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Abstract: The measurement of DNA adducts provides important information about human exposure
to genotoxic chemicals and can be employed to elucidate mechanisms of DNA damage and repair.
DNA adducts can serve as biomarkers for interspecies comparisons of the biologically effective dose
of procarcinogens and permit extrapolation of genotoxicity data from animal studies for human
risk assessment. One major challenge in DNA adduct biomarker research is the paucity of fresh frozen
biopsy samples available for study. However, archived formalin-fixed paraffin-embedded (FFPE)
tissues with clinical diagnosis of disease are often available. We have established robust methods to
recover DNA free of crosslinks from FFPE tissues under mild conditions which permit quantitative
measurements of DNA adducts by liquid chromatography-mass spectrometry. The technology is
versatile and can be employed to screen for DNA adducts formed with a wide range of environmental
and dietary carcinogens, some of which were retrieved from section-cuts of FFPE blocks stored at
ambient temperature for up to nine years. The ability to retrospectively analyze FFPE tissues for
DNA adducts for which there is clinical diagnosis of disease opens a previously untapped source of
biospecimens for molecular epidemiology studies that seek to assess the causal role of environmental
chemicals in cancer etiology.

Keywords: carcinogen; DNA adducts; biomonitoring; formalin-fixed paraffin-embedded tissues;
biomarker; mass spectrometry

1. Metabolism, Bioactivation, and DNA Adducts as Biomarkers of Exposure and Health Risk

1.1. Xenobiotic Metabolism and Bioactivation of Procarcinogens

Humans are continuously exposed to potentially hazardous chemicals in the environment, diet,
medicines, and through occupational exposures. Many of these chemicals undergo biotransformation
by phase I and/or phase II enzymes to produce reactive electrophiles that can form adducts
with macromolecules [1]. Cytochrome P450s (P450s) are by far the most important Phase I
enzymes involved in xenobiotic metabolism [2]. P450s catalyze a variety of reactions, including
aliphatic and aromatic hydroxylation, N- or O-dealkylation, aliphatic desaturation, hetero atom
oxidation, and epoxidation reactions [2]. The resulting metabolites can contain functional groups
such as –OH, –NH2, and –SH which can undergo conjugation reactions by phase II enzymes,
including UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), N-acetyltransferases
(NATs), glutathione S-transferases (GSTs), and methyltransferases [3].

While many Phase I metabolites are detoxification products, some oxidative metabolites are
reactive electrophiles, which can induce toxicity or genotoxicity by covalently binding to protein or
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DNA, or generate free radicals that deplete cellular antioxidants and induce oxidative stress [4,5].
In a similar vein, many phase II enzyme reactions are regarded as detoxification pathways, and the
resulting metabolites are efficiently eliminated from the body. However, in some cases, reactive
intermediates are generated, and the metabolites can bind to proteins and DNA. The O-acetylation or
O-sulfation of aromatic amines and heterocyclic aromatic hydroxylamines [6], glutathione conjugation
of ethylene dibromide [7], O-sulfation of hydroxymethyl polycyclic aromatic hydrocarbons [8], and the
acyl glucuronidation of carboxylic acid moieties of nonsteroidal anti-inflammatory drugs (NSAIDs) [9]
are examples of conjugation reactions leading to reactive intermediates. The metabolic activation of
rodent and possible human carcinogens including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
(PhIP) [10], aristolochic acid I (AA-I) [11], 5-methylchrysene [12,13] and tamoxifen [14,15], are shown
as examples of procarcinogens that require phase I and/or II enzymes to produce penultimate species
that bind to DNA (Figure 1).

Figure 1. The metabolic activation of aristolochic acid I (AA-I), 2-amino-1-methyl-6-phenylimidazo[4,5-
b]pyridine (PhIP), 5-methylchrysene, and tamoxifen are shown as prototypes of procarcinogens.
Bioactivation is carried out with phase I and/or phase II enzymes, which lead to the formation
of DNA adducts. AA-I undergoes nitro-reduction through NAD(P)H:quinone oxidoreductase (NQO1),
cytochrome P450s 1A1 and 1A2, NADPH:P450 reductase (POR) or prostaglandin H synthase (COX).
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The resulting N-hydroxyaristolactam-I is bioactivated by SULTs to form an unstable N-sulfoxy
ester, which quickly undergoes heterolytic cleavage to produce the reactive nitrenium/carbenium
intermediate that forms dA-AL-I and other DNA adducts. PhIP undergoes N-hydroxylation
by P450s, then it is further bioactivated by NATs or SULTs to form N-acetoxy or
N-sulfoxy esters, which lead to the formation of dG-C8-PhIP through the nitrenium
intermediate. 5-Methylchrysene undergoes epoxidation (P450s 1A1 and 1B1) followed by epoxide
hydroxylation (epoxide hydrolase) on the bay-region phenyl ring, to form the corresponding
trans-1,2-dihydrodiol-5-methylchrysene. A subsequent round of monooxygenation leads to the
formation of anti-1,2-dihydrodiol-3,4-epoxide-5-methylchrysene, which can form a DNA adduct at
the N2-atom of dG (dG-N2-5-methylchrysene-diolepoxide). Two pathways are involved in the DNA
adduct formation of the bioactivated tamoxifen. In the first pathway, oxidation of the allylic ethyl
side chain results in the formation of α-hydroxytamoxifen. The subsequent esterification catalyzed
by SULTs leads to the reactive carbenium intermediate and the dG-N2-α-hydroxytamoxifen adduct.
The second pathway involves aryl-oxidation of one of the phenyl rings to yield 4-hydroxytamoxifen
quinone methide, a reactive electrophile that can form the DNA adducts. Both pathways lead to (Z)- or
(E)-dG-N2-4-hydroxytamoxifen.

