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Abstract

Background: Immunotherapy is an emerging approach in cancer treatment that activates the host immune system
to destroy cancer cells expressing unique peptide signatures (neoepitopes). Administrations of cancer-specific
neoepitopes in the form of synthetic peptide vaccine have been proven effective in both mouse models and human
patients. Because only a tiny fraction of cancer-specific neoepitopes actually elicits immune response, selection of
potent, immunogenic neoepitopes remains a challenging step in cancer vaccine development. A basic approach for
immunogenicity prediction is based on the premise that effective neoepitope should bind with the Major
Histocompatibility Complex (MHC) with high affinity.

Results: In this study, we developed MHCSeqNet, an open-source deep learning model, which not only outperforms
state-of-the-art predictors on both MHC binding affinity and MHC ligand peptidome datasets but also exhibits
promising generalization to unseen MHC class I alleles. MHCSeqNet employed neural network architectures
developed for natural language processing to model amino acid sequence representations of MHC allele and epitope
peptide as sentences with amino acids as individual words. This consideration allows MHCSeqNet to accept new MHC
alleles as well as peptides of any length.

Conclusions: The improved performance and the flexibility offered by MHCSeqNet should make it a valuable tool for
screening effective neoepitopes in cancer vaccine development.
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Background
Immunotherapy is a promising approach in cancer treat-
ment that activates the host immune system to specifically
destroy cancer cells, with far fewer adverse effects than
chemotherapy or radiotherapy. This is possible because
cancer cells produce unique peptide signatures (neoepi-
topes), some of which are presented on the cancer cells’
outer surface and recognized by T cells [1, 2]. Administra-
tions of vaccines composed of synthetic peptides resem-
bling cancer-specific neoepitopes have been proven to
boost T cell activity to destroy cancer cells in both mouse
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models and human patients [2–4]. Nonetheless, because
only a tiny fraction of hundreds of cancer-specific neoepi-
topes can elicit immune response, selection of immuno-
genic neoepitopes remains a challenging step in cancer
vaccine development.
A basic approach for immunogenicity prediction is

based on the fact that the Major Histocompatibility Com-
plex (MHC), also calledHuman Leukocyte Antigen (HLA)
complex, binds to peptide epitopes and presents them on
the outer cell surface for recognition by T cells. In other
words, a good neoepitope should be able to bind with
MHC molecule with high affinity [5]. Current state-of-
the-art software tools for peptide-MHC binding affinity
prediction achieved high accuracy due to the availability
of large-scale training datasets [6, 7] and the applica-
tion of artificial neural networks [8–10]. Although recent
approaches that employed deep learning models [9, 10]
have demonstrated considerable performance gains over
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established tools including NetMHCpan [8], they limited
the length of input peptide epitopes (9 amino acids for
ConvMHC and 8-15 amino acids forMHCflurry) and sup-
ported only specificMHC alleles that themodels had been
trained for. In contrast, NetMHCPan can make binding
affinity prediction for any peptide and even for MHC alle-
les not present in the training dataset – as long as the
alleles’ amino acid sequences are known.
Amongst different fundamental architectures for deep

learning, Recurrent Neural Networks (RNNs) have been
used to encode time series information in many tasks
such as automatic speech recognition [11], natural lan-
guage processing [12], and bioinformatics [13]. Unlike
fully connected feed forward networks, RNNs can better
capture temporal relationships by remembering previous
inputs. A popular choice for RNNs is the Long Short-
TermMemory (LSTM) which alleviates the vanishing and
exploding gradient problems presented in normal RNNs.
Gated Recurrent Unit (GRU) is a recently developed
model which can be considered as a simplified version of
the LSTM [14]. Not only are GRUs easier to train than
LSTMs, but also they outperform LSTMs in many tasks
[15, 16].
In this study, we developed MHCSeqNet, an open-

source deep learning model that can predict peptide-
MHC binding with high accuracy and with no restric-
tion on the input peptide or MHC allele, as long as its
amino acid sequence is known. Our training and testing
datasets were derived from the Immune Epitope Database
(IEDB) [6] and recent publications [9, 17]. Compared to
NetMHCPan [8] and MHCflurry [9] which pre-process
amino acid sequences of peptide and MHC allele into
fixed-length inputs for the underlying fully connected
or convolutional neural networks, the key innovation
of our approach lies in the recurrent neural network
architecture which can naturally handle variable-length
input amino acid sequences. Furthermore, we utilize a
context-aware amino acid embedding model instead of a
position-specific encoding system based on amino acid
substitution matrices that was used by both NetMHCPan
and MHCflurry. This allows us to incorporate multiple
amino acid sequence datasets to learn better embedding
representations.
Our evaluations show that transfer learning from a

