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Pro‑inflammatory cytokine 
polymorphisms and interactions 
with dietary alcohol and estrogen, 
risk factors for invasive breast 
cancer using a post genome‑wide 
analysis for gene–gene 
and gene–lifestyle interaction
Su Yon Jung1*, Jeanette C. Papp2, Eric M. Sobel2,3, Matteo Pellegrini4, Herbert Yu5 & 
Zuo‑Feng Zhang6,7

Molecular and genetic immune-related pathways connected to breast cancer and lifestyles in 
postmenopausal women are not fully characterized. In this study, we explored the role of pro-
inflammatory cytokines such as C-reactive protein (CRP) and interleukin-6 (IL-6) in those pathways 
at the genome-wide level. With single-nucleotide polymorphisms (SNPs) in the biomarkers and 
lifestyles together, we further constructed risk profiles to improve predictability for breast cancer. Our 
earlier genome-wide association gene-environment interaction study used large cohort data from 
the Women’s Health Initiative Database for Genotypes and Phenotypes Study and identified 88 SNPs 
associated with CRP and IL-6. For this study, we added an additional 68 SNPs from previous GWA 
studies, and together with 48 selected lifestyles, evaluated for the association with breast cancer risk 
via a 2-stage multimodal random survival forest and generalized multifactor dimensionality reduction 
methods. Overall and in obesity strata (by body mass index, waist, waist-to-hip ratio, exercise, and 
dietary fat intake), we identified the most predictive genetic and lifestyle variables. Two SNPs (SALL1 
rs10521222 and HLA-DQA1 rs9271608) and lifestyles, including alcohol intake, lifetime cumulative 
exposure to estrogen, and overall and visceral obesity, are the most common and strongest predictive 
markers for breast cancer across the analyses. The risk profile that combined those variables presented 
their synergistic effect on the increased breast cancer risk in a gene–lifestyle dose-dependent 
manner. Our study may contribute to improved predictability for breast cancer and suggest potential 
interventions for the women with the risk genotypes and lifestyles to reduce their breast cancer risk.

Chronic inflammation may play an important role in the pathogenesis of non-inflammatory diseases, such 
as breast cancer, from tumor initiation through progression1,2. Activation of innate immunity creates a tissue 
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microenvironment high in reactive oxygen and nitrogen species, leading to potential DNA damage and altera-
tions in nearby cells3–5. The inflammatory response also elevates the circulating levels of cancer-promoting 
inflammatory cytokines such as C-reactive protein (CRP) and interleukin-6 (IL-6)2. These key pro-inflammatory 
biomarkers reflect different molecular pathways in the immune cascade in acute and chronic immune responses 
but may be interrelated in carcinogenesis, yielding a congruent association with breast cancer risk. For example, 
IL-6, upregulated by macrophages and adipose tissue, promotes breast tumor initiation and progression6,7. CRP, 
a major acute-phase reactant and a biomarker of chronic low-grade inflammation, partially induced by IL-6, 
has been associated with increased risk of breast cancer8,9. The carcinogenetic mechanisms of these markers are 
partially understood. IL-6 regulates aromatase activity responsible for estrogen production in adipose tissue, 
which is important in developing postmenopausal breast cancer10,11. CRP levels are attenuated by prolonged 
inhibition of cyclooxygenase-2 action (promoting estrogen formation in adipose tissue)11,12. Thus, IL-6 and CRP 
may be involved in inflammatory pathways connected to breast cancer tumorigenesis.

Given the relationships between those inflammatory markers and breast cancer risk, genetic variants involved 
in the biomarkers’ functional and structural regulation may have potential implication in the causal pathway, 
affecting the risk of breast cancer. Previous genomic epidemiology studies for the associations between CRP/
IL-6-related genome-wide genetic variants and breast cancer risk are limited and mostly showed null results13–17, 
while only a few reported a marginal effect on breast cancer risk6. The gene–phenotype pathway may not be 
connected to CRP and IL-6 alone, but also modulated by lifestyle pathways linked to obesity (overall and vis-
ceral)15,18–25, lipid metabolism25,26, high-fat diet, exercise, smoking, and alcohol18,27–34. Further, the inflammatory 
cytokines and the genetic markers have demonstrated different associations with breast cancer according to 
obesity16,35 and related lifestyle factors such as physical activity and dyslipidemia36–38. Thus, studying how those 
lifestyle factors modify and interact with gene and phenotype, leading to increased breast cancer susceptibility, 
may contribute to the understanding of the complex genotype–phenotype pathway and is important to develop 
a genetically targeted intervention tool for use in primary breast cancer prevention efforts.

In addition, immune-related etiologic pathways in breast cancer development may differ by menopausal 
status, probably due to the role of sex hormones in mediating the innate and adaptive immune systems. Our 
current study has focused on postmenopausal women who are vulnerable to a high incidence of inflammation39, 
obesity, and breast cancer (e.g., 80% of new cases occur in women age 50 years and older40,41). Using a large-scale 
postmenopausal women cohort from the Women’s Health Initiative Database for Genotypes and Phenotypes 
(WHI dbGaP) Study, we previously performed a genome-wide association (GWA) gene–environment (G × E) 
interaction study for CRP and IL-6 by addressing the pleiotropic effect of those biomarkers on the gene–pheno-
type relationship; we identified 88 top GWA single-nucleotide polymorphisms (SNPs)42. We have now extended 
the scope of modeled genetic factors by including 68 additional SNPs in relation to CRP and IL-6 from previ-
ous GWA studies that focused on European ancestry with independent replications20,21,43,44. We examined the 
association of those top GWA-based SNPs with primary invasive breast cancer risk overall and in obesity-related 
strata in which the SNPs were associated with CRP and IL-6 at genome-wide significance in our earlier GWA 
study42. This approach may allow us to elucidate an empirical pathway through which a substantial proportion 
of the susceptibility of GWA SNPs in CRP and IL-6 influences breast cancer risk through interactions with 
specific lifestyles (Figure S1).

