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Abstract: The innate immune system’s natural killer (NK) cells exert their cytolytic function against
a variety of pathological challenges, including tumors and virally infected cells. Their activation
depends on net signaling mediated via inhibitory and activating receptors that interact with specific
ligands displayed on the surfaces of target cells. The CD94/NKG2C heterodimer is one of the NK
activating receptors and performs its function by interacting with the trimeric ligand comprised of
the HLA-E/β2m/nonameric peptide complex. Here, simulations of the all-atom multi-microsecond
molecular dynamics in five immune complexes provide atomistic insights into the receptor–ligand
molecular recognition, as well as the molecular events that facilitate the NK cell activation. We
identify NKG2C, the HLA-Eα2 domain, and the nonameric peptide as the key elements involved in
the molecular machinery of signal transduction via an intertwined hydrogen bond network. Overall,
the study addresses the complex intricacies that are necessary to understand the mechanisms of the
innate immune system.

Keywords: immune complex; molecular dynamics; immunology; NK cell; signal transduction

1. Introduction

Natural killer (NK) cells are a lymphocyte lineage with cytotoxic and cytokine-
producing functions that are part of the innate immune system and defend the organism
against various types of tumors and microbial infections [1–3]. They enable maternal adap-
tation to pregnancy [4] and regulate both innate and adaptive immune responses through
reciprocal interactions with dendritic cells, macrophages, T cells, and endothelial cells [1,2].
NK cells are regulated by the activating (e.g., NKG2D/NKG2D, KIR2DS, CD94/NKG2C,
-E, -H) and inhibitory (e.g., CD94/NKG2A, -B, KIR2DL, KIR3DL) surface receptors that
recognize normally present, overexpressed or de novo expressed ligands on the surface
of target cells [5–7]. The balance between the inhibitory and activating receptor signaling
is one of the fundamental mechanisms of the immune system, as the predominant signal
regulates the NK cell cytolytic function and ultimately influences the survival of the target
cell [6].

NK cell receptors recognize the MHC class I molecules and belong to different receptor
families. The latter include the killer cell Ig-like receptors, immunoglobulin-like transcripts,
and the C-type lectin family, which consists of a heterodimer of CD94 and a representative
of the NKG2x family of molecules (NKG2-A/B, -C, -E, -H, -F), except for the NKG2D
protein, which exists as a homodimer. The ligands for the first two families include the
classical (class Ia) HLA class I molecules and the nonclassical (class Ib) HLA-G protein,
while the ligand for most of the CD94/NKG2x heterodimers is a nonclassical (class Ib)
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glycoprotein HLA-E [6]. The stable surface expression of the latter requires the formation
of a heterotrimer comprised of a HLA-E heavy chain, its light beta-2-microglobulin (β2m)
chain, and a specific nonameric peptide (hereafter referred to as a peptide) often derived
from the signal sequences of other HLA class I molecules (e.g., HLA-A, -B, -C, -G) [6]. The
NKG2x/CD94 receptor expression is not stable and can be regulated by cytokines [4].

The NKG2x/CD94 receptors can mediate the inhibitory or activating signals to the
NK cells despite their high similarity. For example, the inhibitory NKG2A and activating
NKG2C receptor proteins possess a 75% sequence identity, which is even higher for the
extracellular domains responsible for the ligand recognition. The NKG2A protein performs
its function via an immunoreceptor tyrosine-based inhibitory motif (ITIM) at its cytoplasmic
tail [7,8]. On the other hand, the NKG2C protein lacks this signaling part and instead
interacts with the associated adaptor protein DNAX activation protein of 12kDa (DAP12),
which carries an immunoreceptor tyrosine-based activation motif (ITAM) responsible
for the sequential NK cell activation [7,8]. The differences between the receptors also
extend to their susceptibility to bind to HLA-E ligands. The affinity of HLA-E towards the
activating NKG2C/CD94 receptor was found to be about 6-fold lower than the affinity for
the inhibitory NKG2A/CD94 receptor, which was mainly attributed to the difference in
residues: 165–168 (NKG2C) and 167–170 (NKG2A) [9].

Binding between the NKG2x/CD94 receptor and the HLA-E/β2m/peptide ligand
strongly depends on the identity of the peptide incorporated into the ligand counterpart.
Peptide G, derived from the signal sequence of the HLA-G molecule, most strongly regu-
lates the signaling of NKG2C receptor and enables the activation of the NK cells. Such an
outcome can be also achieved by the HLA-B27 leader peptide, although to a much lesser
extent [10]. Furthermore, some reports have even indicated that peptide G is currently the
only known peptide capable of potent NK cell activation [11]. In contrast, the presence of
Cw7 and B7 peptides in the HLA-E/β2m/peptide ligand complex does not lead to NK cell
activation [10]. Overall, it seems that the inhibition of the NK cells via NKG2A/CD94 can
be achieved with a broader range of known peptides than activation via the NKG2C/CD94
receptor [10,11]. The exact reasons for this observation are currently unknown.

In light of the currently ongoing COVID-19 pandemic, the NKG2C receptor and the
HLA-E allele were also associated with the severity of clinical manifestations of COVID-19.
In hospitalized patients, the deletion of the activating NKG2C receptor encoding gene
(KLRC2) and, to a lesser extent, the overexpression of the HLA-E*0101 allele were ob-
served [12]. Moreover, an increased expression of the inhibitory NKG2A receptor was
found in patients with severe COVID-19 [12]. On a similar note, the deletion of the NKG2C
receptor and the expansion of the NKG2A+ NK cells were reported in psoriasis, with
the deletion of the NKG2C gene marked as a risk factor for psoriasis susceptibility [13].
Interestingly, the overexpression of NKG2C has also been detected in high-functioning
autism spectrum disorders and may have deleterious consequences for the central nervous
system [14]. An altered NKG2C expression is also present in first-episode psychosis [15],
and a higher percentage of the NKG2C+ cells has been reported in patients with chronic
obstructive pulmonary disease with frequent exacerbations and a reduced lean mass [16].

