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Thinking BIG rheumatology: how to make
functional genomics data work for you
Deborah R. Winter

Abstract

High-throughput sequencing assays have become an increasingly common part of biological research across
multiple fields. Even as the resulting sequences pile up in public databases, it is not always obvious how to make
use of these data sets. Functional genomics offers approaches to integrate these "big" data into our understanding
of rheumatic diseases. This review aims to provide a primer on thinking about big data from functional genomics in
the context of rheumatology, using examples from the field’s literature as well as the author’s own work to illustrate
the execution of functional genomics research. Study design is crucial to ensure the right samples are used to
address the question of interest. In addition, sequencing assays produce a variety of data types, from gene
expression to 3D chromatin structure and single-cell technologies, that can be integrated into a model of the
underlying gene regulatory networks. The best approach for this analysis uses the scientific process: bioinformatic
methods should be used in an iterative, hypothesis-driven manner to uncover the disease mechanism. Finally, the
future of functional genomics will see big data fully integrated into rheumatology, leading to computationally
trained researchers and interactive databases. The goal of this review is not to provide a manual, but to enhance
the familiarity of readers with functional genomic approaches and provide a better sense of the challenges and
possibilities.
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Chromatin

Background
The medical sciences are abuzz with big data. Across
virtually every field and discipline there are projects to
collect data from “omics” assays. The resulting data sets
are characterized as “big data” and may involve thousands
to billions of measurements for a handful to thousands of
individual samples. In the field of functional genomics, the
traditional omics assay makes use of next-generation se-
quencing technology. Such assays tend to relate to genom-
ics, transcriptomics, and epigenomics although these data
sets may be linked to everything from metabolomics and
proteomics to microbiomics and clinical “omics”. These
high-throughput assays generate libraries of DNA frag-
ments that are “read” by the sequencer. These sequence
reads must be computationally linked to generate a de
novo genome (usually in the case where the source gen-
ome is unknown) or aligned to the reference genome. In

the case of patient data, this means aligning millions or
billions of reads—depending on the desired coverage—to
the approximately 3 billion base-pair human genome. At
later stages, these data may be simplified into summary
files listing only the genes or regions of interest: however,
the final list is still likely to contain thousands of entries.
Although the simplest experiment may only have two
conditions each with a few replicates, it is rapidly becom-
ing common for studies to include several populations
under changing conditions or across time. Moreover,
studies involving human patients may wish to include
large cohorts to address individual variation. Finally, with
the expanding popularity and ease of single-cell technolo-
gies, each individual cell may represent its own sample
and may number in the thousands and counting.
Several consortiums exist that collect these types of

big data in a systematic way and make it publicly avail-
able. The ENCyclopedia of DNA Elements (ENCODE) is
an example of a consortium that seeks to build a com-
prehensive list of functional elements in the human
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genome [1]. The ENCODE pilot began with 1% of the
genome across a small defined set of common human cell
lines [2], but it rapidly expanded to include a variety of cell
types and then spun off into the Epigenomics Roadmap to
catalog human variation by collecting tissue samples from
many individuals [3]. Together, ENCODE and Roadmap
represent data from gene expression, protein binding,
chromatin state, and other assays and are accompanied by
a host of quality standards, computational tools, and an-
notations resulting from the processing and analysis [4].
Another consortium, Genotype-Tissue Expression project
(GTex), focuses specifically on the interactions between
genotype and gene expression in vivo by collecting mul-
tiple tissues from human donors [5]. In contrast, the NIH
Library of Integrated Network-based Cellular Signatures
(LINCS) is cataloging the generalized response profiles by
measuring changes in gene expression in multiple cell
types exposed to a variety of induced perturbations [6].
For immunology specifically, the Immunological Gen-
ome Project (ImmGen) [7] and the European Blueprint
Epigenome [8] provide databases for gene expression
and epigenomics, respectively. These examples are
valuable resources of quality-controlled data that may
obviate the requirement to repeat assays in individual
laboratories. However, it is one thing to catalog these
data and another to use them to test a hypothesis. This
is the difference between descriptive genomics and
functional genomics.
Functional genomics makes use of high-throughput

sequencing data to describe how genes contribute to the
identity, function, and activity of cells. It is often used
interchangeably with the term “systems biology” because
both tend to involve modeling of multiple interacting
components and use a variety of techniques from differ-
ent fields to study the resulting networks. In functional
genomics, the collection of interactions can be described
as the Gene Regulatory Network (GRN) of the cell. Gene
expression as reflected by RNA transcription is the typ-
ical output of GRNs while the interactors are cis-
regulatory elements within the noncoding genome and
the transcription factors (TFs) that bind them. Because
the transcription of RNA is not perfectly correlated with
protein translation, it may not directly reflect the cell’s
phenotype. However, the cell’s GRN is critical to under-
standing the underlying programming of the cell
regardless of the exact impact on function. High-
throughput sequencing assays provide the raw data with
which to model these GRNs. The goal of functional gen-
omics is to inform how cells evolved to fulfill their roles
and the pathways to which they devote their energy.
The aim of this review to provide a primer on big data

in functional genomics in the context of rheumatology.
Although other articles cover similar topics, this review
is meant to be accessible to researchers whose focus is