In this study, we hoped to improve the predictability of breast cancer by better characterizing the genetic 
architecture of the inflammatory biomarkers that interact with lifestyle factors. We evaluated the GWA SNPs and 
48 selected lifestyle factors together by conducting a two-stage multimodal random survival forest (RSF) analysis 
and ranked them according to their predictive value and accuracy for breast cancer. In addition, we applied a 
generalized multifactor dimensionality reduction (GMDR) model to characterize high-order gene–gene inter-
actions and selected the best genetic prediction model45–48. Finally, with the most predictive SNPs and lifestyle 
factors selected via the RSF and GMDR, we constructed prediction models for breast cancer risk and estimated 
the combined and joint interaction effects of genotypes and lifestyles on the development of breast cancer. Ulti-
mately, we tested the empirical hypothesis that the most-predictive genetic and lifestyle factors in combination 
increase the predictability of breast cancer risk in a synergistic manner.

Material and methods
Study population.  Our study included healthy postmenopausal women enrolled in the WHI Harmonized 
and Imputed GWA Studies (GWASs) which was coordinated by dbGaP to contribute to a joint imputation and 
harmonization effort for GWASs within the 2 representative study arms, Clinical Trials and Observational Stud-
ies. The detailed study designs and rationale are described elsewhere49,50. Briefly, healthy women were enrolled 
in the WHI study between 1993 and 1998 at 40 clinical centers across the United States if they were 50–79 years 
old, postmenopausal, expected to stay near the clinical centers for at least 3 years after enrollment, and able to 
provide written informed consent. Participants were eligible for the WHI dbGaP study if they had met eligibil-
ity requirements for submission to dbGaP and provided DNA samples. The Harmonization and Imputation 
GWASs under the dbGaP study accession (phs000200.v12.p3) consist of 6 sub-studies (Table S1). Of the 16,088 
women who reported their race or ethnicity as non-Hispanic white (Figure S2), in our earlier GWA GxE study, 
we applied the exclusion criteria (diabetes history; genetic data duplications; first- and second-degree relatives; 
and genetic quality control [QC] based on principal components), leaving 10,798 women. In the current study, 
we additionally excluded 619 with < 1 year follow-up period and/or a diagnosis of any type of cancer at enroll-
ment, leaving a total of 10,179 women (94% of the eligible 10,798 GWA participants). These women had been 
followed up through August 29, 2014, with a mean of 16 years follow-up, and 537 of them had developed pri-
mary invasive breast cancer. The Institutional Review Boards of each WHI participating clinical center and the 
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University of California, Los Angeles, approved this study. all methods were performed in accordance with the 
relevant guidelines and regulations.

Data collection and breast cancer outcome.  The coordinating clinical centers conducted data quality 
assurance periodically and collected participant information through self-administered questionnaires. In this 
study, we initially selected 48 variables measured at screening for our analysis on the basis of (1) their association 
with inflammation and breast cancer through the literature review36,51–54 and (2) preliminary analyses including 
univariate and stepwise multiple regression analyses and a multicollinearity test. Those variables include demo-
graphic and socioeconomic factors (age, education, marital status, family income, and employment); family 
histories of breast and colorectal cancers and diabetes; medical histories (depressive symptoms, hypertension, 
high cholesterol, and cardiovascular disease); lifestyles (cigarette smoking and exercise); dietary factors (dietary 
energy, alcohol intake, total sugar, fiber, fruit, and vegetable consumption; % calories from protein, carbohy-
drates, saturated fatty acids [SFA], monounsaturated FA [MFA], and polyunsaturated FA [PFA]); and reproduc-
tive histories (history of hysterectomy, removal of one or both ovaries, ages at menarche and menopause, preg-
nancy, breast feeding, oral contraceptive (OC) use, and use of exogenous estrogen [E] only and E plus progestin 
[E + P]). We also included anthropometric variables, including height, weight, and waist and hip circumferences, 
which had been measured by trained staff.

The breast cancer outcomes were determined via a centralized review of medical charts by a committee of 
physicians on the basis of pathology or cytology reports. The time from enrollment to breast cancer develop-
ment, censoring, or study end point was calculated and represented in years. Cancer cases were coded using the 
National Cancer Institute’s Surveillance, Epidemiology, and End-Results guidelines55.

Genotyping.  We extracted genotyped data from the WHI dbGaP Harmonized and Imputed GWASs. 
Details of the data-cleaning process have been previously discussed42,56. Briefly, the genotypes were normalized 
to the reference panel GRCh37, and imputation was conducted via 1000 Genomes reference panels57. SNPs for 
harmonization were checked for pairwise concordance among all samples across the GWASs. The initial data 
QC included SNP filtering with a missing-call rate of < 2% and a Hardy–Weinberg equilibrium of p ≥ 1E–04. The 
second QC step included SNPs with R̂2

≥ 0.6 imputation quality58 but excluded individuals with a KING kin-
ship estimate > 0.08859.

Statistical analysis.  Differences in participants’ baseline characteristics and allele frequencies by breast 
cancer development were examined with unpaired 2-sample t tests (for continuous variables) and chi-squared 
tests (for categorical variables). If continuous variables were skewed or had outliers, Wilcoxon’s rank-sum test 
was conducted. Our previous GWA analysis evaluated the gene–lifestyle interactions via stratifications defined 
by body mass index (BMI; cutoff, 30 kg/m2), waist circumstance (WST; cutoff, 88 cm), waist-to-hip ratio (WHR; 
cutoff, 0.85), metabolic equivalents (METs; cutoff, 10 h/week), and % calories from SFA (cut-off, 9%). The results 
(G × E formal test and stratified analysis) from the sub-GWASs were combined in a meta-analysis assuming a 
fixed-effect model. In this study, we performed an association study of the 88 SNPs identified in subgroups by 
obesity and obesity-related lifestyle variables with breast cancer risk in the identical subgroups. The additional 
68 SNPs from other GWA studies were pulled together overall and in subgroups for the purpose of analysis.

