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Abstract
Background: The high heterogeneity in the symptoms and severity of COVID-19 makes it challenging to
identify high-risk patients early in the disease. Cardiometabolic comorbidities have shown strong
associations with COVID-19 severity in epidemiologic studies. Cardiometabolic protein biomarkers,
therefore, may provide predictive insight regarding which patients are most susceptible to severe illness
from COVID-19.

Methods: In plasma samples collected from 343 patients hospitalized with COVID-19 during the �rst
wave of the pandemic, we measured 92 circulating protein biomarkers previously implicated in
cardiometabolic disease. We performed proteomic analysis and developed predictive models for severe
outcomes. We then used these models to predict the outcomes of out-of-sample patients hospitalized
with COVID-19 later in the surge (N=194).

Results: We identi�ed a set of seven biomarkers predictive of admission to the intensive care unit and/or
death (ICU/death) within 28 days of presentation to care. Two of the biomarkers, ADAMTS13 and VEGFD,
were associated with a lower risk of ICU/death. The remaining biomarkers, ACE2, IL-1RA, IL6, KIM1, and
CTSL1, were associated with higher risk. When used to predict the outcomes of the future, out-of-sample
patients, the predictive models built with these biomarkers outperformed all models built from standard
clinical data, including known COVID-19 risk factors.

Conclusions: These �ndings suggest that proteomic pro�ling can inform the early clinical impression of a
patient’s likelihood of developing severe COVID-19 outcomes and, ultimately, accelerate the recognition
and treatment of high-risk patients.

Background
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has resulted in millions of deaths and persists as a global health threat [1]. COVID-19 causes a spectrum
of symptoms, from mild upper respiratory tract infection to severe acute respiratory distress syndrome
(ARDS) and death [2–4]. Most patients who develop severe COVID-19 deteriorate after one week of
symptom onset [5]. As existing viral modifying therapies, such as monoclonal antibodies, are most
effective when given before patients develop critical symptoms [6], early recognition is crucial to the
triage and treatment of severe cases.

While little progress has been made in the development of tests that reliably predict which patients will
suffer poor outcomes from COVID-19 (e.g., need for intensive care, assisted ventilation, septic shock,
multiorgan system dysfunction, or death) [7], the presence of certain comorbid conditions, including
higher body mass index (BMI) [8–13], coronary artery disease [14–16], chronic kidney disease [17–22],
and type 2 diabetes [18, 23–26], can help identify the patients most susceptible to severe forms of
COVID-19.
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Circulating protein biomarkers re�ect underlying physiologic or disease states and can serve as
measurable indicators of disease severity for prognostication in clinical practice. Interrogating the
relationship between COVID-19 outcomes and protein biomarkers previously implicated in
cardiometabolic disease may yield actionable insights regarding how common cardiometabolic
comorbidities contribute to COVID-19 pathogenesis and, ultimately, improve our ability to identify which
patients are most likely to suffer poor outcomes.

Methods

Study design
During the �rst wave of the pandemic (March 10 to June 1, 2020), we collected discarded blood samples
from patients who presented to care (i.e., �rst contact with the healthcare system) with COVID-19
symptoms and were subsequently hospitalized with PCR-con�rmed SARS-CoV-2 infection at
Massachusetts General Hospital (MGH), a large academic hospital in Boston, Massachusetts. In these
samples, we measured 92 protein biomarkers in the Olink Target 96 Cardiovascular II panel [27]. We
performed proteomic analysis and developed predictive models for the combined outcome of death or
admission to the intensive care unit (ICU/death) within 28 days of presentation to care in patients
hospitalized early in the surge, between March 10 and April 21, 2020 (“in-sample” group; n = 343). We
then used these models to predict the outcomes in a separate sample of patients hospitalized with
COVID-19 later in the surge, between April 22 and June 1, 2020 (“out-of-sample” group; n = 194).