Rodents are often employed as experimental laboratory animals to study metabolism of hazardous
chemicals, to screen for DNA adduct formation, and elucidate mechanisms of carcinogenesis [5].
The metabolism of carcinogens and their biological effects in animal models can differ from humans
because of species differences in catalytic activities of phase I and II enzymes involved in bioactivation
or detoxification [10,16–18]. Thus, animal carcinogen bioassay data may not accurately gauge health
risk of some chemicals in humans. However, DNA adducts of carcinogens, which are measures of
the biologically effective dose, can serve as biomarkers for the extrapolation of genotoxicity data from
animal studies for human risk assessment [19,20].

Epidemiological studies have reported that exposures to different chemicals in the diet and
environment, or lifestyle factors, such as tobacco usage and alcohol consumption, are linked to the
increased risk of developing certain types of cancers. As examples, polycyclic aromatic hydrocarbons
(PAHs) in cigarette smoke are linked to lung cancer [21]; occupational exposures to aromatic amines
are linked to bladder cancer [21,22]; usage of traditional Chinese herbal medicines containing AA-I are
linked to upper urothelial cancer [23,24]; and consumption of aflatoxin B1 (AFB1) produced by fungi
on agricultural crops, is a risk factor for liver cancer [25,26].

The identification and quantitation of DNA adducts is a first step in elucidating the potential
role of a genotoxic chemical in the etiology of cancer [19,20]. The identification DNA adducts in
human tissues are likely to represent a combination of recent and longer-term exposures to certain
hazardous chemicals. The interpretation of negative findings, or the absence of DNA adducts, must be
done with caution, since many adducts can undergo repair [27]. Ideally, the biomonitoring of DNA
adducts should be conducted when the multistage process of tumorigenesis began, rather than
many years later when the cancer is diagnosed. However, life-style factors such as tobacco smoking,
diet, and environmental pollution often represent long-term exposures, and current adduct levels of
carcinogens from these exposures are likely to correlate with adduct levels that existed during the time
of tumor initiation and progression.

1.2. Methods to Measure DNA Adducts

The measurement of DNA adducts in humans is a challenging analytical task because
the levels of DNA adducts generally occur at less than one adduct per 107 nucleotides,
and the amount of tissue available for measurement is limited. Even for blood, a readily
accessible biofluid, the amount of DNA obtained is usually a few up to several tens of
micrograms scale. Thus, highly sensitive and specific methods are required to measure DNA
adducts in humans. During the past three decades, the major techniques employed to measure
DNA adducts have been 32P-postlabeling [28,29], antibody-based immunoassay/immunohistochemistry
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(IHC) [30,31], gas chromatography-mass spectrometry (GC-MS) [32], and most recently, liquid
chromatography-mass spectrometry (LC-MS) [33–37].

32P-postlabeling is a highly sensitive method to detect DNA adducts. The DNA is enzymatically
digested to 3′-phospho-2′-deoxyribonucleotides, and 32P-orthophosphate from [γ-32P] ATP is
transferred to the 5′-OH position of the 2′-deoxyribonucleotide adduct, by polynucleotide kinase.
The adducted 5′-32P-labeled nucleotides are resolved by multi-dimensional thin-layer chromatography
with polyethylenimine-modified cellulose plate, or by polyacrylamide electrophoresis, using
autoradiography for detection, or by HPLC with radiometric detection [28,29,38,39]. The assay only
requires 1–10 µg of DNA, and the sensitivity for some adducts can reach a limit of detection as low
as one adduct per 1010 nucleotides [29]. Studies in rodents and humans employing 32P-postlabeling
methods have shown that many genotoxic chemicals undergo metabolism and covalently adduct to
DNA in many organs [29,40,41]. However, there are several limitations of the 32P-postlabeling assay.
The technique is labor intensive and its usage requires large amounts of hazardous phosphorous
radioactivity. Moreover, the technique is not quantitative [42], and structural information about
the identity of the adduct is uncertain, particularly in humans where many overlapping lesions are
present [29,40]. Thus, epidemiology studies employing 32P-postlabeling often provide equivocal data
about chemical exposures linked to DNA adducts and cancer risk [43–46].