In the current study, we conducted the RSF analysis. The RSF initially generates bootstrap samples using 
approximately 63% of the original data and grows a tree from each sample via a splitting rule to maximize survival 
differences across daughter nodes. This tree-building process is repeated numerous times (n = 5000 in this study), 
creating a forest of trees60,61. An ensemble cumulative hazard estimate was calculated from each tree and aver-
aged over all trees for each individual and used to compute a predicted cumulative breast cancer incidence rate. 
Also, using this ensemble estimate and creating the out-of-bag (OOB) data (about 37% of the original data not 
used for bootstrapping), the OOB concordance index (c-index) was estimated, which is a measure of prediction 
performance conceptually similar to the area under the receiver operating characteristic (AUROC) curve60,62. The 
rank of each variable was determined on the basis of its predictability for breast cancer according to 2 predictive 
parameters: (1) minimal depth (MD), in which variables that have a small MD and split the tree close to the 
root are considered highly predictive and (2) variable importance (VIMP), computed as the difference between 
the OOB c-indexes from the original OOB data and from the permuted OOB data, in which variables that have 
greater VIMP values are the more predictive63. Because they use different prediction algorithms, we expect the 
variables’ ranking to differ to some degree. The RSF, a machine-learning and nonparametric tree-based ensemble 
method, accounts for nonlinearity and high-order interactions among variables, which may not be handled by a 
traditional regression method63,64. The RSF may thus provide a more accurate risk estimation.

We performed a 2-stage RSF analysis (Figure S3). In the first stage, we implemented an RSF on SNPs and 
lifestyle factors separately. Only those SNPs and lifestyle factors with distinctly low MD and high VIMP val-
ues were carried over in the second stage. In that second stage, we took a multimodal approach overall and in 
subgroups (by BMI, WHR, WST, MET, and SFA) by (1) comparing MD and VIMP measures in the plot, (2) 
computing the OOB c-index from the nested RSF model, and (3) estimating the incremental error rate of each 
variable in the nested sequence of RSF models from the top variable and calculating a dropping error rate. This 
RSF multimodal approach enabled us to exclude from the outset the SNPs and lifestyle factors that were not 
significantly associated with breast cancer, leading to increased statistical power and corrected type I error rate 
compared with the original RSF model61.

Further, we applied a GMDR model that is described in detail elsewhere45–47. The GMDR reduces high-
dimensional multifactor prediction to a single dimension by the ratio of high vs. low risk, and thus detects the 
best gene–gene interaction model. It produces key predictability performance measures, including testing balance 
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accuracy (TBA), cross-validation consistency (CVC), and sign p value. The model with the highest TBA, CVC 
10/10, and p < 0.05 based on 1000-times permutation testing was considered the best model.

Multiple Cox proportional hazards regressions, with a test of proportional hazards via a Schoenfeld residual 
plot and ρ evaluation, were conducted to obtain hazard ratios (HRs) and 95% confidence intervals (CIs) for 
the single and combined effects of SNPs and lifestyle factors on breast cancer, with adjustment for covari-
ates (Table 1). A 2-tailed p value < 0.05 was considered statistically significant, and multiple comparisons were 
adjusted by the Benjamini–Hochberg method65. GMDR v.1.0. and R v.3.5.2. (survival, survivalROC, random-
ForestSRC, ggRandomForests, gamlss, ggsurvplot, and forestplot packages) were used.

Results
The allele frequencies of 156 GWA CRP/IL-6-related SNPs and baseline characteristics of participants are dis-
played in Tables S1 and 1, respectively. Breast cancer patients had relatively higher education, greater family 
income, and family history of diabetes and breast cancer, smoked more cigarettes/day, consumed more dietary 
alcohol/day, and were more depressed, obese both overall and viscerally, and taller. They also tended to experi-
ence early menarche and late menopause and had less history of hysterectomy and shorter duration of OC and 
E-only use, but longer duration of E + P use.

Two‑stage multimodal RSF and GMDR approach.  With the 156 GWA SNPs and 48 lifestyle factors, 
we performed the two-stage RSF and GMDR (Figure S3) to determine the most predictive variables with the 
highest predictability and lowest prediction error for breast cancer risk. In the first stage, we estimated 2 predict-
ability performance measures, MD and VIMP. For lifestyles and SNPs separately, we created a plot to compare 
those 2 measures and identified the strongest predictive lifestyle and genetic factors that were in agreement 
with high ranks (Figure S4) in overall analysis: 12 of 48 lifestyles and 13 of 156 SNPs. We further conducted 
the first stage of RSF for SNPs in the subgroups, which yielded the following results: 8 and 13 of 117 SNPs 
(BMI < 30 and ≥ 30, respectively); 14 and 7 of 70 SNPs (WHR ≤ 0.85 and > 0.85, respectively); 10 and 6 of 81 SNPs 
(WST ≤ 88 and > 88, respectively); 7 and 12 of 82 SNPs (METs ≥ 10 and < 10, respectively); and 19 and 12 of 116 
SNPs (SFA < 9 and ≥ 9, respectively). All of the SNPs identified in this first stage of RSF were associated with CRP.

Next, with the 12 lifestyles and selected SNPs together, overall and in subgroups, we conducted the second 
multimodal RSF to construct risk profiles with the most predictive variables. Particularly, in the overall group, 
we first computed the 2 measures MD and VIMP (Table 2) and compared them in a plot (Fig. 1A), in which 
a dashed red line represents agreement of the 2 measures. Both measures with high ranks indicated 5 SNPs 
(SALL1 rs10521222; HLA-DQA1 rs9271608; DUSP1 rs17658229; APOC1 rs4420638; and TRAIP rs2352975) 
and 3 lifestyles (duration of OC and E + P use and BMI) as the most influential variables for breast cancer. 
Second, we estimated the c-index (i.e., the AUROC) from the nested RSF model (Table 2) and plotted (Fig. 1B) 
where variables ranked by MD, identifying the same set of top variables (5 SNPs and 3 lifestyles). Those top 
variables substantially improved the c-index prediction accuracy, whereas others did not, suggesting that the 
c-index has complementary prediction ability. Last, we computed a dropping error rate for each variable in the 
nested sequence of RSF models (Table 2), and once again identified the same top 8 variables as the strongest 
contributors to reduce the error rate, thus improving the prediction accuracy. Further, using the GMDR method, 
we determined the best gene-by-gene interaction models up to 5 orders of interactions (Table 3), of which the 
one-factor model including TRAIP rs2352975 was the best predictive with the highest TBA of 0.5382 and CVC 
of 10/10 (p < 0.001).

For each of the obesity strata (BMI, WHR, WST, MET, and SFA), we continuously applied those multimodal 
(Tables S2.1–10 and Figures S5–9) and GMDR (Table 3) approaches, and determined the strongest predictive 
markers with the most common 6 SNPs (TRAIP rs2352975, DUSP1 rs17658229, HLA-DQA1 rs9271608, SALL1 
rs10521222, HNF1A-AS1 rs2243616, and APOC1 rs4420638) and 5 lifestyle factors (dietary alcohol intake, E + P 
and OC use, BMI, and hip circumference).