Mutagenesis studies [17,18] have clarified some of the molecular details of the receptor
(NKG2C/CD94)–ligand (HLA-E/β2m/peptide) intermolecular interactions, and further
binding and cytotoxicity assays [10,11] have uncovered the roles of specific peptides on
the overall outcome of the NK cells. Unfortunately, these studies are quite scarce for
the activating NKG2C/CD94/HLA-E/β2m/peptide immune complex, compared to the
inhibitory one involving the NKG2A receptor protein. In addition, the crystal structure of
this system has not been determined to date. Thus, the mechanistic details and subtleties
of the successful signal transduction responsible for small peptide-mediated NK cell
activations remain elusive and call for additional investigation.

In this work, we performed all-atom molecular dynamics (MD) simulations of HLA-
E/β2m/NKG2C/CD94 immune complexes containing known nonameric peptides that
either activate or inhibit NK cells, to shed some light on the mechanistic details that govern
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the molecular recognition of the complexes and the subsequent successful signal transduc-
tion at the atomistic level. The simulations helped us to evaluate the global dynamics of the
complex multicomponent systems, elucidate the fundamental intermolecular interactions,
and further substantiate the obtained findings with energy calculations.

2. Results

We studied the structural features and the dynamic behavior of five models of immune
complexes based on the available crystal structures of the extracellular domains of the
human CD94/NKG2A in a complex with HLA-E (PDB ID 3CDG). The models included all
the resolved components consisting of CD94, HLA-E, β2m, and a bound peptide nested
between the α1 and α2 domains of the HLA-E ligand, while the protein NKG2A was
replaced by the generated homology model of the NKG2C protein (Figure 1 and Movie
in Supplementary File S2). Both considered extracellular sequences of NKG2C (111–230)
and NKG2A (113–232) proteins display a high level of identity, as they differ only in six
residues. Thus, the replacement was rather straightforward.

Figure 1. Overview of the HLA-E/peptide/β2m/NKG2C/CD94 immune complex assembled on
the surfaces of NK and target cells. (a) The multicomponent complex was comprised of a HLA-
E heavy chain divided into three alpha domains (α1–α3), HLA-E light chain β2m, nonameric
peptide, CD94 and NKG2C proteins (magenta, salmon, and pink, grey, yellow, green, and blue,
respectively). CD94 and NKG2C transmembrane regions and DAP12 protein are only schematically
presented. (b) Magnified binding pocket of the nonameric peptide located between the HLA-E α1
and α2 domains. HLA-E—HLA class I histocompatibility antigen, alpha chain E, β2m—Beta-2-
microglobulin, NKG2C—NKG2-C type II integral membrane protein, CD94—Natural killer cells
antigen CD94, NK cell—Natural killer cell, DAP12—DNAX activation protein of 12kDa.

The multicomponent HLA-E/peptide/β2m/NKG2C/CD94 models differed only in
the sequence of the bound peptide with: (i) the peptide from the HLA-G leader sequence
(COM+

G), (ii) the peptide from the HLA-B27 (COM~
B27), (iii) the HLA-B7 signal sequence

peptide (COM−
B7), (iv) the HLA-Cw7 signal peptide (COM−

Cw7), and finally, (v) a hypo-
thetical immune complex deprived of its peptide (COMapo). Notably, the COM+

G model
mediated the NK cell activation, whereas the currently available data for the COM~

B27
action are inconclusive [10,11]. According to the experiments, the immune complexes rep-
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resented by the COM−
B7 and COM−

Cw7 models did not result in the NK cell activation.
As a negative control and to further study the overall role of the peptide in the complex,
we also constructed a COMapo model without the bound peptide (Table 1).

Table 1. Generated models of the HLA-E/peptide/β2m/NKG2C/CD94 immune complexes utilized in the MD simulations
with denoted peptide sequences, NK cell activation ability [10,11], and assigned model number.

Model Peptide Peptide Sequence NK Cell Activation Model Number

COM+
G G VMAPRTLFL yes (+) i

COM~
B27 B27 VTAPRTLLL inconclusive (~) ii

COM−
B7 B7 VMAPRTVLL no (−) iii

COM−
Cw7 Cw7 VMAPRALLL no (−) iv

COMapo / / N/A v

2.1. Peptide, NKG2C, and HLA-Eα2 Serve as Key Complex Elements in the Signal Transduction

MD simulations that lasted for several microseconds with a total time of ~6 µs did not
detect any major conformational changes in any of the five studied immune complexes.
This observation could suggest that a “lock and key”-like engagement takes place between
the HLA-E/peptide/β2m ligand and the NKG2C/CD94 receptor that has also previously
been suggested for the NKG2A system [19].