larger amino acid database can help improve the embed-
dings, with further improvements possible through the
use of additional model fine-tunings. Representing an
MHC allele with the embedding of its amino acid
sequences] instead of its type name (one-hot representa-
tion) also helps the generalization of the model in most
cases. MHCSeqNet outperforms NetMHCPan [8] and
MHCflurry [9] on both MHC binding affinity and MHC
ligand peptidome datasets. The improved performance
and the flexibility offered byMHCSeqNet shouldmake it a

valuable tool for screening effective neoepitopes in cancer
vaccine development.

Implementation
MHCSeqNet was implemented using Python 3 and the
following packages: numpy version 1.14.3, Keras ver-
sion 2.2.0, tensowflow version 1.6.0, scipy version 1.1.0,
and scikit-learn version 0.19.1. Details and source codes
can be found on GitHub at https://github.com/cmbcu/
MHCSeqNet.

Architecture overview
We trained deep learning models to predict the probabil-
ity of binding between peptide and MHC allele where a
prediction of 0.0 indicates no binding and 1.0 indicates a
strong binding. Our models accept two inputs: peptide,
in the form of amino acid sequence, and MHC allele, in
the form of either amino acid sequence or allele name.
Figure 1 shows an overview of our model. The model
consists of threemain parts, namely the peptide input pro-
cessing (Fig. 1a and c), the MHC allele input processing
(Fig. 1b and d), and the output layer (Fig. 1e). The input
processing modules try to learn the best internal repre-
sentations for peptide andMHC allele. They then pass the
processed representations to the output layer which per-
form the final classification. In the following subsections
we will go over each part of the model.

Peptide embedding layer
We considered two representation models for amino
acids. The first is a simple one-hot model where each
amino acid is represented by a unit binary vector, e.g.
[ 1, 0, 0, . . . ] for one amino acid and [ 0, 1, 0, . . . ] for
another amino acid. The second is a continuous vector
representation, called embeddings [18], one of the most
successful models in Natural Language Processing (NLP)
which can capture the semantic and syntactic relation-
ships between words in a sentence. In our case, a peptide
may be considered a sentence and amino acids the indi-
vidual words. Using embeddings allows us to train the
representations on a much larger dataset than the target
task (pre-training). The embeddings can then be used or
adapted to tasks with smaller datasets.
The Skip-Gram Model [19] was used to train the con-

tinuous vectors by treating each set of 1 or 3 consecutive
amino acids (1-gram or 3-gram) as a unit. The choice
of the 3-gram model, also called ProtVec, was selected
according to an earlier study [20]. For each peptide, there
are three different 3-gram representations with 0, 1, or 2
amino acid offset from the N-terminus of the peptide. For
the tunable parameters, we tested window sizes of 3, 5, or
7 and embedding dimension of 4, 5, and 6 for the 1-gram
model. We found that the exact choice of these param-
eters have little effect on the performance of the model.

https://github.com/cmbcu/MHCSeqNet
https://github.com/cmbcu/MHCSeqNet
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Fig. 1 An overview of the MHCSeqNet’s architecture. The model is comprised of three main parts: the peptide sequence processing part (a & c), the
MHC processing part (b & d), and the main processing part which accepts the processed information from the previous parts (e). The entire model
is a single deep learning model which can be trained altogether. f Our models output binding probability for the given peptide and MHC allele on
the scale of 0 to 1, with 1 indicating likely ligand

In the case of the 3-gram model, we fixed the embed-
ding dimension at 100, which was the reported optimal
parameter [20].