Combined and joint effects of the most influential SNPs and lifestyles on breast cancer 
risk.  By accounting for confounding factors and the nonlinearity of each variable via the RSF method, we 
estimated the predicted cumulative incidence rate of breast cancer (Fig. 2). The genotypes of each SNP were 
originally continuous variables and then categorized accordingly for further analysis with the following risk 
genotypes (Fig. 2A–E): TRAIP rs2352975 CT + TT, DUSP1 rs17658229 CC, HLA-DQA1 rs9271608 GG, SALL1 
rs10521222 TT, and APOC1 rs4420638 GG. Also, by using a cutoff value bisecting variables (Fig. 2F–I), high-risk 
lifestyle groups were defined as ≥ 18 g/day of alcohol consumption, ≥ 10 years of E + P use, < 5 years of past OC 
use, or ≥ 30 BMI and further analyzed as binary variables. With the best predictive GMDR-modeled SNPs and 
risk lifestyles overall and in subgroups, we developed multivariate models for breast cancer risk (Table S3). These 
results suggested a stronger individual effect of some SNPs than the rest of the SNPs and lifestyles on breast can-
cer risk, even after accounting for confounding factors.

The SNPs and lifestyles, when combined or jointly associated, displayed different patterns of breast cancer 
risk. In particular, in the overall non-obese (BMI < 30) group (Table 4), the best predictive SNPs and lifestyles 
were combined separately. When stratified by alcohol intake, high alcohol consumers (≥ 18 g/day) who had the 
maximum number of risk genotypes had a 4 times increased risk for breast cancer than low alcohol consumers 
(< 18 g/day) who had less or null-risk genotypes. Consistently, high alcohol consumers with one or more risk 
lifestyles had 3 times higher risk than low alcohol consumers with a null-risk lifestyle. When SNPs and lifestyles 
were combined, compared with the lowest-risk group (null risk for genotypes and lifestyles), the moderate-
risk (high risk of either genotypes or lifestyles) and the highest-risk groups (high risk of both genotypes and 
lifestyles) had about 3 times and 6 times greater risk, respectively, suggesting a gene–lifestyle dose–response 
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Characteristic

Participants without 
breast cancer
(n = 9642)

Participants with 
breast cancer
(n = 537)

n (%) n (%)

Age in years, mean (SD) 66 (6.65) 66 (6.64)

Education

≤ High school 3476 (36.1) 164 (30.5)*

> High school 6166 (63.9) 373 (69.5)

Family income

< $35,000 4344 (46.1) 207 (39.2)*

≥ $35,000 5088 (53.9) 321 (60.8)

Family history of diabetes

No 6596 (71.1) 349 (66.9)*

Yes 2681 (28.9) 173 (33.1)

Family history of breast cancer

No 7838 (81.3) 416 (77.5)*

Yes 1804 (18.7) 121 (22.5)

Depressive symptoma, mean (SD) 0.027 (0.097) 0.031 (0.115)*

Dietary alcohol per day in g, mean (SD) 6.01 (11.27) 8.50 (14.77)*

Dietary alcohol per dayb

< 18 8750 (90.7) 462 (86.0)*

≥ 18 892 (9.3) 75 (14.0)

% calories from protein, mean (SD) 16.66 (3.05) 16.85 (3.21)

% calories from SFA, median (range) 11.33 (2.22–32.39) 11.46 (3.73–21.50)

% calories from MFA, mean (SD) 12.70 (3.26) 12.75 (3.17)

% calories from PFA, mean (SD) 6.82 (2.08) 6.81 (2.09)

METs hour week−1c 11.04 (12.90) 10.28 (11.69)

METs hour week−1c

≥ 10.0 4001 (41.5) 220 (41.0)

< 10.0 5641 (58.5) 317 (59.0)

How many cigarettes per day

< 15 5432 (56.3) 250 (46.6)*

≥ 15 4210 (43.7) 287 (53.4)

BMI in kg/m2, mean (SD) 27.71 (5.32) 29.03 (5.68)*

BMId

< 30.0 6859 (71.1) 320 (59.6)*

≥ 30.0 2783 (28.9) 217 (40.4)

Waist circumference in cm, mean (SD) 86.57 (12.77) 90.0 (13.25)*

Waist circumferenced

≤ 88 5756 (59.7) 268 (49.9)*

> 88 3886 (40.3) 269 (50.1)

Hip circumference in cm, mean (SD) 106.3 (11.10) 109.4 (11.48)*

Waist-to-hip ratio, mean (SD) 0.813 (0.073) 0.822 (0.075)*

Waist-to-hip ratiod

≤ 0.85 6895 (71.5) 356 (66.3)*

> 0.85 2747 (28.5) 181 (33.7)

Age at menarche in years, mean (SD) 13 (1.44) 12.5 (1.48)*

Hysterectomy ever

No 6143 (63.7) 376 (70.0)*

Yes 3499 (36.3) 161 (30.0)

Age at menopause in years, mean (SD) 48 (6.23) 49 (5.82)*

Oral contraceptive duration in years, mean (SD) 5.7 (3.28) 5.2 (3.05)*

Exogenous estrogen use (E-only) in years

Never 6697 (69.5) 411 (76.5)*

< 5 1361 (14.1) 51 (9.5)

5 to < 10 516 (5.4) 17 (3.2)

≥ 10 1068 (11.1) 58 (10.8)

Exogenous estrogen use (E + P) in years

Continued
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relationship. Further, when stratified by alcohol consumption, higher alcohol consumers with high risk of both 
genotypes and lifestyles had 10 times the excessive risk, compared with low alcohol consumers with low risk of 
both genotypes and lifestyles. This indicates a significant joint effect of alcohol intake with the SNPs and lifestyles 
on breast cancer risk in an additive model (G × E: HR = 1.15, p 0.547). Multiple testing was corrected to control 
the false-discovery rate. The analyses of the non-viscerally obese (WHR ≤ 0.85) group (Table 4) yielded similar 
results but with stronger combined and joint effects of risk genotypes and lifestyles with alcohol intake on breast 
cancer risk in both additive and multiplicative models (G × E: HR = 1.37, p 0.253).