Subsequently, we investigated the internal dynamics in more detail and generated the
cross-correlation matrices (CCji) for the system’s components, which were simplified for
clearer representation. These revealed significant differences in the correlation patterns
between the system´s receptor and ligand proteins. Namely, in the COM+

G model, the
HLA-Eα2 domain was more anticorrelated with the NKG2C receptor protein, in addition
to being more correlated with the CD94 receptor partner compared to all other investigated
models. In COM~

B27, COM−
B7, and COM−

Cw7 models, both the CD94 and NKG2C parts
of the receptor were shown to be anticorrelated with HLA-Eα2. Finally, in the peptide-free
COMapo model, the HLA-Eα2 was correlated with NKG2C, and anticorrelated with CD94
(Figure 2 and Supplementary Figure S1). Hence, it appears that with the incorporation of
the peptide into the system, the correlation between NKG2C and HLA-Eα2 is lost. The
generated CCji also revealed that during the ligand–receptor recognition and the activating
signal transduction, which according to experimental data occurs in the COM+

G model, the
CD94 protein of the NKG2C/CD94 receptor becomes correlated with HLA-Eα2, while the
NKG2C–HLA-Eα2 anticorrelation becomes even more pronounced than in other models.
Furthermore, we observed that the CD94–HLA-Eα1 and NKG2C–HLA-Eα3 anticorrelations
decreased in the COM+

G model (Figure 2 and Supplementary Figure S1).
Cross-correlation matrices further uncovered that the nonameric peptide G in the

COM+
G model was slightly correlated with the CD94 protein and anticorrelated with

the β2m part of the ligand, which was reversed in the other three peptide-containing
models COM~

B27, COM−
B7, and COM−

Cw7 (Figure 2 and Supplementary Figure S1).
This interesting difference in the peptide influence on the system could be explained by
the more pronounced anticorrelated relationship of the β2m light chain and the more
correlated behavior of the CD94 protein with the α1- and α2-domains of the HLA-E protein
with which the activating peptide G is in contact. On the other hand, the CD94 protein
was more correlated with the G peptide and slightly more anticorrelated with NKG2C in
the COM+

G model (Figure 2 and Supplementary Figure S1). Taken together, the observed
conformational behavior in the analyzed trajectories implies that the bound G peptide
induces a disturbance in the interactions between the NKG2C–CD94 receptor partners,
which in turn could lead to altered communication between the NKG2C protein and the
adaptor protein DAP12, which is ultimately responsible for the NK cell activation.
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Figure 2. Simplified cross-correlation matrices for (a) COM+
G, (b) COM~

B27, (c) COM-
B7, (d)

COM-
Cw7, and (e) COMapo simulated models of the immune complexes. In the yellow brackets

the peptide (anti)correlations with proteins CD94 and β2m are highlighted, while the grey brackets
feature the NKG2C–HLA-Eα2, the pink brackets feature the NKG2C–HLA-Eα3, the violet brackets
feature the CD94–HLA-Eα1, and the green brackets feature the CD94–HLA-Eα2 relations. The per-
residue Pearson’s coefficients (CCijs) cross-correlation matrix was derived from the mass-weighted
covariance matrix calculated over the last 1 µs of the classical molecular dynamics trajectories. CCijs
values range from −1 (red, anticorrelated motions) to +1 (blue, correlated motions) and are summed
and normalized for each pair of proteins/domains considered to obtain density correlation scores
(CSs). For the cross-correlation matrices calculation HLA-E α1, α2, and α3 domains, β2m, CD94,
NKG2C and peptide are considered. HLA-E—HLA class I histocompatibility antigen, alpha chain E,
β2m—Beta-2-microglobulin, NKG2C—NKG2-C type II integral membrane protein, CD94—Natural
killer cells antigen CD94.
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Overall, in the simulated COM+
G model, more pronounced correlated and anticorre-

lated associations between its parts were observed. This was particularly noticeable for
the NKG2C–HLA-Eα2, NKG2C–peptide, and peptide–HLA-Eα2 contacts (Figure 2 and
Supplementary Figure S1). This suggests that peptide, NKG2C, and HLA-Eα2 components
of the system act as key elements in further signal transduction. In this respect it could be
further assumed that the peptide influences the NKG2C receptor protein via its engagement
with the ligand HLA-Eα2 domain, suggesting a possible crosstalk between them.

2.2. HLA-Eα2 Domain May Facilitate a Crosstalk between the NKG2C Protein and the Peptide

To further investigate the potential role of the HLA-Eα2 domain in the NKG2C-peptide
crosstalk, we analyzed the flexibility patterns of all the complexes. The RMSF analysis
revealed that the alpha-helix of the HLA-Eα2 domain located in the proximity of the
peptide was more flexible in the COM+

G model, while it was more rigid in the other
peptide including models COM~

B27, COM−
B7, and COM−

Cw7. In the COM+
G immune

complex, this alpha-helix of the HLA-Eα2 domain was also more flexible in comparison to
the alpha helix of the HLA-Eα1 domain located in the proximity of the peptide. However,
similar observations were made for the models COM~

B27 and COMapo (Figure 3).

Figure 3. B-factor representation of the atomic Root Mean Square Fluctuations (RMSF) of the HLA-E
α1 and α2 domains, and the bound peptide. (a) COM+

G, (b) COM~
B27, (c) COM-

B7, (d) COM-
Cw7,

and (e) COMapo. The peptide sequences in one letter code are colored according to the corresponding
B-factor. The parts of HLA-Eα1 and HLA-Eα2 domains that are not in the vicinity of the peptide and
receptor proteins are shaded. HLA-E—HLA class I histocompatibility antigen, alpha chain E.
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The peptide was most flexible in the COM~
B27 model, though in the COM+

G model
a flexibility of the peptide G was also detected. Peptides included in the COM−

B7 and
COM−

Cw7 models were predominantly rigid (Figure 3). These motility patterns were
also confirmed by the peptide RMSD calculations (Supplementary Figure S2). When we
compared the patterns of peptides B27 and G, we noticed that peptide B27 is mainly flexible
at its N-terminal side, whereas peptide G also has a higher flexibility at its C-terminal side.