Peptide processing layer
GRU was chosen as the peptide processing layer (Fig. 1c)
because it is capable of processing sequences with vari-
able lengths and generalizing the relationship between the
amino acid representation in peptide sequence. We used
one GRU layer. For the 1-Gram amino acid representation,
a bi-directional GRU was used. For the ProtVec model
(3-gram), three parallel GRU layers (one for each offset)
were used. The number of GRU units tested ranged from
32 to 224.
The input to the GRU is the embedded amino acid

sequence. We searched for the best amino acid represen-
tation by performing 5-fold cross-validation to train and
test the entire model for each candidate embedding. We
also allowed the model to adapt parameters in the peptide
embedding layer via back-propagation. However, the large
number of parameters in ProtVec representation caused
the model to overfit during the adaptation and ultimately
worsened the performance. To overcome this problem,
the ProtVec model was trained with the following pro-
cedure. First, the model was trained without adaptation
until the loss steadied. Then, we enabled adaptation and
resumedmodel training for 1-3 epochs. Finally, adaptation
was disabled again, and the model was trained until it

stopped improving. This procedure is similar in spirit to
other transfer learning methods [21, 22].

MHC allele embedding layer
We considered representing anMHC allele with its amino
acid sequence in order to allow the model to predict bind-
ing probabilities for new MHC alleles that were not part
of the training dataset, as long as the new allele’s amino
acid sequence is known beforehand. We obtained the
amino acid sequence of human MHC class I alleles from
the Immuno Polymorphism Database (IPD) [23]. Then,
we extracted the amino acid sequence portions that cor-
respond to the two alpha helices that participate in the
binding with peptide ligand [8], e.g. the residues 50-84 and
140-179 on the structure of HLA-B*35:01 (PDB ID: 1A1N,
Additional file 1) [24]. It should be noted that inclusion
of amino acid sequences from the beta sheet which was
known to participate in ligand binding (e.g., residues 3-
37 and 94-126, Additional file 1) into our model worsened
the performance. To define the corresponding amino acid
residues of the alpha helices in each MHC allele, we used
MUSCLE v 3.8.31 [25] with default parameter to create a
multiple-sequence alignment of all MHC alleles and then
mapped the location of residues 50-84 and 140-179 from
HLA-B*35:01 to other alleles.
Each MHC allele is inputted into the MHC allele

embedding layer as a sequence of amino acids (Fig. 1b).
TheMHC allele embedding layer was randomly initialized
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instead of using pre-trained weights because the align-
ments can contain gaps which were represented by a
special character. For the MHC allele processing layer
(Fig. 1d), two different layers were tested, namely the
fully connected layer and the GRU. We tuned the mod-
els by varying the layer sizes from 50 to 350 neu-
rons for the fully connected layer, and from 8 to 80
for the GRU. Additionally, we implemented a one-hot
representation of the MHC allele. This representation
ignores the amino acid sequence of MHC allele and
therefore does not capture relationship between MHC
alleles.

Output layer
The outputs from both the peptide processing layer
and the MHC allele processing layer are then passed
through two fully connected layers with rectified linear
unit (ReLU) as the activation function (Fig. 1e). A final
classification layer employs a sigmoid activation func-
tion to obtain the final output in the form of binding
probability (Fig. 1f ). We varied the layer size of the fully
connected layers from 64 to 512 neurons. In order to
prevent overfitting, dropouts [26] were also applied to
the fully connected and the GRU layers [14]. We tested
dropout probabilities of 0, 0.1, 0.2, 0.3, 0.4, and 0.5 and
obtained similar performances. In the final configuration,
the default dropout probabilities were set at 0.4 for out-
puts from the fully-connected layers and for inputs to the
GRU layers, and 0.3 for recurrent dropout in the GRU
layers.

Neural network training and final model development
We employed a 5-fold cross-validation scheme where the
dataset was divided into five partitions of equal size.
Entries with the same peptide sequence were also grouped
so that all of them are assigned to the same partition.
For each fold, four partitions were used for training and
the remaining partition for testing. Furthermore, in each
fold, we used 20% of the training data for hyperparam-
eter tuning and early stopping of the training process.
In our model, architecture weights are shared across all
MHC alleles, as suppose to building one model per MHC
allele [9]. Adam optimization algorithm was used for the
training [27].
The final model was developed by using the repre-

sentation of peptide and MHC alleles as well as the
neural network architectures that achieved highest perfor-
mances. The best representation for peptide is the 1-Gram
model trained on the combination of Swiss-Prot pro-
teins and predicted proteasome-cleaved human peptides
as described below. For the best representation of MHC
allele, there are two representations which produce simi-
lar results. The first candidate is the one-hot amino acid
representation coupled with fully connected layers. The

second candidate is the one-hot MHC allele representa-
tion. Thus, we included both models in the software. We
then created a simple ensemble model using the 5 models
each trained on one data partition. The final binding prob-
ability prediction is defined as the median of the outputs
from these 5 models.