Immunodetection relies on the generation of monoclonal or polyclonal antibodies raised against
modified-DNA adducts coupled to carrier proteins, or carcinogen-treated DNA, where usually very
high levels of modification, about one modified base to 100 nucleotides, are required for successful
generation of a titer [30,47]. The sensitivity of the method depends on the affinity of the antibody,
but a detection limit of about one adduct per 108 nucleotides for certain DNA adducts can be reached,
when detected by fluorescence or chemiluminescence spectroscopy [48,49]. IHC detection of DNA
adducts in tissue section-cuts mounted on slides is generally less sensitive than immunoassays
performed on isolated DNA; however, IHC allows the visualization of the DNA adduct within specific
cell types of a tissue, and is especially suitable for archived human formalin-fixed paraff in-embedded
(FFPE) tissues (Section 3) [50]. Cross-reaction of the antibody with DNA adducts of similar structure or
cellular components can occur [30,31], which raises concerns about the specificity of the methodology.
Immunodetection methods have made significant contributions to the biomonitoring of DNA adducts;
however, similarly to the 32P-postlabeling method, immunodetection does not provide structural
information to confirm adduct identity, and the method is semi-quantitative.

GC-MS with electron impact ionization, and more recently, negative ion chemical ionization has
been employed to measure DNA adducts (primarily used for oxidized DNA bases) where adduct
structures can be corroborated from the MS fragmentation spectra [32]. Often, the DNA is hydrolyzed
with formic acid or by elevated temperature under neutral pH conditions. Most DNA adducts require
chemical derivatization to increase the volatility required for GC analysis. The derivatization process
can complicate the analysis and introduce artifact formation, particularly for oxidized DNA base
measurements [51]. In contrast, the online coupling of capillary electrophoresis or LC to electrospray
ionization (ESI) MS is a breakthrough technology that can measure many DNA adducts which would
otherwise undergo thermal decomposition by GC-MS [52].

Currently, LC-ESI-multistage MS (MSn) is the predominant platform for DNA
adduct analyses [33,35,37,53]. The rapidly advancing technologies in LC-MS instrumentation
have attained ultra-high sensitivity and selectivity, particularly with ion trap and high resolution
accurate mass spectrometry (HRAMS). These platforms include the coupling of nano-flow
chromatography and nanoESI source, and versatile and flexible scanning strategies. The detection of
DNA adducts at levels as low as one per 1011 nucleotides have been reported using a hybrid Orbitrap
MS [54]. Both targeted and non-targeted MS scan approaches have been employed to identify many
DNA chemical modifications [35–37,55–58].

The DNA is typically digested with a cocktail of nucleases prior to adduct measurements
by LC-MS. The digestion products contain adducts formed at the DNA bases of the
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2′-deoxyribonucleosides, or in rarer cases, adducts are formed at the phosphate backbones [59,60].
A common feature for many DNA adducts is their tendency to lose the deoxyribose moiety (dR, 116 or
116.0473 Da in HRAMS), when subjected to collision-induced dissociation (CID) [61]. The transition
between the adduct precursors ([M + H]+) and their aglycones after losing dR ([M + H − 116]+)
is commonly targeted to detect and quantify DNA adducts in MSn. The constant neutral loss of
molecules, such as dR from the 2′-deoxyribonucleosides, serves as the foundation of the “DNA
adductomics” approach [37,55,56,62,63]. Figure 2 shows the fragmentation pathways of modified
nucleosides, where the major ions are the chemically modified bases after neutral loss of dR, or in less
frequent cases the bases are eliminated as the neutral fragment and the carcinogen moieties retain
the charge. These types of MS transitions are usually monitored in the targeted and un-targeted
approaches by LC-MS [58,63].

Figure 2. The fragmentation pathways of modified nucleosides analyzed by LC-MS. (A) The major
fragmentation of the modified nucleosides is the neutral loss of deoxyribose. Other common
fragmentations include (B) the neutral loss of base and (C) the neutral loss of the adduct with the
formation of base ions [58].

2. Overview and the History of Formalin Fixation Process

While great strides have been made in the detection of DNA adducts in humans, fresh tissues
obtained from biopsies or post-mortem are often not available. The paucity of fresh tissue specimens
has hampered the advancement of DNA adduct biomonitoring in human studies. However, archived
FFPE tissue specimens with clinical diagnosis of disease are a largely untapped biospecimen and often
available for DNA adduct biomarker research.