Since the studied models differ only in the peptide identity, this may suggest that the
peptide could be responsible for the observed changes in the HLA-Eα2 domain flexibility.
The comparison of the COM+

G, COM~
B27, COM−

B7, and COM−
Cw7 models with the

COMapo model shows that the peptides derived from the leader sequences of HLA-Cw7,
HLA-B7, and HLA-B27 rigidify the HLA-Eα2 domain, while the peptide G, derived from
HLA-G leader sequence increases its flexibility (Figure 3). This observation further substan-
tiated the assumption that the peptide influences the increased flexibility of the HLA-Eα2
domain which might subsequently facilitate the crosstalk with the NKG2C part of the
NKG2C/CD94 receptor to active the NK cell.

2.3. Particular Hydrogen Bonds Could Be Involved in Activating Signal Transduction

In addition to the abovementioned “lock and key”-like binding behavior observed
between the NKG2C/CD94 receptor and the HLA-E/β2m/peptide ligand, the similar-
ities between the NKG2C and NKG2A-peptides containing the immune complexes ex-
tend to the observed hydrogen bond networks. Analyzing the most representative clus-
ters obtained from the MD simulation trajectories and the occurrence of H-bonds, we
noticed several H-bond interactions that have been previously reported for the HLA-
E/β2m/peptide/NKG2A/CD94 crystal structure [19], namely, the P5–Ser110CD94,
P5–Glu152HLA-E, and P6–Gln112CD94 interactions (Table 2 and Supplementary Table S1) [19].

Table 2. H-bonds previously identified in the HLA-E/β2m/peptide/NKG2A/CD94 immune complex as calculated by
cpptraj module in Ambertools for the simulated NKG2C-based immune complexes.

COM+
G COM~

B27

Donor Acceptor % Donor Acceptor %
THR_6@OP6 GLN_112@NE2CD94 76 THR_6@OP6 GLN_112@NE2CD94 33

GLU_152@OE1HLA-E ARG_5@NH1P5 48 GLU_152@OE1HLA-E ARG_5@NH1P5 25
SER_110@OCD94 ARG_5@NH2P5 10 SER_110@OCD94 ARG_5@NH1P5 46

COM−
B7 COM−

Cw7

Donor Acceptor % Donor Acceptor %
THR_6@OP6 GLN_112@NE2CD94 45 ALA_6@OP6 GLN_112@NE2CD94 74

GLU_152@OE1HLA-E ARG_5@NH2P5 62 GLU_152@OE1HLA-E ARG_5@NH1P5 49
SER_110@OCD94 ARG_5@NH2P5 47 SER_110@OCD94 ARG_5@NH2P5 46

In general, a similar H-bonding network of peptides within the system is present in
all models (Figure 4) allowing no distinction between the COM+

G model that mediated
the NK cell activation signal and the models in which the activation was ambiguous
(COM~

B27,) or absent (COM−
B7, and COM−

Cw7). However, arginine at position five (P5)
forms H-bonds with the HLA-Eα2 domain and the CD94 protein with different frequencies.
Namely, the occurrence of the P5–Gln156HLA-E H-bond is most frequently present in model
COM+

G, whereas the P5–Ser110CD94 H-bond is the least present (Figure 4). Furthermore,
in the COM+

G immune complex, the P5 basic arginine side chain is oriented toward the
HLA-Eα2 domain, whereas in the other models it is extended toward the CD94 protein
(Figure 5 and Figure S3).

Since the Ser110CD94 residue is strategically positioned at the NKG2C–CD94 receptor
interface, its interaction with the peptide might lead to changes in the intermolecular
relations between the NKG2C/CD94 receptor proteins resulting in the aforementioned
higher anticorrelation between them. Indeed, the Ile167NKG2C–Ser110CD94 H-bond was
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found to be present in 34% of the last 1 µs of the production run of the COM+
G immune

complex and only in 9%, 6%, and 2% for the COM~
B27, COM−

B7, and COM−
Cw7 models,

respectively, whereas in the COMapo model the H-bond was present in less than 0.1% of
the trajectory. The formation of this H-bond was confirmed in the most representative
cluster of the COM+

G model derived from the last 500 ns of the simulation (Figure 5), as
well as in an independent distance measurement where the H-bond was present especially
in the last half of the production run (Supplementary Figure S4).

Figure 4. Schematic summary of the bound peptide interacting residues with HLA-Eα1, HLA-Eα2

and CD94 proteins for the models (a) COM+
G, (b) COM~

B27, (c) COM−
B7, and (d) COM−

Cw7. Only
hydrogen (H) bonds with occurrences higher than 10% are depicted. The arrows point in the direction
of residues acting as H-bond acceptors. The arrow line thickness represents the H-bond frequencies
(stated in the brackets), where the thickest line represents the highest frequency. HLA-E—HLA class
I histocompatibility antigen, alpha chain E.