Performance evaluation
The performance of our models were measured using the
area under the receiver operating curve (AUC). The AUC
were calculated for both the whole test set and for indi-
vidual MHC alleles. Performance over all 92 MHC alleles
were included in the calculation for the whole test set. For
individual alleles, we only evaluate 43 MHC alleles that
have at least 30 data points in total and at least 5 positive
and at least 5 negative data points. AUC across the five
folds from cross-validation were averaged. Additionally,
we also report the F1 scores. The score is calculated by
selecting the threshold that achieves the highest F1 from
the receiver operating curve.
We compared the AUCs of our models to those of

NetMHCPan 4.0 [8] and MHCflurry version 1.1.0 [9] by
using them to make binding affinity predictions on the
same test sets as MHCSeqNet. To ensure a fair compari-
son, MHCflurry was re-trained using our cleaned dataset.
We evaluated the impact of MHCflurry’s hyperparame-
ters on its performance by varying the values of two key
parameters, namely the number of filters in locally con-
nected layers and the number of layers, to be 8, 16, 32,
and 64 (the default values are 8 and 16, respectively),
and calculating the corresponding AUCs. Overall, the
change in performance is minimal, with standard devi-
ation of AUC among these parameter sets being only
0.0063. Hence, we decided to keep the default hyperpa-
rameters for MHCflurry. On the other hand, as the public
version of NetMHCPan could not be re-trained, we evalu-
ated its performance as is. In each comparison, only MHC
alleles supported by all software tools involved were con-
sidered. This restricted the evaluation sets to 41 MHC
alleles (Additional file 2). Furthermore, MHCflurry limits
the length of input peptides to be between 8 and 15 amino
acids while NetMHCPan can make prediction for peptide
of any length.
Additionally, we tested all models on an external dataset

[17] that consists of MHC class I peptidome from four
human individuals whose HLA-A, HLA-B, and HLA-C
alleles have been determined. Since a detected ligand in
this dataset could be bound to any of the MHC alleles
present, we took the maximal predicted binding probabil-
ity or affinity over the set ofMHC alleles in each individual
as the prediction of each model. To enable the calculation
of AUC here, we also include the negative data from the
test set which were not used during the training of our
models into this evaluation.
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Prediction for unseen MHC alleles
We evaluated the capability of our sequence-based model
to predict peptide-MHC binding for unseen MHC alle-
les by purposely omitting one MHC allele at a time from
the training dataset, retraining the model, and then pre-
dicting the binding for peptides contained in the omitted
data. This process was repeated for every MHC allele in
the dataset and the prediction performance in term of
average AUCs over 5 models (derived from 5-fold cross-
validation) were recorded.

Peptide sequence and peptide-MHC binding affinity
datasets
To obtain a large amount of amino acid sequences for pre-
training the 1-Gram and 3-Gram amino acid represen-
tation models described above, we downloaded 468,891
verified protein sequences of all species from Swiss-Prot
[28] and also constructed a dataset of 16 million sim-
ulated proteasome-cleaved human 9-mer peptides using
NetChop [29]. Likely proteasome-cleaved 9-mers were
defined as those flanked by cleavage sites with predicted
cleavage probability ≥0.5. The 1-Gram and 3-Gram mod-
els were then trained on the Swiss-Prot proteins alone, the
simulated 9-mers alone, or the combination of the two.
We combined peptide-MHC binding affinity data from

IEDB [23] and MHCflurry [9], and selected entries cor-
responding to human MHC class I molecules (HLA-A,
HLA-B, and HLA-C) with peptide ligand lengths between
8 and 15 amino acids. Entries with ambiguous amino
acids, namely B, X, J, and Z, or non-specific MHC allele
names, such as HLA-A30 or MHC class I, were excluded.
Furthermore, as one of our models needs the amino acid
sequence of MHC allele as an input, only alleles whose
amino acid sequences are present in the Immuno Poly-
morphism Database [23] were selected.
We chose to disregard all quantitative binding affinity

values and used only qualitative binding classifications,
namely Positive-High, Positive, Positive-Intermediate,
Positive-Low, and Negative, because the binding affinity
values were acquired through diverse, non-standardized
experimental techniques performed in multiple labo-
ratories. Furthermore, we found that removing low-
confidence entries (Positive-Intermediate and Positive-
Low) slightly improved the prediction performances.
There were also a number of conflicting entries which
contained the same MHC allele and peptide ligand but
opposite binding classifications. As the majority of these
conflicts come from a few published sources (PubMed
IDs), we decided to exclude all entries from these sources.
For each of the remaining conflicts, we reassigned the
binding classification based on the majority vote. If there
is an equal number of Positive and Negative entries, all
of the associated conflicting entries were excluded from
further considerations.