Formalin, 10% neutral buffered formaldehyde solution, is the most commonly used
fixative worldwide [64]. During the process of formalin fixation, formaldehyde undergoes
multiple steps of reactions with cellular nucleophilic species to form molecular crosslinks [64,65].
Formaldehyde permeates through the tissue, and the nucleophilic moieties of amino acids and
nucleobases attack the formaldehyde yielding unstable intermediates of methylol adducts and Schiff
bases [65]. These intermediates are stabilized by forming methylene bridges with a second nucleophilic
group, often on another molecule. The methylene bridges formed with DNA and protein are stable
crosslinks at room temperature (Figure 3); however, the linkages are reversible by heat treatment
and/or under alkaline pH [66,67]. The reversal rate of the crosslink increases exponentially as
a function of temperature [66]. The efficacy of reversal of formaldehyde-mediated crosslinks is
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the most critical feature that impacts the quantitative analysis of RNA, DNA, and protein biomarkers
in FFPE tissues.

Figure 3. The reactions of formaldehyde mediated crosslinking of DNA and protein. Formaldehyde diffuses
through tissue and reacts with a nucleophilic sites of protein and/or DNA base resulting in unstable
intermediates of methylol and Schiff base. Then, a second nucleophile from inter- or intramolecular DNA
or protein attacks the Schiff base resulting in a crosslinked complex. A specific example of a protein-DNA
crosslink is shown. The atoms are color coded: cyan, protein; red, formaldehyde; and black, DNA.
Reproduced with permission from [65]. Copyright ASBMB, 2015.

Technical Challenges and Breakthrough Technology in DNA Recovery from FFPE Tissues

FFPE tissues are now widely used in high throughput genomic [64,68–71], proteomics [72–74],
and to a lesser extent, metabolomics studies [75,76]. The crucial step in these applications is the
quantitative extraction of the molecules of interest. In genomic sequencing studies, the conventional
method of DNA isolation from FFPE tissues has often employed elevated temperature (up to 100 ◦C)
and alkaline pH (>9) to achieve a complete reversal of crosslinks. Many automated methods employed
in cancer genomics still use elevated temperature to isolate DNA from FFPE tissues. The recovered
DNA can serve as a template for PCR amplification. However, these harsh conditions can cause
oxidation of nucleobases or depurination of chemically-modified nucleobases, and thus, are not
compatible for quantitative measurements of DNA adducts. Moreover, even though formalin-fixation
is the most common method of tissue preservation world-wide, the conditions of fixation can vary in
different laboratories. A prolonged time of tissue preservation in formalin results in over-fixation of the
tissue and leads to inefficient hydrolysis of crosslinks between DNA and protein. Therefore, the yield
and quality of the recovered DNA is decreased [77–79]. Thus, the development of robust analytical
methods to quantitatively recover DNA adducts from FFPE tissue has been a challenging endeavor.

3. Measurement of DNA Adducts in FFPE Tissues by IHC, 32P-Postlabeling, and LC-MS

3.1. IHC Detection of DNA Adducts

FFPE specimens are often used for immunodetection of DNA adducts, most commonly by IHC
methods [30,80]. In contrast to mass spectrometry-based methods, which break down the DNA
to the mono 2′-deoxyribonucleoside or DNA base (vide supra), IHC methods employ intact DNA.
The detection of DNA damage can be carried out on either fixed cells such as lymphocytes, exfoliated
oral or bladder cells, or with FFPE tissue section-cuts. The cells or FFPE tissue section-cuts are mounted
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on glass slides for IHC analysis. Procedures are often used to increase the accessibility of the antibody
to the carcinogen DNA adduct to increase the sensitivity of the assay. These procedures can include
treatment with proteases to remove histone and other proteins from the DNA, followed by treatment
with RNase to eliminate potential cross-reactivity with RNA adducts. Mild acid or base treatment
also may be performed to denature the DNA and further increase the accessibility of the antibody
to the adduct. It is imperative that the adduct is stable to the denaturing treatment conditions for
validation of the IHC technique. The two most commonly used detection systems for visualization of
DNA adduct-antibody complexes are immunofluorescence or chromophores, where the secondary
antibody is tagged with a chemically conjugated fluorophore, a peroxidase or alkaline phosphatase
enzyme. [30,81].