rheumatic disease by highlighting field-specific issues and
using examples from the literature. It is not intended to
present a step-by-step manual, but rather to draw attention
to key features of big data studies and provide information
on the critical techniques. The first section discusses several
options that should be considered when designing a func-
tional genomics study to optimize the relevance to the
question. Next follows a description of functional genomic
data types and the assays commonly used to generate these
data. In these studies, how the data are analyzed is as im-
portant as how they are collected. Thus, the third section
gives an overview of the key approaches involved in bio-
informatic analysis. Finally, the author shares her vision for
the future of big data in rheumatology. For a precise de-
scription of the methods mentioned, please refer to the spe-
cific references throughout the text. For the most part, the
goal is to present studies in rheumatology as examples, but
other functional genomics research is used in order to
cover a wider variety of approaches. Due to space con-
straints, the review does not cover some topics in func-
tional genomics in detail—including noncoding RNA,
splicing, and other post-transcriptional regulation. While
not all relevant studies could be mentioned, the goal is to
convey the big potential associated with these ap-
proaches and increase awareness of the possibilities
and considerations involved.

Main text
Big study design
The key to successful research in functional genomics is
designing the study to effectively address the question of
interest. This is true even when the data are downloaded
from a public database. However, in some cases it might
be necessary to generate new data in order to have ac-
cess to the most relevant data. In the world of functional
genomics, study design boils down to what populations
of cells are chosen as samples for the assay. Here, the
major choices involved are discussed.

In vitro vs in vivo
This review refers to cell populations assayed directly after
isolation from either the patient or the model organism as
in vivo samples. Alternatively, cells may be first cultured
or differentiated in vitro. The main advantage of in
vitro populations is the ease in obtaining enough cells for
the desired assay. For example, bone-marrow-derived
macrophages (BMDMs) are commonly used to test hy-
potheses about immune response [9, 10]. However, recent
work has shown systematically that BMDMs and the re-
lated dendritic cells (DCs) that are differentiated by cultur-
ing bone marrow cells with granulocyte–macrophage
colony-stimulating factor (GMCSF) do not fully resemble
any in vivo population [11]. Moreover, even the GRN of
mature cells are influenced by their local environment:
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thus, cells such as macrophages, when removed from the
culture, tend to lose their distinct regulatory landscape
[12, 13]. Similarly, Gardner et al. [14] showed that gene
expression profiles obtained using explanted fibroblasts
from patients and controls are a poor substitute for
skin biopsies. There may be cases where assays on in
vitro cells may be sufficient, or even preferable, for the
question of interest. Using cultured cells may help distin-
guish between cell-autonomous and environmental ef-
fects. Also, in vitro cells are useful for proof-of-principle
studies and to establish gene editing.

Mouse model vs patient sample
In rheumatology, mouse models are commonly used to
approximate human diseases, such as systemic lupus ery-
thematosus (SLE), systemic sclerosis (SSc), and rheuma-
toid arthritis (RA) [15–17]. Researchers have studied gene
expression profiles of both genetic models, such as NZB/
W mice that are SLE prone [18, 19], and chemical models,
such as bleomycin-induced pulmonary fibrosis [20, 21].
Mouse models have the obvious advantage of being easier
to manipulate and genetically identical mice minimize the
individual variation. In addition, cells from any tissue or
organ may be obtained for study at any stage of disease.
On the other hand, it is often difficult to obtain human
tissues, other than blood, at multiple time points. For ex-
ample, skin biopsies have been used to study gene expres-
sion in SSc patients and controls [22], although the small
sample size may limit the ability to study individual cell
populations without first culturing the cells (e.g., fibro-
blasts [14]). Alternatively, researchers can take advantage
of transplants to access donor and explanted tissue [23];
however, these samples typically represent end-stage dis-
ease. Several studies have shown high homology between
both the definition of cell populations [24, 25] and their
key regulatory factors [26] across mice, human, and other
primates. Furthermore, kidney mononuclear cells from
mouse models of lupus demonstrated significant overlap
of GRNs and activated genes with human lupus nephritis
samples [27]. The main shortcoming of mouse models
arises for studies interested in the causative signals behind
rheumatic disease; there is often a lack of evidence that
the conditions by which symptoms were initiated in mice
will reflect the real etiology of disease. For a given study,
one must be clear on whether the intention is to study the
cause or behavior of cells in disease.

Whole tissue vs cell-type specific
For the purposes of bulk assays in functional genomics,
it is generally preferable to aim for homogeneous cell
populations as opposed to whole tissue or mixed popula-
tions. Notably, single-cell technologies are the exception
to this rule, as will be explained in the following. In bulk
assays of hundreds to millions of cells, the resulting data

represent an average across all cells and it is difficult to
parse out the effect of specific cell types. Without so-
phisticated algorithms, it is impossible to distinguish be-
tween changes in expression within a single cell type
and changes to the proportion of that cell type within
the population. Using a network approach in a meta-
analysis of other SSc expression studies, Mahoney et al.
[28] implicated the interferon pathway, M2 macrophage
polarization, adaptive immunity, and cell proliferation.
However, while enriched pathways may be found in tissue
samples, one cannot be sure that any group of genes is
expressed in the same cell type. Moreover, it is conceivable
that different cell types may regulate genes in opposite
directions that then cancel each other out. Similarly, in
our studies of RA, we have observed that changes in some
less highly expressed genes within a single population,
such as macrophages, may be drowned out by the
remaining population in whole joint synovium (Mandelin
et al, accepted). Thus, it is not feasible to model a coher-
ent GRN of the interactions between genes and regulatory
elements. Even with deconvolution, one must define a
characteristic set of genes to attribute to each discoverable
cell type [29, 30]. This approach may reveal the proportion
of different cell types within the sample, but cannot then
define the changes in the gene expression within these cell
types without begging the question, since this data was
used in the model's assumptions. Thus, in order to model
the GRN of a cell type, each study should aim to assay the
purest populations of cells possible.