In total, the final cleaned dataset contains 228,348
peptide-MHC entries consisting of 31 HLA-A, 49 HLA-B,
and 12 HLA-C alleles. The number of ligands per MHC
allele ranges from 41 to 21,480. The cleaned dataset is
provided as Additional file 3 and can also be found on
MHCSeqNet’s GitHub page.

Results
MHC allele representation model
We trained our models using two different MHC allele
representations: a one-hot system which conveys no
relationship between MHC alleles, and an amino acid
sequence-based representation that permits inference
across alleles. We also tested two entry layer architec-
tures for processing MHC allele’s amino acid sequences:
a fully connected layer and a GRU layer. Evaluations
based on AUC showed that using a fully connected
layer as the entry layer for the sequence-based mod-
els gives slightly better overall performance than using
a GRU layer (AUC of 0.9910 and 0.9898, respectively).
Compared to sequence-based models, the one-hot MHC
allele representation model yielded slightly better over-
all performance with an AUC of 0.9917 and it out-
performed the sequence-based models on almost every
MHC allele (41 out of 43 alleles tested, Additional
file 2). A closer inspection revealed that the both mod-
els achieved similar performance on alleles with large
amount of training data. And for MHC alleles with
fewer training data points, the performance gap between
the one-hot and the sequence-based models tend to
be higher. This is likely because the sequence-based
model has more parameters and thus requires more data
to train.

Peptide embedding
The one-hot, 1-gram, and 3-gram peptide representations
were pre-trained on three different datasets: Swiss-Prot
proteins, simulated human proteasome-cleaved 9-mers,
and the combination of the two. We also studied the
case where no pre-training is done, and the embedding
layer was initialized randomly. Overall, the 1-gram model
yielded the best performance with an average AUC of
0.991715, followed by the one-hot model with an aver-
age AUC of 0.991680. For the 1-gram model, combining
the two amino acid sequence datasets slightly improved
the performance over using individual dataset or using no
pre-training. Rather unexpectedly, regardless of the adap-
tation method (see Methods) or the dataset tested, the 3-
gram model, which has previously been used to analyzed
protein structural family [20], consistently performed
worse than the other alternatives. We suspected that the
large number of parameters in the 3-gram model caused
the model to overfit even when adaptation was performed
carefully. Nonetheless, significant improvement in AUC
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for the 3-grammodel was achieved with our special adap-
tation method (from 0.967181 to 0.982490).

Evaluation using MHC class I binding affinity dataset
From above results, the 1-gram model trained on the
combination of Swiss-Prot proteins and simulated human
proteasome-cleaved 9-mers was selected as the peptide
embedding layer. For MHC allele representation, we eval-
uated both the one-hot and the sequence-based mod-
els here. The performance of our models, NetMHCPan

version 4.0 [8], MHCflurry version 1.1.0 [9], and the
retrained MHCflurry were evaluated on the MHC class I
binding affinity dataset using a five-fold cross-validation
scheme (see Methods). The dataset was also split so that
entries with the same peptide sequences were all assigned
to the same cross-validation fold. This revealed that both
of our models significantly outperformed NetMHCPan
and MHCflurry overall with respect to both AUC and F1
score (Fig. 2). Analysis of 100 bootstrap samples obtained
by sampling 80% of entries in the test set with replacement