Furthermore, we noticed that Glu156HLA-E and P5 residues form more H-bonds in
COM+

G compared to other models, which could influence the positioning and flexibility
of the HLA-Eα2 domain. Indeed, the alignment of the most representative cluster revealed
a slight deviation in the (in)outward positioning of the HLA-Eα2 α-helix in relation to the
peptide and the HLA-Eα1 domain, especially in the close surroundings of the Glu156HLA-E

residue (Figure 5e and Supplementary Figure S3). The H-bond analysis identified another
contact at the receptor–ligand interface, namely the Arg213NKG2C-Ala158HLA-E interaction,
which was more present in the COM+

G model compared to the other simulated systems
(Supplementary Figure S5). Taken together, the H-bond analysis also indicates that the
peptide could influence the interactions occurring between the NKG2C protein and HLA-
Eα2, which implies a crosstalk between the peptide and the NKG2C protein via the HLA-
Eα2 domain.
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Figure 5. Representation of the key H-bond interaction differences observed between the simulated
models. The hydrogen bonds between the putative key residues S110, Q156, A158 and the peptide R5
residue are involved in the signal transduction for models (a) COM+

G, (b) COM−
B7, (c) COM−

Cw7,
and (d) COMapo. (e) The alignment of the HLA-Eα2 of the simulated models with a conclusive
effect on the NK cells (COM+

G, COM−
B7, and COM−

Cw7) and COMapo with the highlighted
position of the Gln156HLA-E residue. Data is derived from the most representative cluster of the
last 500 ns of production MD run. HLA-E—HLA class I histocompatibility antigen, alpha chain E,
NKG2C—NKG2-C type II integral membrane protein, CD94—Natural killer cells antigen CD94.

2.4. Energy Calculations Expose Favorable Hotspots

Binding free energies (∆Gb) were calculated between the peptide and the rest of the
complex (HLA-E/β2m/NKG2C/CD94), and between the receptor (NKG2C/CD94) and
the ligand (HLA-E/β2m/peptide) pairs, applying the molecular mechanics-generalized
born surface area (MM-GBSA) method [20] and performing both a pairwise and per-residue
decomposition of ∆Gb. To verify the results, we also recalculated the energies using the
gmx energy module of the Gromacs2016 [21] software package.

The pairwise decomposition of the binding free energies (∆Gb) calculated between the
peptide and the rest of the complex showed that the peptide residues P4, P5, P6, and P8 form
the most important energetic interactions with the NKG2C/CD94 receptor. This decompo-
sition also revealed that the peptide residues P1, P5, and P9 form the strongest interactions
with the HLA-E/β2m ligand (Supplementary Table S2). Excitingly, among the detected
key peptide–receptor and peptide–HLA-E interactions are several that were previously
reported for the NKG2A variant of the immune complex (see Supplementary Table S2,
marked in bold) [19].

The aforementioned H-bond interactions between the peptide arginine P5 and the
Ser110CD94 and Gln156HLA-E residues were additionally verified on the energetic level by this
pairwise decomposition of binding free energy. Indeed, the P5–Gln156HLA-E interaction is ener-
getically the most important interaction in the COM+

G system while its importance decreases
in the COM~

B27, COM−
B7, and COM−

Cw7 models (Supplementary Table S2). In contrast,
the P5–Ser110CD94 H-bond seems to be the least important energetically in the COM+

G model
compared to the other three peptide-containing models. (Supplementary Table S2).

The subsequent per-residue decomposition of ∆Gb between the peptide and the
rest of the system revealed that the peptide residues P2, P8, and P9 generally represent
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the strongest contributors to ∆Gb, whereas the P1, P4, and P3 residues contribute the
least (Supplementary Table S3). In previous studies of the analogous inhibitory HLA-
E/β2m/peptide/NKG2A/CD94 immune complex, P2 and P9 peptide residues were
proclaimed as the primary anchor positions [22], while the P8 residue, together with the
P5 residues, putatively forms the majority of contacts with the receptor part of the com-
plex [23]. Furthermore, the COM+

G model displays the most favorable ∆Gb for the peptide–
complex binding, compared to the other peptide-including models COM~

B27, COM−
B7,

and COM−
Cw7, which showed similar binding free energies (Supplementary Table S4).

The plausible key interactions in the NKG2C/CD94/HLA-E/β2m/peptide complex
were identified by performing a pairwise decomposition of ∆Gb calculated between the
NKG2C/CD94 receptor and the HLA-E/β2m/peptide ligand pairs. All four peptide
including models COM+

G, COM~
B27, COM−

B7, and COM−
Cw7 shared seven interac-

tions, namely Asp69HLA-E-Arg171CD94, Arg75HLA-E-Asp163CD94, Asp162HLA-E-Arg213CD94,
Gln72HLA-E-Glu164CD94, Asp162HLA-E-Lys215NKG2C, Asp162HLA-E-Lys197NKG2C, and Thr6P6-
Gln112CD94 (Table S5 and Figure 6). On the other hand, the per-residue decomposition
showed either ligand or receptor residues with the highest contribution to the ∆Gb, obtained
by summing its interactions over all the residues in the system. These residues can also be
referred to as hotspots [24]. Again, all four peptide including models shared nine hotspots:
Asp69HLA-E, Asp162HLA-E, Arg68HLA-E, Gln72HLA-E, Asp163CD94, Glu164CD94, Phe114CD94,
Arg171CD94, and Pro169NKG2C (Supplementary Table S6 and Figure 6).

Figure 6. Key contacts underlying the receptor–ligand interface interactions. Residues with the greatest contribution to
the binding free energy between the ligand-HLA-E/β2m/peptide (shown in magenta, salmon, pink, gray and yellow,
respectively) and receptor-NKG2A/CD94 (in blue and green, respectively) with (a) pairwise and (b) per-residue decom-
position, shown in surface and licorice representations (for the peptide). Residues are colored in red and cyan for the
HLA-Eα2–NKG2C and HLA-Eα1–CD94 interacting protein pairs, respectively. The number of the colored residues on the
receptor surface indicates the importance of the CD94 protein in the receptor–ligand interactions. HLA-E—HLA class
I histocompatibility antigen, alpha chain E, β2m—Beta-2-microglobulin, NKG2C—NKG2-C type II integral membrane
protein, CD94—Natural killer cells antigen CD94.