Table 1 summarizes examples of IHC detection of DNA adducts in FFPE tissues. Santella’s group
detected and quantified DNA adducts of 4-aminobiphenyl (4-ABP), an aromatic amine and a human
bladder carcinogen that is formed in tobacco smoke [21,22], and also occurs as a contaminant in
some commercial hair dyes [82]. 4-ABP-adducted DNA was detected in uroepithelium of bladder
cancer patients [83]. The level of the 4-ABP adduct was correlated with the smoking status and
p53 overexpression, a response to DNA damage. There was linear relationship between the relative
degree of DNA adduct staining and the number of cigarettes smoked. The same group also detected
DNA adducts of polycyclic aromatic hydrocarbons (PAHs) in archived breast tissues sections using
polyclonal antiserum [84,85]. PAHs are incomplete combustion products of organic matter and found
in cereal and grain products, some oils, and also found in charred meat and tobacco smoke [42].
PAHs have been linked to human cancers at multiple sites [21]. The most well studied PAH is
benzo[a]pyrene (B[a]P), a human lung carcinogen found as an environmental pollutant, and it also
occurs in tobacco smoke, and charred meat [42,86]. The Poirier laboratory developed an antibody raised
against DNA modified with r7,t8-dihydoxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) [87],
which later was shown to cross-react with other structurally similar diol-epoxide-PAH-DNA
adducts [88]. This PAH-DNA antiserum has been used to screen for DNA adducts in FFPE tissues
from human esophagus [81,89], prostate [90], cervix [91], vulva [47], and placenta [80]. A significantly
higher level of staining of presumed B[a]P adducts was found in benign breast disease in comparison
to the cancerous tissues of patients, possibly due to cellular proliferation and dilution of the adduct in
cancerous tissue [84,85]. Rundle et al. employed IHC to measure PAH-DNA adducts and examined
the associations with alcohol consumption and the influence of GSTM1 genotype on DNA adduct
formation in FFPE breast tissues [92]. Subjects harboring the GSTM1-null genotype, which lacks the
expression of GTSM1, an enzyme that detoxicates PAH diol-epoxides [93], had increased levels of
DNA adducts among current alcohol consumers, but not among nondrinkers. In contrast, in benign
tissues from controls, no association was observed between genotype and adduct levels, regardless
of drinking status. Poirier also analyzed tamoxifen-DNA adducts in rat hepatocytes by IHC [94].
A steady increase in adduct levels was observed with chronic exposure.

Shirai et al. developed polyclonal antibodies against DNA adducts of 3,2′- dimethyl-4-aminobiphenyl
(DMAB), an aromatic amine that induces tumors at multiple sites in rodent models, and PhIP,
a probable human carcinogen formed in cooked meat that induces tumors in colorectum and prostate
of rodents [95–97]. Dose-related nuclear staining was observed in various acetone-fixed tissues of
rodents 24 h after single exposure of DMAB or PhIP. Using the same polyclonal serum, putative
DNA adducts of PhIP were detected, by IHC, at high frequency in mammary tissue of women
with breast cancer [98] and in prostate tissue of men with prostate cancer [99]. However, these
results are at odds with specific mass spectrometry-based methods, where PhIP DNA adducts were
detected at considerably lower frequency and at much lower levels of DNA modification in both
tissues [100,101]. The discrepancy between the estimates of the PhIP DNA adduct reported by MS
and IHC methods suggest the possible cross-reactivity of the polyclonal antibodies with other DNA
adducts of similar structure or endogenous cellular components. There is a need to cross-corroborate
the identities and levels of DNA adducts measured by IHC and specific MS-based methods. Aoshiba
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and coworkers raised antibodies against 8-hydroxy-2′-deoxyguanosine (8-OHdG), an oxidative DNA
adduct, and 4-hydroxy-2-nonenal (4-HNE), a lipid peroxidation adduct, to evaluate the oxidative
stress induced by cigarette smoke in paraffin-embedded pulmonary epithelial cells of mice [102].
There was a dramatic increase in the intensity of signals one hour post cigarette smoke exposure,
compared to pre-exposure, which confirmed the causal role of cigarette smoking in oxidative damage
to respiratory epithelium.

Table 1. Examples of DNA adducts detected in FFPE tissues.

Detection
Methods DNA Adducts Detected Tissues LOD

(Per 108 Nucleotides) References

IHC

4-ABP-DNA Human bladder NR a [83]

PAH-DNA

Human breast NR a [84,85,92]

Human esophagus NR a [81,89]

Human prostate 8 [90]

Human cervix 20 [91]

Human vulva 8 [47]

Human placenta 20 [80]

DMAB-DNA Rat multiple tissues NR a [96]

PhIP-DNA
Human prostate tissue
transplanted to mice NR b [96]

Rat multiple tissues NR b [97]

8-OHdG Mouse pulmonary
epithelial cells NR a [102]

Tamoxifen-DNA Rat hepatocytes 10 [94]
32P-postlabeling B[a]P-DNA, 2-AAF-DNA Rat multiple tissues NR c [103]

LC-MS3 dA-AL-I Mouse liver and kidney,
human kidney 0.1 [79,104]

dG-C8-4-ABP/PhIP, dG-N2-BPDE,
O6-Me-dG and O6-POB-dG

Rodent multiple tissues 0.2–0.5 [105]

LC-HR-MS2 dG-C8-PhIP Human prostate 0.13 [101]

dG-C8-4-ABP Human bladder 0.2 [55]
a Adduct levels were reported as relative nuclear stain intensity; b Adduct levels were reported as a percentage
of positive cells; c LOD was reported in the citation, which was one per 1010 nucleotides employing 10 µg DNA.
NR: Not reported.