A B

C D

Fig. 2MHCSeqNet achieves the best AUC and F1 scores on MHC class I binding dataset. a Bar plots showing the AUC value of each tool when
evaluated on the set of MHC alleles it supports (Supported Type) or on the set of MHC alleles supported by all tools (Common Type). b Similar bar
plots showing F1 values. c The ROC plot for all tools when evaluated on the set of MHC alleles supported by all tools. Vertical black line indicates the
5% false discovery rate (FDR). Inset shows the zoomed in ROC plot for the region with ≤5% FDR. d Similar ROC plot for the evaluation on MHC
alleles supported by individual tools
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showed that these AUC estimates are highly stable with
coefficients of variation smaller than 0.26%. Addition-
ally, the binding probabilities predicted by both of our
models strongly distinguish between positive and negative
ligands. For positive ligands, the vast majority of pre-
dicted binding probabilities are close to 1.0 (Additional
file 4). For negative ligands, the predicted binding proba-
bilities center around 0.2 with the 75th percentile located
at around 0.6.
On individual MHC allele level, our one-hot model

achieved the highest AUC than all others on 32 out of 41
alleles that are supported by all tools (Additional file 2).
Among 9 alleles where our one-hotmodel did not yield the
best performance, MHCflurry performed better on 8 of
them (HLA-A*02:02, HLA-A*02:06, HLA-A*26:01, HLA-
A*30:02, HLA-A*33:01, HLA-A*69:01, HLA-B*40:01, and
HLA-B*53:01) and NetMHCpan did so on only one allele
(HLA-A*68:01). Furthermore, these alleles aremostly alle-
les with few training data points (8 of these alleles are
among the bottom 13 alleles with the least amount of
data points). Among NetMHCpan and our sequence-
based model – the two approaches that can handle any
input MHC allele, our model achieved higher AUC on 32
out of 41 alleles (all alleles except HLA-A*02:02, HLA-
A*02:06, HLA-A*23:01, HLA-A*30:02, HLA-A*33:01,
HLA-A*68:01, HLA-B*08:01, HLA-B*53:01, and HLA-
B*58:01).

Evaluation using external MHC class I peptidomes
We further evaluated our models, NetMHCPan, and
MHCflurry onMHC class I ligand peptidomes [17] which
were derived from mass spectrometry analyses of four
human individuals whose HLA-A, HLA-B, and HLA-C
alleles have been determined (Table 1). This evaluation
mimics real use cases where a predicted MHC ligand
may bind to any of the MHC class I alleles present in
a patient. As it is unclear which MHC allele was bound
to each detected peptide, the maximal predicted binding
probability or affinity over the set of MHC alleles in each
individual was designated as the final prediction for each

Table 1 Typed MHC alleles of four individuals in the MHC class I
ligand peptidome dataset

Sample ID Mel 12 Mel 15 Mel 16 Mel 8

HLA-A A*01:01 A*03:01 A*01:01 A*01:01

- A*68:01 A*24:02 A*03:01

HLA-B B*08:01 B*27:05 B*07:02 B*07:02

- B*35:03 B*08:01 B*08:01

HLA-C C*07:01a C*02:02b C*07:01a C*07:01a

- C*04:01 C*07:02 C*07:01a

aAlleles not supported by the original MHCflurry
bAllele supported by only our sequence-based model

model. Additionally, to ensure that this test is indepen-
dent from the evaluation using binding affinity data, all
peptidome entries that overlap with our training dataset
were removed from consideration. It should be noted that
some HLA-C alleles were not supported by NetMHCPan,
MHCflurry, and our one-hot model (Table 1), and that the
sequence-based model alone could make predictions for
these alleles. Again, our models achieved the best overall
AUC and F1 scores (Fig. 3).

Prediction for unseen MHC alleles
To evaluate our sequence-based model’s ability to predict
peptide-MHC binding probability for new, unseen MHC
alleles, we trained the sequence-based model using data
from all-but-one alleles and calculated the model’s AUC
using data from the omitted allele. To ensure that the AUC
estimates are stable, we repeated the training and AUC
calculation process with different random initialization
five times for each allele and reported the average AUCs.
This revealed that the sequence-based MHC allele repre-
sentation model clearly outperformed the one-hot MHC
allele representation model on 47 out of 60 MHC alleles
evaluated (Additional file 5) with median AUC of 0.7987
versus 0.6159 and a median AUC difference of 0.12 across
all alleles.

Discussion
Impact of data cleaning
In addition to removing duplicated entries and entries
with ambiguous peptide sequence or MHC allele name as
regularly performed in other studies [8, 9], we also exam-
ined the impact of conflicting entries (entries with the
same peptide sequence and same MHC allele but oppo-
site binding affinity classification) and low-confidence
entries (Positive-Intermediate and Positive Low) on the
prediction performance. Although conflicting entries
constitute less than 5% of the raw dataset, the vast
majority of them (15,305 out of 17,914 conflicting entries)
involve the same source, which reported HLA-B*27 lig-
ands identified in transgenic mice [30], and should be
entirely excluded or at least carefully scrutinized. The
remaining conflicts could be resolved by majority vot-
ing which slightly improves the prediction performance.
We also found that the exclusion of low-confidence
entries slightly improved the prediction performances
when tested on all entries or on only high-confidence
entries.