Control, reference, and outgroup
A key aspect of study design in functional genomics is
to choose one or more auxiliary samples that will under-
score the feature of interest in the test sample. In the
most common and straightforward cases for studying
rheumatic disease, the test sample would be derived
from patients while the control sample would come
from healthy volunteers. This approach is seen in a
study of lung tissue samples from patients with SSc and
healthy controls [31]. Similarly, the mouse equivalent would
compare the mouse model with mice given sham treatment
of the same age and genetic background as the control. In
the case of bleomycin treatment, the control mice would be
intubated with PBS as in traditional experiments measuring
changes in surface marker expression [21]. In contrast, the
reference is defined as a sample that provides necessary
context for an experiment. This may be the sample from
“Day 0” in a time course of serum-transfer induced arthritis
(STIA) vs control [25]; the population of monocytes that is
thought to be the precursor of macrophages in SSc-
associated skin fibrosis vs healthy skin [32]; or skin biopsies
from controls in a study of response to mycophenolate in
SSc patients [33]. These populations are assayed in addition
to the typical control as they may be necessary to
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distinguish between regulatory factors that are involved in
the main comparison vs other confounding variables. In an-
other instance, skin samples from the unaffected back of
SSc patients were used as a reference to define “intrinsic”
genes that exhibited consistent expression with their af-
fected forearm before comparison across patients [22].
Finally, in some experiments it may be helpful to in-
clude a population of cells as an outgroup. The purpose
of an outgroup is to provide perspective about the rela-
tionship between the main population of a comparison.
For example, in comparing tissue-resident macro-
phages, we included neutrophils as an outgroup to
demonstrate the difference between macrophages com-
pared to that between cell types that shared a common
myeloid lineage [13]. As experiments become more
complicated and involve multidimensional compari-
sons, the distinction between controls, references, and
outgroups may be blurred. How these experimental tools
are used should be evaluated on a case-by-case basis.

Replicates and batch effect
Once the identities of the comparison samples are
chosen, one should consider including replicates when-
ever possible. The statistical power of high-throughput
sequencing assays is relatively insensitive to the replicate
number because they involve millions of measurements
for thousands of genes and regulatory elements. Any
single gene may fall below the cutoff value for the false
discovery rate (FDR), but, globally, the set of differential
genes represents a substantial effect size [34, 35]. None-
theless, replicates are crucial to account for technical
variation, experimental error, signal-to-noise ratio, and
batch effect. Biological replicates generally refer to dis-
tinct samples either taken subsequently from the same
patient or from genetically identical mice undergoing
the same treatment. These can be used to account for
variability in the experimental conditions and can help
to control for artifacts in the data. On the other hand, a
technical replicate occurs when a single sample is di-
vided for the purposes of the assay. A technical replicate
can be useful, especially when it is difficult or cost-
prohibitive to obtain biological replicates of human sam-
ples, to estimate the amount of noise or to help optimize
library protocols during development [36]. Another use
of replicates is to provide robust results: the activity of a
tissue-specific macrophage cis-regulatory element may be
confirmed by enrichment in two replicates [13] and the
identification of immune cell subsets in human blood can
be validated across patients [37]. The other benefit of mul-
tiple replicates is to control for batch effect. The batch ef-
fect describes technical variation that arises between groups
of samples that are prepared at different times. While this
may sometimes be unavoidable based on the availability of
samples for the throughput of the experiment, replicates

can help to mediate the impact on the data. For both bulk
and single-cell genomic assays, replicates should be spread
out across groups so that batch effects are not confounded
with the differences between the samples being compared
[38, 39]. For example, in a single-cell study of microglia de-
velopment, we replicated the single-cell population for each
time point so that we could distinguish time-dependent dif-
ferences from the batch effect [40]. Alternatively, long-term
studies, such as longitudinal patient studies, may choose to
use a reference sample (some are commercially available)
that is included in each run.

Big data types
High-throughput sequencing assays come in multiple fla-
vors depending on the feature being measured. Regardless
of the assay, the output is a library of DNA fragments or
reads that are enriched for the feature of interest, whether
that is expressed genes or epigenetically modified regions.
A functional genomics study may combine two or more
different assays on the same samples in order to gain a
better picture of the underlying GRN. The relationship be-
tween different data types and their biological significance
is shown in Fig. 1.