3.2. DNA Measurements in FFPE Tissues by 32P-Postlabeling

There is only one report employing 32P-postlabeling to detect DNA adducts in FFPE tissues [103].
In that study, rat tissues were fixed in formalin and embedded in paraffin after dosing with
B[a]P or 2-acetylaminofluorene (2-AAF). DNA was extracted from fixed tissues using a modified
phenol-chloroform method [106]. The levels of DNA adduct recovered from FFPE tissues were
significantly lower than the levels obtained from fresh frozen tissues. The authors concluded that
FFPE tissues could be used to screen for DNA adducts but that adduct levels may be underestimated
particularly with prolonged time of fixation in formalin.

3.3. Measurement of DNA Adducts in FFPE Tissues of Rodents and Human by LC-MS

The physio-chemical data provided by MS for proof of DNA adduct structure combined with
the robust quantitation and high sensitivity makes MS the technique of choice for DNA adduct
biomarker measurements. The DNA adducts must be stable towards both the formalin fixation
and DNA retrieval processes. Furthermore, the DNA must be fully digestible by nucleases to
monodeoxyribonucleosides. Until recently, the recovery of high quality DNA completely devoid
of formalin crosslinks was difficult to achieve under mild hydrolysis conditions. However, commercial
kits from several vendors now employ mild retrieval conditions at neutral pH to reverse the crosslinks
of FFPE DNA. The DNA recovered was shown to be successfully employed as templates for
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amplification by PCR. We tested commercial kits from several vendors and found the FFPE miniprep
kit from Zymo Research (Irvine, CA, USA), with some modifications in manufacturer’s protocol,
provided high quality DNA that was fully digestible by nucleases [79,101,105].

Our laboratory established a method to isolate DNA from FFPE liver and kidney tissues
of C57BL/6J mice, using aristolochic acid I (AA-I) as the model carcinogen [79,104]. AA-I is
an upper urinary tract human carcinogen found in Aristolochia plants, some of which have been
used in traditional Chinese herbal medicines [79,104]. DNA was isolated from freshly frozen
tissue by the phenol-chloroform method, and DNA from FFPE tissue was isolated with the
FFPE miniprep kit (Zymo Research). AA-I DNA adducts were measured by ultra-performance
liquid chromatography-electrospray ionization-ion trap-multistage MSn scanning (UPLC-ESI-IT-MS3).
Across all dosing levels, the amounts of AA-I DNA adduct in DNA from FFPE tissues were comparable
to those of matching freshly frozen tissues (Figure 4) [104].

Figure 4. Mean level of dA-AL-I adducts present in mouse kidney and liver following treatment
with AA-I (0.001−1 mg/kg body weight). Adduct levels measured in freshly frozen and FFPE
mouse kidney (# and ) and liver (� and �) (mean adduct level, SD, N = 4 animals per dose,
quadruplicate measurements per animal) were plotted as a function of dose. The overall mean
difference in adduct levels between freshly frozen and FFEP kidney and liver tissues across all doses
was 21 ± 14% (mean ± SD). dA-AL-I adduct formation was below the limit of detection in liver of
mice dosed with AA-I at 0.001 mg/kg body weight. Mean levels of dA-AL-I adducts were significantly
statistically different between freshly frozen and FFPE kidney or liver at the following dose treatments of
AA-I: kidney, 1 mg/kg, p = 0.03; liver, 0.1 mg/kg, p = 0.01; unpaired two-tailed t-test. Reproduced with
permission from [104]. Copyright ACS, 2013.

Then, we examined the effect of duration of formalin fixation on the recovery of DNA and the level
of DNA adducts in rodents treated with AA-I [79]. The yield of DNA retrieved from formalin-fixed
tissues decreased as a function of fixation time, and only 30% of DNA was recovered from FFPE tissues
after one week of fixation in formalin compared to the freshly frozen tissues. However, the DNA
retrieved was completely digested by nucleases and the levels of AA-I DNA adduct were relatively
constant between the freshly frozen tissues and FFPE tissues. DNA fragments of 184 and 327 bp
extracted from FFPE tissues were readily amplified by PCR, and the quality of sequence data was
comparable to that obtained from DNA obtained of fresh frozen tissues [79]. Our findings demonstrate
that the DNA can be recovered from FFPE tissue to analyze DNA adducts of AA-I in FFPE tissue,
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and adducts of AA-I or other carcinogens may be correlated with mutational signatures induced in
tumor tissue.