Capability to make prediction for unseen MHC alleles
The capability to predict binding affinity of a candidate
neoepitope against all MHC alleles presented in a patient
is highly desirable because neoepitopes that can bind to
multiple MHC alleles are likely to be immunogenic. The
sequence-based version of MHCSeqNet not only better
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Fig. 3MHCSeqNet achieves the best AUC and F1 scores on MHC class I ligand peptidome dataset. a The ROC plot for all tools. Vertical black line
indicates the 5% FDR. Inset show the zoomed in ROC plot for the region with ≤5% FDR. b Bar plots showing the AUC (bars with solid face colors)
and F1 (bars with stripes) scores of each tool

predicted ligands for unseen MHC alleles than its one-
hot counterpart but also improved over existing tools.
Curiously, the sequence-based model did not outperform
the one-hot model when tested on a peptidome dataset
which contains twoHLA-C alleles not present in the train-
ing dataset (Table 1). We suspected that this is due to
the overall lack of HLA-C data (HLA-C entries constitute
only 3% of the final training dataset) for the sequence-
based model to learn from. Indeed, the sequence-based
model performed worse than the one-hot models on 4
out of 9 HLA-C alleles considered when comparing the
the two (Additional file 5). More data on HLA-C epitopes
from future experiments should greatly help improve
the performance of the sequence-based version of
MHCSeqNet.

Conclusions
MHCSeqNet exhibits performance improvement over
existing tools for predicting MHC class I ligands on
both binding affinity and peptidome datasets. Further-
more, MHCSeqNet retains the flexibility to make predic-
tion for peptide of any length and for any MHC class I
allele with known amino acid sequence by utilizing recur-
rent neural network architectures to handle amino acid
sequences. Thus, MHCSeqNet should contribute to the

growing interests in MHC ligand prediction, especially to
the screening of effective neoepitopes for cancer vaccine
development.

Availability and requirements
Project name:MHCSeqNet
Project home page: https://github.com/cmbcu/MHCSeqNet
Operating systems(s): Platform independent
Programming language: Python 3
Other requirements: None
License: Apache 2.0

Additional files

Additional file 1: Figure S1 – Illustration of the two alpha helices (blue
and magenta) used to represent an MHC class I allele in our
sequence-based model. The structure of HLA-B*35:01 from the Protein
Data Bank entry 1A1N is shown here. Amino acid residue positions 50-84
and 140-179 correspond to the two alpha helices in this structure. Inclusion
of the beta-sheet (yellow) decreased model performances. (PNG 210 kb)

Additional file 2: Table S1 – The MHC allele-specific AUC for each
software tool evaluated on the binding affinity dataset. (TSV 8 kb)

Additional file 3: Table S2 – The cleaned peptide-MHC binding affinity
dataset. (TSV 8645 kb)

Additional file 4: Figure S2 – Boxplots comparing the predicted binding
probabilities between positive and negative classes. The orange horizontal

https://github.com/cmbcu/MHCSeqNet
https://doi.org/10.1186/s12859-019-2892-4
https://doi.org/10.1186/s12859-019-2892-4
https://doi.org/10.1186/s12859-019-2892-4
https://doi.org/10.1186/s12859-019-2892-4
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lines indicate medians. Black boxes designate the 25th–75th percentile
regions. The whiskers indicate the non-outlier ranges which cover from Q1
- 1.5 * (Q3 - Q1) to Q3 + 1.5 * (Q3 - Q1), where Q1 and Q3 are the values at
25th and 75th percentiles, respectively. Black circles represent outliers. (PNG
56 kb)

Additional file 5: Figure S3 – Scatter plot comparing performances of
sequence-based and one-hot models when tested on unseen MHC class I
alleles not included in the training dataset. Each circle shows the AUC of
one-hot and sequence-based model on each held-out allele. Colors
indicate HLA types (A, B, or C). Circle sizes indicate the relative number of
data points of the held-out allele. (PNG 79 kb)
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