We further evaluated the combined effect of SNPs and lifestyle factors and their joint effect with E + P use 
on breast cancer risk (Table S4) and determined that the risk genotypes and lifestyles, both separately and in 
combination, had a synergistic effect with longer use of E + P (≥ 10 years) on cancer risk. This pattern appeared 
more strongly in obesity strata (BMI, WHR, MET, and SFA) than in the overall group (Fig. 3).

Discussion
An increasing number of population-based cancer genomic studies have incorporated environmental factors in 
the molecular causal pathway. Comprehending how lifestyle factors interact with genes and phenotypes, influenc-
ing risk for breast cancer, is important for constructing improved risk profiles, leading to the development of a 
gene–lifestyle combination intervention for primary cancer prevention efforts. Our 2-stage multimodal RSF and 
GMDR analyses identified the strongest predictive genetic and lifestyle variables overall and in obesity strata. 
The genetic effects in this study were associated with the SNPs involved in inflammatory cytokine pathways. The 
most common markers for breast cancer risk across the strata are 2 SNPs related to CRP (SALL1 rs10521222 
and HLA-DQA1 rs9271608) and, consistent with previous studies66–68, 5 lifestyle factors such as alcohol intake, 
lifetime cumulative exposure to estrogen (post OC and E + P use), and overall and visceral obesity. The risk 
profiles that combined those influential variables presented a synergistic effect on the increased risk for breast 
cancer in a gene–lifestyle dose-dependent manner.

One SNP near SALL1, in relation to CRP, both overall and in the obesity strata, is associated with breast cancer 
risk. SALL1 is a member of the SALL gene family, encoding a multiple zinc-finger transcription repressor that 
regulates organogenesis and development of embryonic stem cells69–71. The role of the SALL genes (particularly 
SALL2 and SALL4) in tumorigenesis has recently been investigated as a tumor suppressor for ovarian and Wilms’ 
tumors72,73, hepatoblastoma, and gastric carcinoma74,75. However, the function of SALL1 in cancer development 
has not been determined. Few recent studies of in vivo RNAi screen and in vivo/in vitro breast cancer cells have 
implicated SALL1 as a tumor suppressor in breast cancer by inhibiting cancer cell growth, proliferation, and 
cell-cycle arrest, through the Nucleosome Remodeling and Deacetylase network76 or by regulating CDH1, a 
contributor to epithelial-to-mesenchymal transition77. Our finding of the SALL1 SNP’s association with CRP at 
the GWA level and with breast cancer risk is supported by these previous biologic studies and further suggests 
the involvement of SALL1 in immune mechanisms of breast cancer tumorigenesis.

HLA-DQA1 belongs to the human leukocyte antigen (HLA) class II alpha chain paralogues, which increase 
immune system sensitivity by distinguishing its own proteins from foreign invaders78,79. HLA class II, the human 
version of the major histocompatibility complex (MHC) class II, regulates the antitumoral cellular immune 
response by presenting MHC antigen in tumor cells to the immune system, stimulating tumor infiltration of 

Characteristic

Participants without 
breast cancer
(n = 9642)

Participants with 
breast cancer
(n = 537)

n (%) n (%)

Never 7940 (82.3) 412 (76.7)*

 < 5 927 (9.6) 64 (11.9)

5 to < 10 406 (4.2) 30 (5.6)

≥ 10 369 (3.8) 31 (5.8)

Table 1.   Characteristics of participants, stratified by breast cancer. BMI, body mass index; E, estrogen; E + P, 
estrogen + progestin; SFA, saturated fatty acids; MET, metabolic equivalent; MFA, monounsaturated fatty 
acids; PFA, polyunsaturated fatty acids; RSF, random survival forest. *p < 0.05, chi-squared or Wilcoxon’s 
rank-sum test. a Depression scales were estimated using a short form of the Center for Epidemiologic Studies 
Depression Scale. b Dietary alcohol per day was stratified at 18 g/day, where the cutoff level or higher fall 
within the high-risk group in the RSF model. c Physical activity was estimated via recreational physical activity 
combining walking and mild, moderate, and strenuous physical activity. Each activity was assigned a MET 
value corresponding to intensity; the total MET hours week−1 was calculated by multiplying the MET level 
for the activity by the hours exercised per week and summing the values for all activities. The total MET was 
stratified into 2 groups, with 10 METs as the cutoff according to current American College of Sports Medicine 
and American Heart Association recommendations102. d BMI, waist circumference, and waist-to-hip ratio were 
categorized at 30 kg/m2, 88 cm, and 0.85, respectively, where those cutoff levels or higher fall within the overall 
or visceral obese range (https​://www.cdc.gov/obesi​ty/adult​/defin​ing.html)103.

https://www.cdc.gov/obesity/adult/defining.html
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CD4 + T cells80–82. Several previous studies reported that the SNPs of HLA class II have implications in the car-
cinogenesis of specific cancers (e.g., ovarian83, squamous cell lung84, gastric85, and esophageal86 cancers), but 
limited studies in association with breast cancer have been conducted and were restricted to subjects other than 
Caucasians; further, the results were inconsistent80,81 or null82. Our study is the first to report the association of 
the HLA-DQA1 SNP with breast cancer risk in non-Hispanic white women, suggesting that HLA class II plays a 
decisive role in the pathogenesis of breast cancer in this population by diminishing the efficacy of the antitumoral 
immune response. Also, this association would have been missed without the incorporation of obesity factors, 
which calls for further study of the biologic mechanism.