Thereafter, we sought to determine if our method of DNA adduct retrieval from
FFPE tissues could be employed to measure DNA adducts of other environmental and
dietary genotoxicants. We examined DNA adducts of four important classes of environmental
and dietary carcinogens: PAHs (B[a]P), aromatic amines (4-ABP), HAAs (PhIP), and N-nitroso
compounds 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which is found in tobacco
and a lung carcinogen [21,107]. The major DNA adducts of these carcinogens studied were:
10-(2′-deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-N2-B[a]PPDE),
N-(2′-deoxyguanosin-8-yl)-4-ABP (dG-C8-4-ABP), N-(2′-deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP),
O6-[4-oxo-4-(3-pyridy)-butyl]-2′-deoxyguanosine (O6-POB-dG), O6-methyl-2′-deoxyguanosine
(O6-methyl-dG) (Figure 5) [105]. All of these adducts and dA-AL-I were measured by UPLC-ESI-IT-MS3

with the stable isotope dilution method. The levels of DNA adducts in FFPE tissues of rodents
preserved in formalin for 24 h were at levels comparable to those levels measured in freshly frozen
tissues [105].

Figure 5. Structures, names, and abbreviations of carcinogens and their adducts used for quantitation of
multiclass carcinogenic DNA adducts in freshly frozen and FFPE tissues of rodents. Reproduced with
permission from [105]. Copyright ACS, 2016.
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The recent improvements in sensitivity of mass spectrometry instrumentation has allowed us to
use only 10 to 20 mg of tissue to screen for DNA adducts of environmental and dietary carcinogens
in human biopsy samples [100,101,104]. We sought to determine if DNA extraction kits devoted to
genomics, such as the FFPE miniprep kit from Zymo Research, could be employed to screen for DNA
adducts in human FFPE biospecimens. We applied the method of DNA isolation to assay tissue
section-cuts of human FFPE kidney specimens (1.5 cm2 × 10 µm) from the patients with upper urinary
tract carcinoma, who were exposed to AA-I [79,104]. The levels of AA-I DNA adduct measured in
FFPE tissues were comparable to those of matching frozen tissues (Figure 6). Some of these FFPE
blocks had been stored at room temperature for four to nine years. This was the first report of
quantitative measurement of a carcinogen DNA adduct in human FFPE tissue by mass spectrometry.
We subsequently showed that DNA adducts of PhIP can be recovered in high yield from human FFPE
prostate tissue blocks of prostate cancer patients stored at room temperature for at least 6 months
(Figure 7) [101,108]. These findings show that FFPE tissues can be used to retrospectively screen for
multiple classes of carcinogen DNA adducts.

Figure 6. Extracted ion chromatograms of dA-AL-I from human kidney cortex of patients with upper
urothelial cancer from Taiwan at levels (A) below the LOQ, and positive samples at (B) 0.4 adducts,
and (C) 5.9 adducts per 108 bases. The product ion spectra of dA-AL-I obtained from panel C is
depicted in (D) along with the internal standard [15N5]-dA-AL-I (E, 15N labels of the internal standard
of dA-AL-I are depicted with asterisks). Insert (F) dA-AL-I adduct levels in matching fresh frozen
and FFPE kidney samples, containing both renal cortex and medulla, obtained from 11 individuals
residing in endemic regions of Croatia and Serbia who underwent nephroureterectomy for upper
urothelial cancer. Reproduced with permission from [104]. Copyright ACS, 2013.
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Figure 7. Extracted ion chromatograms of dG-C8-PhIP and 13C-labeled dG-C8-PhIP of DNA from
fresh frozen and FFPE human prostate tissues at the MS3 scan stage. (A) Fresh frozen prostate and
(B) paired FFPE block of a patient who was negative for dG-C8-PhIP; (C) fresh frozen prostate and
(D) paired FFPE block of a patient who was positive dG-C8-PhIP at MS3 scan stage. The structure and
proposed fragmentation mechanism of aglycone of dG-C8-PhIP are depicted fresh frozen prostate and
(D) paired FFPE block of a patient who was positive for dG-C8-PhIP. (E) The product ion spectra at
MS3 of unlabeled and 13C-labeled dG-C8-PhIP are shown. (F) Levels of dG-C8-PhIP in paired fresh
frozen prostate and FFPE blocks of six patients are shown in (G). The levels of adducts are reported as
adducts per 108 nucleotides. * p < 0.05; n.s., statistically not significant. Reproduced with permission
from [108]. Copyright ACS, 2017.