Furthermore, the peptide residues P5 and P6 formed the most important interactions
for the ligand–receptor binding (Supplementary Table S5), while the P6 and P8 residues of
the peptide could be considered as hotspots (Supplementary Table S6). The models includ-
ing bound peptides B7 and G (COM−

B7 and COM+
G, respectively) displayed energetically

higher predispositions for the receptor–ligand binding compared to models COM~
B27 and

COM−
Cw7 (Supplementary Table S7), which is in line with previous reports [25,26]. In

addition, the COMapo model showed the least favorable ∆Gb for receptor–ligand binding
compared to all other models (Supplementary Table S7).
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3. Discussion

In our study, we generated five immune complexes of the HLA-E/β2m/NKG2C/CD94/
peptide system to address the mechanistic details of the molecular recognition and signal trans-
duction between the NKG2C/CD94 receptor on the NK cell and the HLA-E/β2m/peptide
ligand at the atomistic level. Multi-microsecond all-atom MD simulations based on the avail-
able immune complex crystal structures [19] revealed no major conformational changes in
any of the models possessing different NK cell activation abilities, demonstrating a “lock and
key”-like interaction, analogous to the experimental data obtained for the NKG2A variant of
the immune complex. Such an interaction, with no conformational changes taking place, is
generally expected in receptor–ligand interactions of the innate immune system [9,19]. Further,
the generated cross-correlation matrices revealed a nonameric peptide, the NKG2C protein,
and the HLA-Eα2 domain as the key components for the productive signal transduction.
According to our models, the peptide that would enable the activation of the NK cell via this
complex should cause a destabilization of the CD94 and NKG2C parts of the receptor, which
could subsequently affect the communication between NKG2C and DAP12.

Furthermore, we revealed nine hotspots, which contribute the most to the binding
free energy at the receptor–ligand complex interface. Two of them, namely, Asp162HLA-E

and Gln72HLA-E, have been reported previously [18]. Moreover, several hotspots and
residues with large energy contributions to the ∆GB disclosed here coincide with those
known to play important roles in receptor–ligand binding in the parallel NKG2A immune
system [9,17,18], such as, for example, Arg75HLA-E and Asp162HLA-E [18]. This suggests
the existence of a joint cluster of the HLA-E residues that are energetically important for
the interaction with both the NKG2A and NKG2C components of the NK receptors, as pre-
viously confirmed by mutagenesis studies [18]. The similarity between the activating and
inhibitory receptors further extends to the observation that the energetically predominant
portion of the receptor–ligand interactions is located at the CD94–HLA-Eα1 site [18,19],
which may leave less room for the HLA-Eα1 domain movement. Flexibility pattern analysis
indeed revealed the increased rigidity of the HLA-Eα1 domain in all the models examined.
The peptide-dependent influence on the flexibility of the neighboring HLA-Eα2 domain
further supports the concept of a peptide-mediated crosstalk between the receptor protein
NKG2C and the ligand HLA-Eα2 domain.

Joining the results of the performed simulations together, key ligand–receptor interac-
tions associated with two possible scenarios, taking place after the formation of the immune
complex can be proposed (Figure 7). When the immune complex contains a peptide that
leads to a successful NK cell activation (COM+

G,), the (I) H-bond between the peptide
P5 residue and Ser110CD94 is disrupted and thus not formed. This in turn enables the
(II) formation of the Ser110CD94–Ile167NKG2C H-bond as well as the (III) P5–Gln156HLA-E

double H-bond interaction, which is absent in the representative clusters of all three of
the non-productive peptide-including models (COM~

B27, COM−
B7, and COM−

Cw7). The
double H-bond between the P5 residue and Gln156HLA-E could influence the positioning of
the HLA-Eα2 domain and the Ala158HLA-E residue, consequently allowing the formation
of the (IV) H-bond between the Arg213NKG2C–Ala158HLA-E ligand–receptor residues. This
H-bond network may ultimately influence the interactions between the NKG2C protein
and the associated adaptor protein DAP12, leading to the NK cell activation. Indeed, a
substitution of one of the key residues in this proposed mechanism, the peptide residue
ArgP5, impairs the inhibitory signaling [27]. The ArgP5 residue was previously confirmed to
be important for the overall affinity and the affinity differences between the NKG2A/CD94
and NKG2C/CD94 receptors [9]. Taken together, in this presented ligand–receptor model,
the nonameric peptide acts similarly to a puppet hand that can pull the crucial strings via a
specific hydrogen bonding network in a way that properly orchestrates the behavior of the
NKG2C protein and the HLA-Eα2 domain, ultimately leading to NK cell activation.
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Figure 7. Schematic representation of the key residues putatively involved in activating the signal
transduction for (a) model conferring the NK cell activation and (b) for the model with the absent
NK cell activation. The Roman numerals show the possible sequence of events: (I) the P5–S110CD94

H-bond likely (II) abolishes the S110CD94–I167NKG2C contact and (III) precludes the P5–Q156HLA-E

double interaction, which affects the positioning of the HLA-Eα2 domain and thus Ala158HLA-E, (IV)
allowing the formation of the R213NKG2C–A158HLA-E H-bond. HLA-E—HLA class I histocompatibil-
ity antigen, alpha chain E, NKG2C—NKG2-C type II integral membrane protein, CD94—Natural
killer cells antigen CD94.