A number of epidemiologic studies have revealed that alcohol intake, even of a small amount (e.g., ≤ 1 drink 
[moderate]/day), can increase breast cancer risk in both pre- and post-menopausal women66,87–90. Notably, in 
postmenopausal women, few studies have examined the combined and joint effect of alcohol intake with other 
lifestyles66–68 or relevant genetic variants91,92 on breast cancer risk; in particular, the gene–lifestyle study results 
did not support a significantly increased risk among women who carried specific risk genotypes and had higher 
alcohol intake91,92. Molecular biologic mechanisms of alcohol-associated tumorigenesis in breast cancer may 
involve complicated pathways: an elevated level of estrogen by testosterone conversion; an increased level of 
insulin-like growth factors from the liver due to alcohol consumption93,94; and disruption of folate metabolism95. 
Also, acetaldehyde, derived from the metabolism of ethanol, is a carcinogenic metabolite that causes forma-
tion of DNA adducts and inhibits DNA repair and methylation patterns90,96. Further, high and regular alcohol 

Table 2.   The second stage of random survival forest analysis: predictive value of variable for breast cancer in 
overall analysis. BMI, body mass index; C-index, concordance index; E + P, exogenous estrogen + progestin; 
VIMP, variable of importance. a Variables are ordered by minimal depth. b Predictive value of variable was 
assessed via minimal depth in the nested random survival forest models. A lower value is likely to have a 
greater impact on prediction. c The incremental error rate of each variable was estimated in the nested sequence 
of models starting with the top variable, followed by the model with the top 2 variables, then the model 
with the top 3 variables, and so on. For example, the 3rd error rate was estimated from the 3rd nested model 
(including the 1st, 2nd, and 3rd variables). d The drop error rate was estimated by the difference between the 
error rates from the nested models with a prior and the corresponding variable. For example, the drop error 
rate of the 2nd variable was estimated by the difference between the error rates from the 1nd and 2rd nested 
models. The error rate for the null model is set at 0.5; thus, the drop error rate for the 1st variable was obtained 
by subtracting the error rate (0.3982) from 0.5.

Variablea Minimal depthb VIMP C-index Errorc Drop errord

SALL1 rs10521222 1.9902 0.0554 0.6018 0.3982 0.1018

Duration of oral contraceptive use 2.0644 0.0541 0.7001 0.2999 0.0983

HLA-DQA1 rs9271608 2.7866 0.0413 0.7878 0.2122 0.0878

DUSP1 rs17658229 3.5022 0.0104 0.7990 0.2010 0.0111

BMI 3.5034 0.0113 0.8180 0.1820 0.0190

Hip circumference 3.5554 0.0073 0.8180 0.1820 − 1.00E−05

Dietary alcohol 3.5568 0.0049 0.8187 0.1813 7.00E−04

Waist circumference 3.5862 0.0075 0.8169 0.1831 − 0.0018

APOC1 rs4420638 3.5908 0.0167 0.8242 0.1758 0.0073

TRAIP rs2352975 3.5954 0.0146 0.8359 0.1641 0.0118

Age at menopause 3.7836 0.0024 0.8392 0.1608 0.0033

Duration of E + P use 3.8872 0.0095 0.8539 0.1461 0.0147

How many cigarettes per day 4.0458 0.0015 0.8539 0.1461 − 9.00E−05

Depressive symptom 4.2520 0.0015 0.8525 0.1475 − 0.0014

Waist-to-hip ratio 4.3148 0.0022 0.8503 0.1497 − 0.0022

Family income 4.3646 0.0011 0.8479 0.1521 − 0.0024

APOC1 rs5117 4.4182 0.0050 0.8494 0.1506 0.0016

IRF1 rs4705952 4.4548 0.0046 0.8500 0.1500 0.0005

% calories from protein 4.6538 0.0007 0.8486 0.1514 − 0.0014

TOMM40 rs157581 4.7930 0.0037 0.8499 0.1501 0.0013

METAP2 rs11108056 4.8540 0.0017 0.8495 0.1505 − 0.0004

BCL7B rs13233571 5.0108 − 0.0001 0.8487 0.1513 − 0.0008

CENPW rs1490384 5.0488 0.0004 0.8458 0.1542 − 0.0029

IKZF2 rs1441169 5.1550 0.0002 0.8439 0.1561 − 0.0019

HNF4A rs1800961 5.1846 0.0051 0.8455 0.1545 0.0016
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intake may lead to a dietary deficiency of essential nutrients, making individuals susceptible to tumorigenesis90. 
Corresponding to this alcohol-response tumorigenic environment, and supported by previous research66, our 
study showed that more than moderate alcohol intake, jointly with the risk SNPs, substantially elevated the risk 
of breast cancer synergistically; and this synergistic effect occurred more strongly in the non-obese subgroups.

Another influential lifestyle factor in our study is the opposed E + P use that contributes to the lifetime 
cumulative exposure to estrogen. Synthetic progestin is a well-established risk factor for breast cancer97–99, with 

Figure 1.   Overall analysis: the second stage of random survival forest (RSF) with 13 single-nucleotide 
polymorphisms and 12 behavioral factors selected from the first stage of RSF analysis. (A) Comparing minimal 
depth and VIMP rankings. (BMI, body mass index; E + P, exogenous estrogen + progestin; VIMP, variable of 
importance. 8 variables within the gold ellipse were identified as the most influential predictors). (B) Out-of-bag 
concordance index (c-index) (improvement in the out-of-bag c-index was observed when the top 8 variables 
[filled black circle] were added to the model, whereas other variables [open circle] did not further improve the 
accuracy of prediction)
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Table 3.   GMDR-based model for high-order gene–gene interactions in relation to breast cancer risk. 
BMI body mass index; CVC, cross-validation consistency; GMDR, generalized multifactor dimensionality 
reduction; MET, metabolic equivalent; SFA, saturated fatty acids; TBA, testing balance accuracy; WHR, 
waist-to-hip ratio; WST, waist circumference. Models in bold face are considered the best, with the highest 
TBA, 10/10 CVC, and p < 0.05. *The models have either the highest TBA or 10/10 CVC, without statistical 
significance. By placing a greater importance on 10/10 CVC, the best model was selected.

