resolved in the SAMHD1 dimer structure,
an inactive conformer of the enzyme, nor the tetramer, the
catalytically active form [16, 17]. In both crystal structures,
the loop containing residue 281 resides at the surface of
the protein, away from both the ligand-binding allosteric
site and the catalytic site. However, the E281K mutant
failed to form a stable ligand-bound tetramer and showed
a concomitant reduction in its catalytic activity. Thus, it is
tempting to speculate that the unresolved region, including
residue 281, may interact with a region of SAMHD1 other
than the catalytic core to stabilise the tetramer. Consistent
with this notion, the P22S mutant located at the N-terminus
exerted a similar effect, although the difference was less
significant. The other mutation, c.696+2T>A, was predicted
to produce a SAMHD1 protein with severely truncated
catalytic domains, precluding it from being an active dNT-
Pase. Increasing evidence indicates that SAMHD1 may act
as an immunomodulator that plays a protective role by
preventing the self-activation of innate immunity [24, 25].
Our reported findings here suggest that impaired functions
of this protein might result in an unremittingly proinflam-
matory status in the affected individuals, thus directly or
indirectly initiating progression of the pathological process
of LAA. Several lines of evidence implicate SAMHD1 in
immune function, as it is upregulated in response to viral
infections and is thought to play a role in mediating TNF-
𝛼 proinflammatory responses [22, 26, 27]. However, TNF-
𝛼 is significantly associated with large-artery atherosclerosis
[28], suggesting that SAMHD1 may initiate the progression
of LAA via the TNF-𝛼 pathway. Indeed, abnormal labo-
ratory findings, including elevated ESR, immunoglobulin
G, neopterin, and TNF-𝛼, have been found in patients
with the homozygous mutation [6], whereas moderately
increased levels of cytokines have been observed in het-
erozygous carriers of the c.1411-2A>Gmutation (unpublished
data).
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Figure 3: SAMHD1 mutations from individuals with stroke diminish SAMHD1 tetramerisation and dNTP hydrolase activity. (a) The
crystal structure of the tetrameric SAMHD1 catalytic core (residues 113–626; PDB ID, 4BZB) is shown with the position of residue E281 (∙)
indicated. Residues 278–283 (SPVEDS) were not resolved [17]. Each subunit is rendered with a different colour. (b) SAMHD1 stroke patient
mutations interfere with SAMHD1 tetramerisation. Wild type and mutant recombinant SAMHD1 proteins (250 nM) were preincubated with
dGTP (25𝜇M), and the mixtures were separated on an analytical gel filtration column. The peaks corresponding to SAMHD1 tetramers,
dimers/monomers, and dGTP are indicated. (c) The extent of SAMHD1 tetramerisation was determined with various concentrations of
dGTP (0 to 200𝜇M) as described in (b). (d) dGTP-dependent dGTPase activity of recombinant SAMHD1.The standard error from triplicate
samples is shown.

The vast majority of strokes are increasingly recognized
as polygenic events. Although monogenic causes of stroke
are rare, identification of these genes and mutations is
important to provide critical information for the diagnosis,
treatment, and prognosis of affected individuals. Further-
more, identifying novel gene variants associated with stroke
may reveal novel pathways involved in stroke pathogenesis
and thus result in new targeted treatments andmore effective
prevention of stroke. In this study, although the incidence

of SAMHD1 mutations in LAA patients was only 3%, this
prevalence is noteworthy in light of the complexity of the
multiple genetic and environmental risk factors that influence
the disease. Because the study was intentionally performed
in a completely different population from that of the original
studies linking SAMHD1 mutations and cerebral vasculopa-
thy, the implication may be more prominent. Further studies
involving additional patient populations and exploring the
mechanism underlying the effect of SAMHD1 mutations on
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the development of LAA in the general population will be
valuable, not only for patients who are directly affected but
also for stroke patients in general.
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