Gene expression
The expression level of a gene is determined by the num-
ber of times the DNA sequence of the gene is transcribed
by RNA Polymerase II (PolII) into RNA and can be
thought of as the output of GRNs. In the past, microarrays
were commonly used to measure gene expression, but,
more recently, RNA-seq has taken over as a more exact
digital measurement for clinical applications [41, 42].
Typical RNA-seq measures the steady-state number of
transcripts for each gene and may be full length with reads
covering the whole sequence of the gene or end biased
with reads starting at only the 5′ or 3′ end of the gene.
Both methods have their advantages and disadvantages,
with full-length reads allowing for analysis of allele-
specific expression and alternative splicing, while end-
biased reads are typically cheaper and provide a more
accurate quantification of expression level [42]. Recently,
advances in RNA-seq have allowed for high-throughput
processing of samples with low cell numbers, such as one
used on hematopoietic progenitors [36]. In addition,
Global Run-on sequencing (GRO-seq) and similar as-
says were developed to measure nascent transcripts as
they are transcribed and enrich for noncoding RNAs that
play regulatory roles in the GRNs [43].

DNA methylation
DNA methylation, which primarily occurs on the cytosine
(C) base of CpG sites, is an epigenetic mechanism associ-
ated with gene regulation. Genome-wide DNA methyla-
tion is typically measured by bisulfite sequencing (BS-seq),
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where bisulfite selectively converts unmethylated cytosine
(C) into uracil that is then read by the sequencer as aber-
rant thymine (T) [44]. The biological significance arises
from sites that are differentially methylated between cell
types or conditions [45]. Extended regions of differen-
tial methylation (DMRs) between cell types are likely
to occur in cis-regulatory elements and may reflect
cell ontogeny [46]. In particular, regions enriched for
CpGs, known as CpG islands, are often found around
promoters and tend to be hypomethylated [45]. Methyla-
tion of CpG islands is associated with repressed genes; for
example, a signature of methylation within these regions
in fibroblast-like synoviocytes is thought to distinguish RA
from osteoarthritis [47]. Moreover, differential methylation
in blood is associated with genes in monozygotic twins
who were discordant for SLE [48]. Outside of promoters,
methylation has a more complex relationship with gene
expression. For example, gene bodies may be heavily
methylated in patterns that are associated with nucleo-
some positioning, binding of structural proteins (e.g.,
CTCF), intron–exon boundaries, and splicing [49, 50].
This dynamic is regulated by the opposing activity of DNA
methyltransferases and demethylases whose expression
may be altered in autoimmune disease, such as SLE [51].
Similarly, there is a close association between DNA methy-
lation and histone modifications since hypermethylation
tends to overlap repressive marks while hypomethylation

is associated with activating marks at cis-regulatory
elements [52].

Chromatin state
Along with DNA methylation, the genome-wide chro-
matin state of a cell is part of its epigenomic profile and
may be used to annotate its cis-regulatory elements.
When compared with gene expression, the chromatin
state tends to give a broader picture of the cell’s GRN by
highlighting the relevant interactors. Much of the gen-
ome consists of nucleosomes, approximately 150 bp of
DNA wrapped around a histone octamer, that form the
fundamental unit of chromatin [53]. Open chromatin,
accessible regions of the genome that are depleted of
nucleosomes, is associated with functional regulatory
elements [54, 55]. The Assay for Transposase Accessible
Chromatin (ATAC-seq) has emerged as an easy and
versatile protocol for identifying open chromatin regions
at low cell numbers [56]. Furthermore, specific post-
translational modifications to histone tails have been as-
sociated with different regulatory elements [57]. The first
genome-wide study of multiple histone modifications in
human CD4+ T cells showed that, among other marks,
variable levels of methylation of the fourth lysine on his-
tone 3 were associated with different cis-regulatory ele-
ments: tri-methylation (H3K4me3) was highest at
proximal elements, known as promoters, while mono-

Fig. 1 Common functional elements. Inner box: definitions of various functional elements (left to right): repressed element with methylated DNA
(DNAme) and repressive modification of the histone tail of a nearby nucleosome (H3K27me3); active enhancer in an open chromatin region
bound by two transcription factors (TF1, TF2) and marked by H3K4me1 or H3K4me2 (enhancer) and H3K27ac (activity); promoter bound by RNA
Polymerase II (PolII) in an open chromatin region around the transcription start site (TSS, black arrow) of a gene body and marked by H3K4me2
or H3K4me3; and mRNA molecules transcribed from the gene with 5′ caps and 3′ poly (A) tails. Middle box: list of high-throughput sequencing
assays used to annotate these functional elements, including bisulfite sequencing (BS-seq) for DNA methylation, Assay for Transposase Accessible
Chromatin (ATAC-seq) for open chromatin, high-throughput chromosome conformation capture (Hi-C) or Chromatin Interaction Analysis by
Paired-End Tag Sequencing (ChIA-PET) for interactions between regions, chromatin immunoprecipitation (ChIP-seq) for histone modifications,
RNA-sequencing (RNA-seq) for mature mRNA (either 5′ biased, full length, or 3′ biased), and Global Run-On (GRO-seq) for nascent mRNA. Outer
box: interactions between functional elements
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methylation (H3K4me1) was more commonly found near
distal enhancers. H3K4me2 acts as a hybrid and has been
used with other marks and gene contexts to mark both
promoters or enhancers [12, 13]. Histone acetylation is
typically associated with gene activation: for example,
the combination of H3K27ac and H3K4me1 marks ac-
tive enhancers while H3K4me1 alone is a mark of
poised enhancers [58]. In contrast, H3K27me3 is found
at repressed elements or, in combination with
H3K4me3, bivalent domains, that occur specifically at
the promoters of genes poised in stem cells [59, 60].
Together, the profiles of multiple histone modifications
can be used to infer the chromatin state of genomic re-
gions: in fact, ChromHMM was designed to automate
this process using a machine-learning algorithm [61].
Chromatin immunoprecipitation (ChIP-seq) is used to
generate a genome-wide map of these histone modifica-
tions, as well as the binding of specific TFs, based on
the affinity of antibodies. Gosselin et al. [12] combined
ChIP-seq of histone modifications and the myeloid TF,
PU.1, to identify tissue-specific factors in macrophages.
These chromatin assays have not yet been widely used
in rheumatology: this is likely because of the inability to
collect sufficient cell numbers in the models of interest.
A recently developed protocol of ChIP-seq, named
indexing-first ChIP (iChIP), enables parallelization of
multiple modifications and samples with low input [36].