Data collection
Details of the hospitalization, past medical history, and demographic characteristics were collected for
each patient by manual chart reviews. Hospital laboratory tests performed within three days of
presentation to care were retrieved electronically through the Enterprise Data Warehouse, a repository
derived from electronic health records. We excluded hospital laboratory tests with a missing rate greater
than 30% and imputed those remaining with the median of the non-missing values (mean missing rate = 
13%). Study procedures were approved by the Mass General Brigham (formerly Partners) Human
Research Committee, the governing institutional review board at MGH.

Plasma collection and proteomic assays
Blood samples were collected in EDTA tubes and processed within three days of collection in a biosafety
level 2 + laboratory. Whole blood was centrifuged at 2800 rpm for 10 minutes. Plasma samples were
extracted and stored at -80°C. Prior to plating, samples were treated for two hours with 1% TritonX-100 at
room temperature for virus inactivation. The Olink reagents were based on Proximity Extension Assay
technology. Measurements were translated into normalized protein expression (NPX) units. Sample
plates passed quality control if the standard deviations of internal controls were < 0.20 NPX and
individual samples were < 0.30 NPX from the median value of the internal controls [27]. A total of 537
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samples (95%) passed quality control. All 92 protein biomarkers were detected with intra-assay
coe�cient of variance (CV) < 15% (mean 4%) and inter-assay CV < 30% (mean 10%).

Statistical analysis
We performed all statistical analyses in Python version 3.9.2 and R version 4.0.5. To account for non-
normality in the raw data, we applied rank-based inverse normal transformation for feature selection,
modeling, and P value calculation. To preserve interpretability, the odds ratios (ORs) shown in the volcano
plot and correlation matrix were calculated after standardizing the data to have a mean of 0 and
standard deviation of 1. To account for multiple testing, the threshold P < 0.05/116 hospital laboratory
tests and biomarkers = 4x10− 4 was used to determine signi�cance.

To uncover mechanistic links, we performed a core enrichment analysis using QIAGEN Ingenuity Pathway
Analysis (IPA; Ingenuity Systems, Redwood City, CA) by matching a proteomic dataset, consisting of P
values and ORs for each protein biomarker, with curated content of the Ingenuity Knowledge Base. We
generated reports for molecular networks and canonical pathways, highlighting upstream regulators and
pathways relevant to the observed changes, along with their predicted impact on downstream biological
or disease processes.

Predictive modeling
To identify the subset of variables with the greatest predictive value for the logistic regression model, we
ranked all variables by the frequency with which they were selected by LASSO (least absolute shrinkage
and selection operator) regression when repeated across separate, random subsets of the in-sample data
and different shrinkage parameters [28]. To identify the best model, we used an all-possible-regressions
approach with these top-ranked variables. We used 5-fold strati�ed cross-validation within the in-sample
data to test the models formed by every possible combination of top-ranked variables. We then plotted
the average area under the receiver operating characteristic curve (AUC), with the models sorted by the
number of variables they included. The model that formed the elbow at which the plot of increasing AUC
versus model size began to plateau was considered the best model, achieving the greatest performance
without over-�tting the in-sample data. We performed this analysis with and without the 92 protein
biomarkers and compared the AUCs of the best models built with and without the biomarkers using a
two-sided DeLong test [29]. We repeated the modeling process using random forest models and using the
Boruta algorithm to initially rank the variables by signi�cance [30]. Data from the out-of-sample patients
was not used at any point in the feature selection and modeling process.

Results

Characteristics of the patients
Compared to the in-sample group, the out-of-sample group had a similar proportion of patients who died,
but a smaller proportion of patients who were admitted to the ICU (Fig. 1). The out-of-sample group had a
larger proportion of self-reported non-Hispanic White and non-Hispanic Black/African-American patients,
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a smaller proportion of self-reported Hispanic patients, a lower average BMI, higher levels of D-dimer,
lower levels of lactate dehydrogenase, and lower levels of creatine kinase relative to the in-sample group.
Patients who died or were admitted to the ICU had a higher average BMI and higher levels of D-dimer,
LDH, C-reactive protein (CRP), and ferritin compared to those alive and not admitted to the ICU after 28
days of presentation to care (Table 1).