3.4. Rapid Throughput Method of DNA Extraction from FFPE Tissue

The method of DNA isolation from FFPE tissues employing the FFPE miniprep kit
(Zymo Research) is robust; however, it is a manual and labor-intensive technique and cannot facilely
process the large number of samples required for epidemiological studies. We developed a rapid
throughput method of DNA isolation from FFPE tissue employing a semi-automated commercial
DNA isolation system, Promega Maxwell® 16 MDx system, which is used for genomic research [108].
The system employs silica-magnetic beads technology for DNA isolation and can process 32 samples
per hour compared to 4–6 samples per hour by the manual method. The DNA recovered from FFPE
tissues using the Promega Maxwell® 16 MDx is fully digestible by nucleases [108]. The levels of
dA-AL-I, dG-C8-4-ABP, and dG-C8-PhIP recovered from DNA of FFPE tissues extracted by rapid
throughput method are comparable to those levels measured from DNA isolated by phenol-chloroform
in matching frozen tissues, and in DNA of FFPE tissues isolated by the commercial manual Zymo
kit [108]. With this advancement in DNA isolation technology, we believe that archived FFPE tissues
can be used to screen for DNA adducts in large population studies. A scheme and the time of
duration of the procedure to isolate DNA from FFPE section cuts or whole tissues, and ensuing
chemical analysis by mass spectrometry, are depicted in Figure 8. The recovery of DNA from FFPE
tissues and DNA digestion steps require overnight incubation with enzymes to achieve optimal
digestion efficiency. The targeted and simultaneous quantification of a selected number of DNA
adducts, by UPLC-ESI-IT-MS3, can be achieved in a 10 to 15 min run time.
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Figure 8. Scheme of FFPE tissue processing for DNA adduct measurements. DNA is extracted from
section cuts or excised whole tissues by the FFPE Miniprep kit (Zymo Research) or Promega Maxwell®

automated system. After nuclease digestion, the DNA adducts are measured by UPLC-ESI-IT-MS3.
The estimated times of the different processes are reported.

3.5. Future Applications of DNA Adduct Measurements in Human Tissues

Although this review has focused on DNA adducts of environmental and dietary carcinogens,
the measurements of DNA adducts of chemotherapeutic agents, such as platinum drugs and
nitrogen mustards used to treat cancer, also can be measured in fresh frozen and FFPE tissues by
mass spectrometry. Drugs that modify the structure of DNA and target cancer cells by interfering with
DNA synthesis and cell replication often remain first line of medications used in cancer treatment.
Thus, the efficacy of many anticancer drugs is thought to be linked to the levels of specific DNA adducts
formed during drug treatment, and the quantitative measurements of the DNA adducts may be used
as predictive markers in precision medicine to identify individuals who are most likely to benefit
from treatment from those patients who may be less responsive to the therapy [109]. The assessment
of DNA adducts of chemotherapeutic drugs and their cellular biological responses has been mostly
performed in surrogate specimens, such as white blood cells or in vitro using cell lines rather than in
the target cells or tumors, because of the invasiveness of biopsy sampling [109]. However, the exquisite
sensitivity of current mass spectrometry instrumentation can allow for measurements that characterize
the relationships between level of anticancer drug DNA adducts and pharmacodynamic response in
patients using only 10 mg of tissue. As the sensitivity of MS instrumentation continues to improve,
the amount of tissue specimen required for analysis will be further reduced, and the application of
DNA adduct monitoring of chemotherapeutic drugs in clinical settings can be achieved.

The screening of DNA from FFPE tissues shows great promise to measure DNA adducts of
multiple classes of carcinogens and anticancer drugs [37,55,105,109]. While most analyses have
focused on one to several adducts, different types of MS scanning approaches are being developed
to simultaneous scan for multiple types of DNA adducts in the field of DNA adductomics [63].
Triple quadrupole, quadrupole time-of-flight, ion trap or Orbitrap mass spectrometry instrumentation
are being employed in DNA adductomics [55,58,62,63,110]. Our laboratory is developing unbiased
non-targeted ion trap and Orbitrap scanning methods to screen for an array of DNA adducts in the
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human genome in a single assay [55,58]. Some of these adducts are expected to contribute to the tumor
mutation burden [111].

A critical need is the development of accompanying informatic tools for data analysis and
statistical tools to screen for covalent DNA damage. These scanning technologies and accompanying
data analysis tools will provide a wealth of information about the exogenous and endogenous chemicals
that damage the genome and may contribute to cancer risk. The implementation of FFPE tissues in
DNA adduct biomarker discovery can provide the clues about the origin of human cancers for which
an environmental exposure is suspected.
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