n Model TBA P value CVC

Overall

1 TRAIP rs2352975 0.5382 0.0010 10/10

2 TRAIP rs2352975, SALL1 rs10521222 0.5270 0.0010 8/10

3 TRAIP rs2352975, DUSP1 rs17658229, SALL1 rs10521222 0.5271 0.0547 5/10

4 TRAIP rs2352975, DUSP1 rs17658229, SALL1 rs10521222, APOC1 rs4420638 0.5249 0.0547 9/10

5 TRAIP rs2352975, DUSP1 rs17658229, SALL1 rs10521222, APOC1 rs4420638,
HLA-DQA1 rs9271608 0.5215 0.0107 10/10

Overall non-obese group, BMI < 30 kg/m2

1 APOC1 rs4420638 0.5179 0.1719 10/10

2 APOC1 rs4420638, SALL1 rs10521222 0.5244 0.1712 10/10

3 APOC1 rs4420638, SALL1 rs10521222, HLA-DQA1 rs9271608 0.4980 0.6230 10/10

Overall obese group, BMI ≥ 30 kg/m2

1 HNF1A-AS1 rs2243616 0.5551 0.0107 10/10

2 HNF1A-AS1 rs2243616, SALL1 rs10521222 0.5546 0.0107 9/10

3 HNF1A-AS1 rs2243616, DUSP1 rs17658229, SALL1 rs10521222 0.5533 0.0107 10/10

4 HNF1A-AS1 rs2243616, DUSP1 rs17658229, SALL1 rs10521222, HLA-DQA1 rs9271608 0.5510 0.0107 10/10

Non-viscerally obese group, WHR ≤ 0.85*

1 APOC1 rs4420638 0.4924 0.8281 9/10

2 DUSP1 rs17658229, APOC1 rs4420638 0.5058 0.6230 9/10

3 DUSP1 rs17658229, APOC1 rs4420638, SALL1 rs10521222 0.5009 0.6230 9/10

4 DUSP1 rs17658229, APOC1 rs4420638, SALL1 rs10521222, HLA-DQA1 rs9271608 0.4851 0.9453 10/10

Viscerally obese group, WHR > 0.85

1 TRAIP rs2352975 0.5306 0.1719 10/10

2 TRAIP rs2352975, SALL1 rs10521222 0.5233 0.3770 5/10

3 TRAIP rs2352975, SALL1 rs10521222, APOC1 rs4420638 0.5564 0.0547 10/10

4 TRAIP rs2352975, SALL1 rs10521222, APOC1 rs4420638, HLA-DQA1 rs9271608 0.5486 0.0547 10/10

Non-viscerally obese group, WST ≤ 88 cm

1 APOC1 rs4420638 0.5190 0.1719 10/10

2 APOC1 rs4420638, SALL1 rs10521222 0.5240 0.1719 10/10

3 APOC1 rs4420638, SALL1 rs10521222, HLA-DQA1 rs9271608 0.5047 0.3770 10/10

Viscerally obese group, WST > 88 cm

1 TRAIP rs2352975 0.5266 0.1719 10/10

2 TRAIP rs2352975, SALL1 rs10521222 0.5307 0.1719 10/10

3 TRAIP rs2352975, DUSP1 rs17658229, SALL1 rs10521222 0.5336 0.0547 10/10

4 TRAIP rs2352975, DUSP1 rs17658229, SALL1 rs10521222, HLA-DQA1 rs9271608 0.5291 0.1719 10/10

Active group, MET ≥ 10.0*

1 HLA-DQA1 rs9271608 0.4872 0.9453 6/10

2 HLA-DQA1 rs9271608, SALL1 rs10521222 0.4833 0.9893 10/10

Inactive group, MET < 10.0

1 SALL1 rs10521222 0.4727 0.9990 8/10

2 SALL1 rs10521222, HLA-DQA1 rs9271608 0.4796 0.8281 10/10

Low-fat diet group, % cal. from SFA < 9.0

1 SALL1 rs10521222 0.4346 0.9990 6/10

2 DUSP1 rs17658229, HLA-DQA1 rs9271608 0.4305 1.0000 4/10

3 DUSP1 rs17658229, HLA-DQA1 rs9271608, SALL1 rs10521222 0.4422 0.9990 10/10

High-fat diet group, % cal. from SFA ≥ 9.0

1 TRAIP rs2352975 0.5463 0.0010 10/10

2 TRAIP rs2352975, SALL1 rs10521222 0.5481 0.0010 10/10

3 TRAIP rs2352975, SALL1 rs10521222, HLA-DQA1 rs9271608 0.5458 0.0010 10/10
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an affinity for androgen and mineralocorticoid receptors, leading to cell proliferation and anti-apoptosis97,100. 
Further, the joint effect of E + P use with the SNPs was profound in the non-obese subgroups, suggesting com-
plementary pathways of sex hormones and obesity (i.e., the effect of sex hormones maximized in non-obese 
individuals with relatively lower hormone levels).

The amounts of daily dietary alcohol intake were obtained from self-reported food frequency questionnaires 
and then validated to be highly correlated with 1 month of food-diary records (r = 0.9)101. In addition, we confined 
our study population to non-Hispanic white postmenopausal women, limiting the generalizability of our study 
findings to other populations. Due to insufficient statistical power, we were unable to investigate the molecular 
subtypes of breast cancer. Despite several benefits from the 2-stage RSF multimodal and GMDR approaches, 
it can overfit the model owing to complicated analysis tasks, particularly in relatively small subgroups, so our 
results need to be replicated in an independent study with a large sample size.

Overall, in this study, the SNPs in proinflammatory cytokines previously identified as genome-wide signifi-
cant had a synergistic effect on breast cancer risk by combining with lifestyle factors, including alcohol intake, 

Figure 2.   Cumulative breast cancer incidence rate for the 9 most influential variables (5 SNPs and 4 behavioral 
factors) based on random survival forest analyses. (E + P, exogenous estrogen + progestin; SNPs, single-
nucleotide polymorphisms. Dashed red lines indicate 95% confidence intervals).
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lifetime cumulative exposure to estrogen, and obesity. Our findings warrant molecular biologic studies such 
as gene signature and aberrant cell signaling in relation to breast cancer in postmenopausal women who have 
a history of alcohol intake and estrogen use by different levels of obesity and related lifestyles. Our study may 
contribute to improved prediction accuracy and the ability to assess breast cancer risk, and suggest potential 
interventions for women who carry the risk genotypes, such as partial or absolute abstinence from alcohol intake, 
shorter duration of hormone therapy, and better weight control, potentially leading to an improved impact on 
the epigenetic aberrations and thus reducing the risk of breast cancer.