Chromatin interactions
In addition to the chromatin state of an individual region, it
can be informative to assay the interactions of that region
with the rest of the genome. Interacting regions include
enhancer-to-promoter loops and topologically associated
domains (TADs), which are thought to bring together dis-
tant genomic regions that are coregulated [62]. This three-
dimensional structure of the chromatin has been widely
assayed with Hi-C [63], a high-throughput successor of
earlier chromosome conformation capture (3C) methods,
and Chromatin Interaction Analysis by Paired-End Tagging
(ChIA-PET) [64], an extension of ChIP to capture chroma-
tin interactions. These technologies are at the forefront
of innovation with new development in both experi-
mental and computational approaches being put
forward regularly. A new method, known as genome
architecture mapping, represents an innovative ap-
proach to mapping chromatin interactions based on the
principle that interacting regions should be frequently
found in the same nuclear slice [65].

Single-cell technology
As opposed to the bulk assays already described that
represent whole cell populations, single-cell technologies
are aimed at assaying individual cells. The goal of single-
cell approaches is to discern the heterogeneity of a

population of cells without relying on a priori sorting.
Thus, unlike the bulk assays, single-cell samples should
be designed to contain a variable population. Typically,
this variation is used to identify subpopulations of cells,
which are then compared to reference bulk data sets or
isolated as input for future assays. In particular, single-
cell RNA-seq, which may be called scRNA-seq generic-
ally, has become quite popular in many fields including
immunology [66], although other single-cell functional
genomic protocols exist [67–71]. There are high hopes
for the applicability of scRNA-seq to clinical rheumatol-
ogy and precision medicine in the near future [66].
Single-cell protocols are generally just scaled-down ver-
sions of bulk protocols that are adapted for very low
input. A few different versions of scRNA-seq exist that
vary by the exact RNA-seq protocol (i.e., end biased or full
length), the isolation of single cells, and the use of unique
molecular identifiers (UMIs). For example, MARS-seq
[40] and SMART-seq2 [37] both use fluorescence-
activated cell sorting (FACS) to isolate single cells and
deposit them in the wells of a cell-capture plate. While
SMART-seq2 provides the additional information of full-
length reads, MARS-seq uses 3′-biased reads with UMIs,
which reduce noise by enabling the discrimination of true
biological copies from amplification duplicates. Other ver-
sions of scRNA-seq rely on microfluidics (CEL-seq2 [72])
or microdroplets (Drop-seq [73]) to ensure single-cell re-
actions. Because of technical and biological limitations,
single-cell technologies tend to have low coverage and
depth, leading to sparse data sets and high noise [74]:
thus, they will likely fall short of modeling the GRNs of in-
dividual cells. However, single-cell approaches are effective
at assigning cells to different GRNs based on clustering or
other algorithms that organize cells by similar cellular
states, especially when used in combination with bulk as-
says or databases. These cellular states may differ based
on cell type [37], development [40], cell cycle [75], spatial
niche [76], response to stimuli [77], and so forth. For ex-
ample, single-cell analysis of old and young hematopoietic
stem cells demonstrated fewer old cells in the G1 phase
and an inverse relationship between differentiation and
age [75]. At present, single-cell analysis is fairly compli-
cated owing to the large, complex data sets, but the bio-
informatics support is rapidly catching up.

Big bioinformatics
The utility of high-throughput sequencing assays is
dependent on the ability to analyze and model the
resulting data. Fortunately, development of bioinfor-
matic methods has progressed steadily, giving rise to a
variety of standard techniques and publicly available
software for the common approaches. For conciseness,
this review begins with an analysis of the processed data
(see Table 1) assuming that alignment, normalization,
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and filtering has occurred as necessary. In fact, these
early processing steps are well covered by the literature
and the related algorithms have already undergone sev-
eral iterations of development since the dawn of high-
throughput genomic assays. Readers are encouraged to
approach the analysis as an extension of the experiment
in which the various steps must be optimized, reprodu-
cible, and confirmed by multiple pieces of evidence. As
in “wet” laboratory protocols, there is often no univer-
sally correct choice: the parameters must be decided
based on the question and the data. The results should
be presented given the implicit assumptions of the
methods. Figure 2 shows sample output from RNA-seq,
ATAC-seq, and ChIP-seq to give the reader an idea of
what the data look like.