Table 1 Patient characteristics strati�ed by ICU/death outcome.
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Patients who suffered the ICU/death outcome (de�ned as ICU admission or death within 28 days of
presentation to care) were compared with those who did not suffer ICU/death across demographic
factors, clinical variables, and hospital laboratory tests using a two-sided t-test for continuous variables
and chi-square test for categorical variables. All race/ethnicity categories were self-reported. BMI
categorization: < 18.5 kg/m2 for underweight, 18.5–24.9 kg/m2 for normal weight, 25.0–29.9 kg/m2 for
overweight, and ≥ 30.0 kg/m2 for obese. Standard deviation, SD; African American, AA; body mass index,
BMI; coronary artery disease, CAD; chronic obstructive pulmonary disease, COPD; C-reactive protein, CRP;
lactate dehydrogenase, LDH.

Cardiometabolic protein biomarkers
To evaluate the relative importance of each of the 92 protein biomarkers and the 24 hospital laboratory
tests with respect to ICU/death, we built a logistic regression model, adjusted for age, gender, BMI, and
self-reported race/ethnicity, for each biomarker and hospital laboratory test in the in-sample group (Table
S1). The protein biomarkers comprised 31 of the 36 signi�cant associations (P < 4⋅10− 4) with ICU/death
(Fig. 2). The �ve hospital laboratory tests with signi�cant associations included LDH, CRP, procalcitonin,
aspartate aminotransferase, and alanine transaminase, with standardized odds ratios (ORs) ranging
from 1.8 to 3.2 (Fig. S1).

We evaluated how the biomarkers that were signi�cantly associated with ICU/death correlated with one
another and with the hospital laboratory tests, comorbidities, and demographics (Fig. 3). The largest
cluster included 16 biomarkers which were positively associated with ICU/death (with standardized ORs
ranging from 1.4 to 5.2) and showed positive correlations with type 2 diabetes, chronic kidney disease,
and cardiac disease (Fig. 3: Box A). This cluster also showed signi�cant positive correlations with
troponin, blood urea nitrogen, creatinine, procalcitonin, and D-dimer (Fig. 3: Box B) and negative
correlations with estimated glomerular �ltration rate, albumin, hematocrit, and hemoglobin (Fig. 3: Box C).
A smaller cluster of �ve biomarkers (ADAMTS13, SCF, FABP2, VEGFD, and TGM2) was negatively
associated with ICU/death and negatively correlated with the majority of the hospital laboratory tests
(Fig. 3: Box D). Among all 36 signi�cant biomarkers and hospital laboratory tests, this cluster included
the only markers associated with lower risk of ICU/death (with standardized ORs ranging from 0.40 to
0.64). Canonical pathways identi�ed by IPA included the tumor microenvironment, IL-10 signaling, airway
pathology, granulocyte adhesion, and wound healing. Implicated functional networks included
cardiovascular and organismal development, lipid metabolism, and protein synthesis (Tables S2 and S3).

Prediction in out-of-sample patients
For both the logistic regression and random forest, the models built with the protein biomarkers
outperformed the models built without the biomarkers in the out-of-sample patients (Fig. 4). The best-
performing models consisted of a common set of nine variables (Table S4), which included two hospital
laboratory measurements, procalcitonin and LDH (both of which were included in the best models
without the biomarkers), and seven biomarkers: IL-1RA, CTSL1, ADAMTS13, VEGFD, KIM1, ACE2, and IL6
(Fig. 4A). The AUCs of the best models built with these nine variables were greater than that of the best
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models built without the protein biomarkers (logistic regression: 0.82 versus 0.70; P = 0.001; random
forest: 0.83 versus 0.69; P = 3⋅10− 5). We continued to observe superior performance by the models built
with the protein biomarkers when excluding patients with more than 14 days between presentation to
care and sample collection date (Fig. S2 and Table S5), when excluding patients with sample collection
on or after the ICU admission date (Fig. S3), and when randomly splitting patients into the in-sample and
out-of-sample group (Fig. S4). The models with the protein biomarkers also outperformed the models
without biomarkers in age-strati�ed and gender-strati�ed analyses (Fig. S5 and S6). When evaluating the
model performance in the two most prevalent self-reported categories of race/ethnicity, the improvement
in performance of the model with biomarkers was greater in the Hispanic population than the non-
Hispanic White population (Fig. S7). We repeated the analysis using ICU admission as the outcome and
death as the outcome. The results for the ICU admission outcome were similar to those for the combined
ICU/death outcome (Fig. S8 and Table S6), while results for the death outcome showed no signi�cant
difference in performance between the models built with and without the biomarkers (Fig. S9 and Table
S7).