Besides the differences in the binding affinities between the NKG2C/CD94 (activating)
and NKG2A/CD94 (inhibitory) receptors, their overall mechanism of signal transduction
also differs. While the NKG2A/CD94 receptor inhibits the NK cells via its intracellular
ITIM, the NKG2C/CD94 activates them via the adaptor protein DAP12, which carries
the effector ITAM domain [7,8]. Given this difference, it is possible to speculate that the
molecular recognition and mechanism of action carried out via these two receptors also
differs. The NK cell activation is likely to be more tightly regulated, as the NK cell activation
involving DAP12 depends on the proper orchestration of more proteins than the NK cell
inhibition. This could also be one of the reasons for a more restricted batch of currently
identified peptides that confer NK cell activation via the NKG2C/CD49 receptor [10].

Furthermore, we can also speculate about the reasons for the observed 6-fold differ-
ence in the affinity between the activating and inhibitory receptors, which may be related
to the observed higher peptide specificity in the case of the NKG2C/CD94 activating
receptor. The sequences of 165–168 (ASIL) or 167–170 (SIIS) residues that are supposedly
responsible for the differences in the receptor–ligand binding affinity do not form direct
contacts with the HLA-E/β2m/peptide ligand. They might play a role in the orientation of
NKG2A(C)/CD94 heterodimer, which indirectly affects its interaction with the ligand [9].
Comparing the crystal structures of the NKG2A protein with the most representative confor-
mation of the corresponding NKG2C homology model for the COM+

G complex from our
MD simulations, we observed that the ASIL sequence present in the NKG2C protein enables
less hydrophobic contacts with its CD94 partner hydrophobic residues Val66CD94, Ile75CD94

Phe107CD94 and Met108CD94 (Supplementary Figure S6). With subsequent distance mea-
surement and H-bond analysis, the presence of the Ser110CD94-Ile167NKG2C interaction was
identified during the productive MD run of the COM+

G model (Supplementary Figure S2).
Meanwhile, according to the crystallographic data, the corresponding Ser110CD94 forms a
H-bond with Ser170NKG2A in the NKG2A complex. (Supplementary Figure S6).

The Ser110CD94–Ile167NKG2C H-bond is exclusively present in the COM+
G immune

complex for which the NK cell activation was experimentally confirmed [10,11]. Since
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the NKG2A protein contains more hydrophobic contacts between the CD94 and NKG2A
receptors in the SIIS region part, along with the observed Ser110CD94–Ser170NKG2A inter-
action connecting them, the identity of the peptide in the HLA-E/β2m/peptide ligand
counterpart of the immune complex may not need to be so specifically tailored as in the case
of the NKG2C system. As our COM+

G simulations revealed, the Ser110CD94–Ile167NKG2C

H-bond formation depends on the incorporation of the favorable peptide, where we also
speculate that P5 arginine plays a crucial role. Furthermore, Ile167NKG2C is a conserved
residue between NKG2C and NKG2A. The need for a very precise peptide to provide a
key interaction, which would, according to our model, lead to NK cell activation, could
further explain why the NK cell activation with the NKG2C-based immune complex is
enabled with a more restricted set of peptides than inhibition via the NKG2A immune
complex [10,11].

Finally, it should be noted that in our study, we utilized an all-atom molecular dy-
namics simulation as a computational microscope to investigate the atomistic machineries
of these biomolecular systems. Despite rapid advances in the field and a general accep-
tance of this approach, some limitations are still present. The current force fields are still
imperfect and furthermore, the molecular composition of the simulated biological systems
is frequently too simplistically set up, leaving out different types of molecules. Further-
more, even the most powerful computational resources do not enable simulations up to
timescales in which important biochemical events such as major conformational changes
and binding events typically take place. In this respect, the development of enhanced
sampling methods that cover the relevant conformational space as efficiently as possible, is
essential to produce the most accurate description of the simulated biosystems [28].

4. Materials and Methods
4.1. Structural Models

We constructed five different models, all based on the available crystal structure of the
extracellular domains of the human CD94/NKG2A immune receptor in a complex with
the extracellular domain of the HLA-E (light and heavy chain) and the leader peptide of
HLA class I histocompatibility antigen, alpha chain G, solved at 3.4 Å resolution (PDB
ID 3CDG) [19]. Subsequently, the NKG2A portion of the complex was replaced by its
homolog NKG2C protein, the 3D structure of which was modelled using the SWISS-
MODEL server [29]. Given the high sequence identity between both the NKG2x proteins
(~95%), we further assumed the same position of the NKG2C partner inside the immune
complex. Therefore, we placed it in the complex by structural alignment with the NKG2A,
which was originally present in the 3CDG crystal structure.

The first simulated model (i) COM+
G consisted of HLA-E, β2m, NKG2C and CD94

proteins, and the G peptide (sequence: VMAPRTLFL). The remaining models differed
from the initial COM+

G model in the identity of the bound peptide. The second model
(ii) COM~

B27 contained the B27 peptide (sequence: VTAPRTLLL, peptide taken from
PDB ID 1KTL) [30]. The third model (iii) COM−

B7 included the B7 peptide (sequence:
VMAPRTVLL, peptide taken from PDB ID 1KPR) [30] and the forth (iv) COM−

Cw7 con-
sisted of the signal sequence of the HLA-Cw7 molecule (peptide taken from PDB ID
3BZF) [31]. In the last model (v) COMapo the bound peptide was removed.