Differential analysis
The simplest analysis involves a pairwise comparison be-
tween two samples or sets of samples. In the field of
rheumatology, this will often, but not always, involve
comparison of healthy to diseased cells. For gene expres-
sion, several algorithms exist to test, for each gene, the
null hypothesis that the expression across the replicates
of two samples is derived from the same distribution
[78]. Because thousands of genes are compared in paral-
lel, these algorithms often report a FDR to account for
multiple hypotheses. In SSc, one might ask which genes
are differentially expressed between fibrotic patients vs
healthy control tissue [31] or treated vs untreated pa-
tients [33]. For DNA methylation, DMRs reflect changes
in the methylation rate across windows covering many
individual methylation sites [44]. For example, changes
in the methylation status between T cells in lupus com-
pared with health are thought to reflect changes to the
regulation of adaptive immunity [51]. Pairwise compari-
son of peaks, regions of enrichment for the feature of
interest, reflecting the chromatin state is less well de-
fined. Complexity arises when determining which re-
gions to compare since the peaks calls from one sample
will not necessarily align with those in another. Simply
assessing overlap of peaks is vulnerable to thresholding
issues and differing levels of signal-to-noise ratios across

samples: thus, peaks across samples are generally merged
and the relevant scores are recalculated for the merged re-
gions. Differential chromatin state reflects the opening,
closing, or activation of cis-regulatory elements between
samples, but these patterns may be more complicated
than can be captured by a pairwise comparison.

Beyond pairwise comparisons
Often, differential analysis is not sufficient to cover the
diversity or dimensionality of the samples in rheumatol-
ogy. This may be the case when comparing multiple
patient samples with disease subtypes [22] or when col-
lecting multiple samples from different tissues or differ-
entiation states [13, 36]. In these cases, supervised
classification may be used when the labeling (e.g., clin-
ical subtype) of samples is known. Otherwise, clustering
provides an unsupervised option that does not rely on
prior assumptions in order to address the question. Both
samples and genes may be clustered based on their similar-
ity by Pearson’s correlation, although there are alternative
distance metrics. Milano et al. [22] used hierarchical clus-
tering to group SSc patients by intrinsic gene expression.
In contrast, k-means clustering was used to group en-
hancers based on H3K4me1 intensity across hematopoiesis
[36]. Clustering of genes can also be used to categorize the
coregulation of genes or regulatory elements. ImmGen ex-
ecuted a substantial effort of this sort to identify modules
of coregulated genes across numerous immune cell types
and link them to candidate regulators [79]. In human
disease, we used the correlation of expression across
macrophage samples isolated from the joints of RA pa-
tients to identify gene modules that may be associated with
disease subtype (Mandelin et al, accepted). Similarly,
Olsson et al. [80] use an iterative filtering approach to
identify the most coregulated genes for clustering of single-
cell data. Alternatively, assignment to meta-genes (or regu-
latory profiles) can be used to capture the major patterns
of regulation across conditions, such as that seen by non-
negative matrix factorization of gene expression through
microglia development [40]. As the data sets get larger,
dimension reduction methods enable visualization of
samples as points in a graph of two-dimensional space. For

Table 1 Different assays for functional genomics, common protocols, format of the data after processing, and application to the
GRN

Assay Protocol Processed data format Direct application to GRN

Gene expression RNA-seq, microarray Table of samples (columns) by genes (rows) Output

Chromatin state ChIP-seq, ATAC-seq List of peaks Nodes

Chromatin interactions Hi-C, ChIA-PET, GAM Matrix of interactions Edges

DNA methylation BS-seq List of methylated sites Nodes

Single-cell technology scRNA-seq Table of cells (columns) by genes (rows) Discriminate different GRNs

GRN gene regulatory network, RNA-seq RNA-sequencing, ChIP-seq chromatin immunoprecipitation followed by high-throughput sequencing, ATAC-seq Assay for
Transposase Accessible Chromatin followed by high-throughput sequencing, Hi-C high-throughput chromosome conformation capture, ChIA-PET Chromatin
Interaction Analysis by Paired-End Tag Sequencing, GAM genome architecture mapping, BS-seq bisulfite sequencing, scRNA-seq single-cell RNA-sequencing
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Fig. 2 (See legend on next page.)
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instance, principal components analysis (PCA) of endogen-
ous tissue-resident macrophage populations compared with
those differentiated from bone marrow transplants after
irradiation demonstrated the proximity of the chimera cells
to their reference populations [13]. In addition, t-
distributed stochastic neighbor embedding (tSNE) is
commonly used for visualization of single-cell data,
as in the dissection of DC and monocyte subpopula-
tions in blood [37]. In other cases, it may be useful
to compare the samples of interest to related data in
order to better demarcate the genes involved. By in-
cluding additional samples, researchers identified a
consistent interferon signature between SSc and SLE
blood samples [81] and distinguished between pulmonary
fibrosis and hypertension in SSc through comparison with
unrelated interstitial lung disease samples [23]. Alterna-
tively, a meta-analysis may be used to indirectly compare
the relevant genes between data sets; for example, to de-
termine how well a mouse model of lupus reflects human
disease [27] or to characterize which patients in a pub-
lished cohort share a signature associated with imatinib
response [82]. In practice, a combination of these tech-
niques is used to address different questions and provide a
robust analysis of the data. However, to fully capture the
underlying GRNs, one must integrate different data types
and use more sophisticated approaches.