Table 4.   Stratification analysis by BMI and WHR: joint effect of dietary alcohol intake with combined risk 
genotypes and behavioral factors on breast cancer risk. BMI, body mass index; CI, confidence interval; 
E + P, exogenous estrogen + progestin; HR, hazard ratio; WHR, waist-to-hip ratio. Numbers in bold face are 
statistically significant. *p values were adjusted to correct for multiple testing via the Benjamini–Hochberg 
approach. a In the overall non-obese subgroup, dietary alcohol was classified by a cutoff of 18 g/day (< 18 
vs. ≥ 18); in the non-viscerally obese subgroup, dietary alcohol classified by a cutoff of 22 g/day (< 22 
vs. ≥ 22); b Multivariate regression for risk genotype analysis was adjusted by family income, BMI, waist and 
hip circumferences, depressive symptom, number of cigarettes per day, age at menopause, duration of oral 
contraceptive use, E + P use, % calories from protein, and dietary alcohol (in total analysis); for behavioral 
factor analysis, variables tested for stratification and joint effect were not included as covariates in the 
multivariate regression. c The number of risk genotypes was defined as follows: [BMI < 30 subgroup] 0 (none 
or 1 risk allele) vs. 1 (2 risk alleles); [WHR ≤ 0.85 subgroup] 0 (none or 1/2/3 risk alleles) vs. 1 (4 risk alleles). 
d The number of behavioral factors was defined as follows: [BMI < 30] 0 (null risk behavior) vs. 1 (1 or more 
risk behaviors); [WHR ≤ 0.85] 0 (null risk behavior) vs. 1 (1 risk behavior) vs. 2 (2 or more risk behaviors). 
e The combined number of risk genotypes and behavioral factors was based on risk genotypes defined as 0 (low 
risk) and 1 (high risk) and based on behavioral factors defined as 0 (low risk) and 1 (high risk). The ultimate 
number of risk genotypes combined with behavioral factors was defined as 0 (low risk for genotypes and 
behaviors), 1 (high risk for either genotypes or behaviors), and 2 (high risk for both genotypes and behaviors).

n

Total

n

Low dietary alcohol intakea

n

High dietary alcohol intakea

HRb (95% CI) p* HRb (95% CI) p* HRb (95% CI) p*

Overall non-obese group, BMI < 30 kg/m2 (n = 7179)

Risk genotypes (SALL1 rs10521222 TT and APOC1 rs4420638 GG)c

 0 Reference 2052 Reference 229 1.54 (0.72–3.29) 0.263

 1 2.38 (1.77–3.21) 1.21e−08 4380 2.38 (1.72–3.29) 1.75e−07 518 3.86 (2.53–5.88) 3.31e−10

Behavioral factors (oral contraceptive use, E + P, and dietary alcohol intake)d

 0 Reference 4284 Reference 502 1.52 (1.00–2.31) 0.049

 1 1.80 (1.44–2.25) 2.73e−07 2148 1.72 (1.34–2.19) 1.56e−05 245 3.14 (2.06–4.78) 9.46e−08

Risk genotypes combined with behavioral factorse

 0 Reference 1354 Reference 161 2.23 (0.83–6.04) 0.113

 1 3.17 (1.94–5.16) 3.59e−06 3628 3.22 (1.97–5.24) 2.83e−06 409 4.42 (2.40–8.15) 1.96e−06

 2 5.51 (3.36–9.03) 1.30e−11 1450 5.13 (3.09–8.53) 2.69e−10 177 10.12 (5.46–18.78) 2.13e−13

p trend 1e−15

Non-viscerally obese group, WHR ≤ 0.85 (n = 7251)

Risk genotypes (DUSP1 rs17658229 CC, HLA-DQA1 rs9271608 GG, SALL1 rs10521222 TT, and APOC1 rs4420638 GG)c

 0 Reference 4022 Reference 300 1.22 (0.65–2.28) 0.530

 1 2.75 (2.21–3.41)  < 2e−16 2744 2.59 (2.06–3.25) 4.22e−16 185 5.41 (3.55–8.23) 3.28e−15

Behavioral factors (oral contraceptive use, E + P, hip circumference, and dietary alcohol intake)d

 0 Reference 2179 Reference 192 1.64 (0.81–3.33) 0.168

 1 1.63 (1.19–2.24) 0.002 3027 1.62 (1.17–2.23) 0.003 204 3.02 (1.78–5.13) 4.37e−05

 2 2.68 (1.89–3.78) 2.43e−08 1560 2.50 (1.74–3.61) 8.08e−07 89 4.10 (2.11–7.99) 3.31e−05

Risk genotypes combined with behavioral factorse

 0 Reference 1360 Reference 127 1.86 (0.54–6.35) 0.325

 1 3.26 (1.96–5.43) 5.68e−06 3481 3.33 (1.99–5.56) 4.26e−06 238 4.43 (2.16–9.05) 4.65e−05

 2 7.05 (4.22–11.77) 8.29e−14 1925 6.60 (3.93–11.08) 8.82e−13 120 14.74 (7.71–28.19) 4.14e−16

p trend  < 2e−16
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Data availability
The data that support the findings of this study are available in accordance with policies developed by the NHLBI 
and WHI in order to protect sensitive participant information and approved by the Fred Hutchinson Cancer 

Figure 3.   Forest plot of the joint effect of E + P use with risk behavioral factors and genotypes on breast cancer 
risk overall and in subgroups (A BMI < 30 and WHR ≤ 0.85; B MET ≥ 10 and SFA ≥ 9). The plot shows the 
independent and combined effect of risk behaviors and genotypes on breast cancer risk, jointly testing with E + P 
use, presented as the 95% CIs (indicated with red lines) and the estimates (proportional to the size of the blue 
squares). BMI, body mass index; CI, confidence interval; E + P, E + P, exogenous estrogen + progestin; HR, hazard 
ratio; MET, metabolic equivalent; SFA, saturated fatty acids; WHR, waist-to-hip ratio. * The combined number 
of risk genotypes and behavioral factors was based on risk genotypes defined as 0 (low risk: none or < total 
number of risk alleles) and 1 (high risk: combined all risk alleles) and based on behavioral factors defined as 0 
(low risk: null risk behavior) and 1 (high risk: 1 or more risk behaviors). The ultimate number of risk genotypes 
combined with behavioral factors was defined as 0 (low risk for genotypes and behaviors), 1 (either high risk 
for genotypes or behaviors), and 2 (both high risk for genotypes and behaviors). ** The number of behavioral 
factors was defined as 0 (null risk behavior) vs. 1 (1 risk behavior) vs. 2 (2 or more risk behaviors).
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Research Center, which currently serves as the IRB of record for the WHI. Data requests may be made by email-
ing helpdesk@WHI.org.
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