4.2. Molecular Dynamics (MD) Simulations

When preparing the constructed systems for the simulations, the protonation states of
the ionizable residues were assigned by the PDB2PQR web tool at pH 7 [32]. Histidines
were protonated either at Nε2 or Nδ1 atoms, or at both positions. Carboxylic amino acids
were in their common deprotonated states. Next, the protein complex was embedded in
a 10 Å layer of TIP3P water molecules [33] resulting in a box of 126.4 × 131.5 × 118.9 Å3.
Together with the water molecules and 18 Na+ counterions, the systems consisted of
approximately 193,540 atoms. Model topologies were built and disulfide bonds were
constructed with tleap module of Ambertools 18 [34].
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The initial energy minimization of each system was followed by a gradual heating in
two successive steps: 0–100 K over 5 ps in the first step and 100–303 K over the next 120 ps
in the second step. Positional restraints of 200 kcal/mol Å2 and 100 kcal/mol Å2 for all
heavy atoms were applied, respectively. The restraints were then removed and a 10 ns of
isothermal-isobaric ensemble (NPT) was performed, using a Berendsen barostat for the
pressure control (1 bar) [35]. Next, a 1.2 µs production MD run using canonical ensemble
(NVT) with periodic boundary conditions was conducted for each model, resulting in
a total simulation time of ~6 µs. During the MD simulations, a temperature control
(T = 303 K) with a collision frequency of 1 ps−1 was performed by applying the Langevin
thermostat [36]. The SHAKE algorithm [37] was used to constrain the hydrogen bonds,
and the particle mesh Ewald method [38] with a cutoff of 10 Å was utilized to account for
the long-range electrostatic interactions. An integration time step of 2 fs was used for all
MD runs.

VMD [39] and PyMol [40] software were used to visualize the obtained MD trajectories.
The cpptraj module in Ambertools 18 [34] and Gromacs 2016 [21] suite were employed
to perform the trajectory analyses, including the root-mean-square fluctuations (RMSF)
and the calculation of the cross-correlation matrices. For these analyses, the water and
counterion-stripped trajectories were used considering 3334 frames, corresponding to the
last 1 µs of each performed MD production run.

The occurrences of hydrogen (H)-bonds were identified by the cpptraj module in
Ambertools 18 [34], using a distance cutoff of 3.0 Å along with an angular cutoff of 135◦.
The same module was also used for the cluster analysis to assess the structural populations.
For the latter, a hierarchical agglomerative approach, a distance cutoff of ~2 Å, and a
distance metric of the mass-weighted root-mean-square deviation (RMSD) of the backbone
atoms were employed [41].

4.3. Cross-Correlation Matrix and Correlation Scores

The cross-correlation matrix allows the disclosure of possible relationships between
different components of the simulated complex. The matrix is based on the Pearson’s
correlation coefficients (CCij) and quantifies the (anti-)correlated movements between a
pair of residues along the MD trajectory. CCij values can range from −1 to +1, where
0 represents no correlation between two residues, −1 indicates fully anti-correlated, and
+1 corresponds to a fully correlated motion.

The covariance matrices were formed from the atomic position vectors. By using the
RMS-fit to a reference structure, which was the averaged structure from the MD production
run, only the internal dynamics of the complex were captured, while the rotational and
translational motions were removed [42–44]. The obtained covariance matrices were then
adopted to calculate the cross-correlation matrices and the normalized covariance matrices
using the cpptraj module in Ambertools 18 [34]. To obtain a simplified version of the
CCij matrix that more clearly illustrated the relationships between individual proteins
and/or (sub)domains of the multicomponent immune complex, the correlations for each
protein–domain pair were assessed by summing the correlation scores (CSs) between each
pair and all the others. Next, a correlation density for each area was obtained by summing
the CSs of a protein–domain pair, which was then divided by a product of a number of
residues belonging to that protein–domain pair [45,46].

4.4. Energy Calculations

The binding free energies, first between the complex HLA-E/β2m/NKG2C/CD94
and the bound peptide pairs, and, second, between the receptor NKG2C/CD94 and
the ligand HLA-E/β2m/peptide pairs were calculated using the molecular mechanics-
generalized born surface area (MM-GBSA) method [20] and the Amber18 code [34]. MM-
GBSA calculations were performed for 100 equally spaced frames from each MD trajectory
taken from the production MD run interval between 600 and 900 ns. The igb flag value was
set to 5, and a salt concentration of 0.1 M was used. Pairwise and per-residue decomposition
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energy analyses were performed for both used divisions of the system. The conformational
entropic contribution of the free energy was not included in the calculations because it was
previously suggested that this term does not improve the quality of the results when using
the MM-G(P)BSA [47]. The interaction energies were also calculated by the gmx energy
module in Gromacs2016 [21] software package on the equilibrated part of the trajectories,
considering the last 1 µs of the MD production run.

5. Conclusions

In summary, we performed and analyzed several multi-microsecond molecular dy-
namics simulations (MD) that harvested novel information for the ongoing quest to un-
derstand the atomistic details that are critical for the successful molecular recognition
between the HLA-E/β2m/peptide ligand and the activating NKG2C/CD94 receptor and
subsequent signal transduction in the fundamental immune process event of the natural
killer (NK) cell action. The findings obtained in this study suggest that the peptide acts like
a puppet hand that can pull the crucial strings via a specific hydrogen bonding network
to orchestrate the actions of the NKG2C and HLA-Eα2 domains leading to NK cell activa-
tion. This information may provide the necessary foundation for the targeted design of
new biochemical and structural studies to further decipher the mechanistic details of the
deficiently understood HLA-E/β2m/peptide/NKG2C/CD94 immune complex.
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