Modeling gene regulatory networks
The purpose of modeling GRNs is to understand the
overall scheme for the observed changes between sam-
ples. Typically, this means integrating data from a variety
of sources on expression, methylation, and chromatin
state. While individual changes in any one of these pro-
files may be subject to random change and not con-
served by evolution, the global shape of the GRN should
be fundamental to the identity of the cell. The nodes of
the graph that constitute the GRN represent the cis-
acting and trans-acting regulatory factors, while the
edges represent interactions between them, such as the
binding of TFs to regulatory elements or the looping of

promoters and enhancers. Gene expression can be
thought of as the output of these graphs; changes in
expression indicate changes in the GRN, but may be of
limited utility on their own in distinguishing between
the many possible explanations. Given enough samples,
gene expression may be used to implicate TF activity
within a network as done by the Ontogenet algorithm
developed by ImmGen to identify lineage-specific regu-
lation [7] and by a network approach to a meta-analysis
SSc cohort [28]. Alternatively, the chromatin state can
provide additional depth and the ability to quantify the
changes between conditions. By first choosing an assay
to anchor the analysis—for example, peaks identified
from the ATAC-seq data—one can then annotate these
regions based on the remaining assays to identify pro-
moters, poised enhancers, and active enhancers. The
next step is to categorize the regions that change state
between conditions. This method can be used to assess
the degree of change across differentiation [83], environ-
ment [12, 13], or time [40]. One challenge in construct-
ing the GRN is assigning cis-regulatory elements to the
genes they regulate [84]. This is typically done by phys-
ical proximity, although this may not be reliable [55].
Another option is to use Hi-C or ChIA-PET data as
proof of interactions between enhancers and gene pro-
moters [63, 64]. Nodes at the apex of the GRN are
enhancers or TFs that are involved in the regulation of
other regulatory factors, such as lineage-determining
TFs that specify the cell’s identity and pioneer TFs that
bring about changes in the chromatin state [46]. Identifi-
cation of these factors may be tantamount to defining
the whole GRN. For example, identification of overrep-
resented TF binding motifs in the DNA sequence of en-
hancers based on their pattern of usage and expression
of the associated TF family members has been used to
implicate TFs associated with specification of cell types
in hematopoiesis and environmental signals in tissue
specificity [13, 36]. Similarly, by comparing gene expres-
sion and the dynamics of enhancers through T-cell
development, Kitagawa et al. [83] implicated Satb1 in

(See figure on previous page.)
Fig. 2 Sample output from functional genomic assays. Data generated from lung alveolar macrophages (blue) and bone marrow monocytes (grey)
isolated from mice [13]. a Genome browser view of raw data from ChIP-seq (H3K4me2, H3K4me1, H3K27ac), ATAC-seq, and 3′-biased RNA-seq in 50 kb
locus around RAMP1 and CCR2/CCR5. Highlighted regions from left to right represent: promoter, active intragenic enhancer, and 3′ end of RAMP1
(blue); poised intergenic enhancer and promoter/3′ end of CCR2 (gray); and promoter/3′ end of CCR2 (yellow). Genomic coordinates given above and
scale of each track indicated on the left. Genes represented by blue lines below: thin lines for introns, medium lines for untranslated regions (UTRs),
thick lines for exons; arrows on the gene body specify gene direction. b Quantitative measures of functional elements in a. Promoter usage is given by
H3K4me2, enhancer usage by H3K4me1, enhancer activity by H3K27ac, chromatin accessibility by ATAC-seq, and gene expression by RNA-seq. Values
represent normalized density (read count per kb region length per million reads) for ATAC-seq and ChIP-seq, and normalized CPM (counts per million
reads) for RNA-seq (note varying scale). RAMP1, example of lung-specific gene with constitutive promoter. CCR2, example of highly monocyte-specific
gene with monocyte-specific promoter and enhancer. CCR5, example of nonexpressed gene with low promoter activity. c Heatmaps clustered into
lung-specific and monocyte-specific functional elements indicating how data from individual genes are integrated into global analyses. Differential
enhancer usage measured by absolute value of H3K4me1 in 6575 regions and differential gene expression measured by relative value of RNA-seq in
3348 genes. ATAC-seq Assay for Transposase Accessible Chromatin followed by high-throughput sequencing, RNA-seq RNA-sequencing
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regulatory T-cell specification. The key factors of GRNs
are likely to provide effective therapeutic targets depend-
ing on their relationship to disease.

Understanding the disease mechanism
Given a well-designed study, the differences in GRNs be-
tween samples should reflect the underlying disease
mechanism. In effector cells, the GRN will explain how
the cells are malfunctioning to enact disease and may
even account for the cause, offering an attractive target
for therapies. Sets of genes, whether arrived at through
differential analysis, clustering, or other approach, may
be compared to gene annotations to find enriched path-
ways or processes, as done to label gene modules in an
SSc meta-analysis [28]. The gene ontology (GO) annota-
tion is popularly used for this purpose, although it is
limited by the underlying database (some genes may be
unannotated) and biased by the more common cell types
used to build this database. There has been some success
in linking key sets of genes to disease severity [85] or re-
sponse to treatment [33] using training (to identify the
predictive genes) and testing (to validate their efficacy)
cohorts. These approaches are likely to be improved
with more data on cell-type-specific and tissue-specific
populations. Moreover, changes in the GRN of a cell
may be compared to publicly available databases to find
similarities associated with shared triggers. For example,
the LINCS website offers a similar function to recognize
common signatures caused by specific cellular perturba-
tions [6]. In rheumatic diseases with a genetic compo-
nent, the causative single nucleotide polymorphisms
(SNPs) are often found in noncoding regions where they
have an impact on epigenomic regulation by directly or
indirectly affecting TF binding [46]. When these SNPs
are associated with changes in gene expression, termed
eQTLs, they can be used to implicate cell types that are
likely to play a role in disease, such as T-cell genes in
RA and B cells in lupus [86, 87], although the underlying
mechanism is not always clear. To uncover the molecular
link between SNPs and disease, two studies which used
data from genome-wide association studies (GWAS) and
chromatin assays of multiple cell types found were able to
implicate high-confidence causal SNPs that have the po-
tential to disrupt regulatory elements [88–90]. But these
studies, limited as they are by the sensitivity of GWAS
and generic chromatin profiles from unrelated donors, are
just the beginning.

Big future
In the future, functional genomics approaches will be-
come more prevalent in rheumatology. Certainly, the
next review on a similar topic will have many more
examples within the field on which to draw. Advances in
other fields will influence how we view rheumatic disease

and vice versa. As these assays become more popular,
there are likely to be changes in their uses and scope.

Even bigger data
As the technology matures, the experiments will become
cheaper and of even higher throughput. Rather than
pairwise comparisons of test vs control, this will lead to
larger data sets as more samples or single cells are
assayed in a given experiment. In mouse models, this
will enable more thorough modeling of GRNs by com-
paring the evolution of closely related populations at
multiple conditions or time points. Human studies
should include larger cohorts of patients and focus on
identifying clinical subtypes in the pathogenesis of dis-
ease. Moreover, multiple forms of genomic data will be
collected for each individual sample so that genetic vari-
ation can be directly associated with changes in the tran-
scriptional and epigenomic profile. This is in contrast
with the current situation where most epigenomic data
from humans treat different individuals as replicates
without the power to characterize individual variation.
Similarly, whole tissue samples and in vitro cultures will
be abandoned in favor of assays that focus on the cell
type(s) of interest at multiple time points, states of
differentiation/activation, or disease progression. With
the advance in efficiency of assays, there will be a corre-
sponding expansion in data available online.

Interactive public databases and user-friendly analysis
programs
As already described, several concerted efforts already
exist to collect data sets for public consumption. Cur-
rently, they are limited in the scope of the samples and
the usefulness to the average researcher. Although most
journals require authors to submit their data to a pub-
licly available database, most biologists do not have the
skills, time, or interest to find and use this raw data. In
the future, when these databases reach a critical mass in
the field of rheumatology, it will increasingly become
more valuable for researchers to interact with them.
Likewise, the databases will evolve to offer more user-
friendly interfaces so that even the less tech-savvy users
can find the information for which they are searching.
Moreover, as the technology matures, increasingly more
programs have become available that allow amateurs to
peruse data and perform conventional analyses. Online
programs to identify enriched GO terms and pathways
are particularly prevalent, even for intergenic genomic
regions [84]. There is even software with graphical user
interfaces for sequencing pipelines (https://usegalaxy.org/)
and clustering (https://software.broadinstitute.org/mor-
pheus/). The challenge here is that they can be so easy to
run that the user is unaware of the assumptions being
made: this is why they do not replace training in
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functional genomics analysis. As the amount of data avail-
able increases and the bioinformatics methods become
popularized, the skill set of researchers will evolve in kind.

Integration of computational approaches
At some point in the future, the distinction between com-
putational biologists and other biologists will disappear.
Already, young scientists are being taught quantitative
methods and how to use bioinformatics tools as part of
their general training in biology. In the future, a degree in
biology will de facto include an education on computer
science and statistics. As the average level of computa-
tional aptitude is raised, researchers will handle their own
data throughout the processing and analysis stages. The
bioinformatics capabilities of biologists and the accessibil-
ity of computational tools will dovetail to empower a pro-
gressively larger proportion of the community. Any
competent researcher in functional genomics will be profi-
cient at both the “wet” and “dry” components, meaning
that advances in analysis will be synonymous with ad-
vances in experimental technique. As a result, the field of
computational biology will become obsolete along with
the value of so-called bioinformatics cores. Research in
the intersection of rheumatology and genomics will be
performed by interdisciplinary researchers or equal collab-
orations between rheumatologists and genomic investiga-
tors specializing in the cell type or tissue of interest.

Conclusions
The goal of this review is to provide an overview of
functional genomics and the challenges and possibilities
inherent in big data. This overview comes at a time
when genomics assays are widespread throughout bio-
logical fields but have yet to be fully taken advantage of
in the field of rheumatology. This may be because it is
not obvious to researchers how to make use of these
data in a manner that extends beyond an exploratory
study with descriptive results, or it may be because re-
searchers are overwhelmed by the plethora of options
and do not know where to begin. Therefore, the review
has broken down functional genomics research into sev-
eral stages. First, designing the study to best reflect the
question of interest. Next, understanding the diverse
data types that can be integrated into the following
analysis. The bioinformatics section covers multiple ap-
proaches to be used in tandem to better model the
underlying GRNs of disease. Finally, the review offers a
future vision of the inevitable expansion of functional
genomics into rheumatology.
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