Discussion
We identi�ed protein biomarkers previously implicated in cardiometabolic disease that were signi�cantly
associated with severe illness from COVID-19, shedding light on biological pathways involved in COVID-
19 pathology. We demonstrated that these protein biomarkers, measured early in the disease course, were
more predictive of ICU admissions or death than established clinical risk factors. These �ndings suggest
that proteomic pro�ling could improve the triage and treatment of patients hospitalized with COVID-19.

We found a set of seven protein biomarkers (IL6, IL-1RA, KIM1, ACE2, CTSL1, ADAMTS13, and VEGFD),
along with two hospital laboratory tests (procalcitonin and LDH), that were predictive of ICU/death. These
circulating biomarkers are likely related to host and viral factors in�uencing disease, including
in�ammation (IL6, IL-1RA) [31, 32], thrombosis (ADAMTS13, VEGFD) [33, 34], and viral entry (KIM1, ACE2,
CTSL1) [35–37]. Elevated in�ammatory markers, including IL-6 [31, 38–40], CRP, ferritin, and D-dimer
have been reported in severe COVID-19 [41]. Dexamethasone, an anti-in�ammatory medication, and IL-6
receptor antagonists are current COVID-19 therapies shown to reduce the risk of poor outcomes in
critically ill patients [42, 43].

LDH, D-dimer, �brinogen, CRP, and low platelets, markers of thrombotic risk, have been reported to be
associated with poor prognosis in COVID-19 [44]. This observation is in keeping with the association
between lower ADAMTS13, an enzyme that degrades von Willebrand factor, and poor outcomes found in
our study and other reports [33]. Low levels of ADAMTS13 have also been described in thrombotic
thrombocytopenic purpura and syndromes of thrombotic microangiopathy caused by infection [45].
Microangiopathic thrombosis has been seen in autopsies of patients who have died of COVID-19, similar
to what has been observed in other ARDS-causing diseases [46].
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Three of the identi�ed biomarkers, KIM1, ACE2, and CTSL, are involved in host-virus interactions. KIM1, an
indicator of renal insults, plays a role in viral entry and regulation of the host immune response to viral
infections [47]. ACE2, the cellular receptor for SARS-CoV-2 [36, 38], undergoes shedding, leading to
circulating ACE2, a biomarker of cardiovascular disease, diabetes, and death in patients with and without
COVID-19 [48, 49]. The association of ACE2 with severity is supported by a recently reported rare genetic
variant that is associated with a 37% reduction in ACE2 expression and a 40% reduction in risk of severe
COVID-19 [50]. Finally, CTSL is one of the lysosomal proteases that can cleave the SARS-CoV-2 spike
protein, a step necessary for cellular entry [37, 51].

The logistic regression and random forest models built with these seven biomarkers signi�cantly
outperformed all models developed from the clinical features and laboratory tests, suggesting that the
biomarkers provide unique predictive value not captured by patient data extracted from the electronic
health record. The biomarkers replaced known clinical risk factors for severe illness that had been
selected in the model built without biomarkers (i.e., BMI, D-dimer, CRP, ALC, and troponin). Notably, BMI
was replaced by IL-1RA, a biomarker that was strongly correlated with BMI (Fig. 3). IL-1RA, known to be
highly expressed in white adipose tissue [52] and upregulated during in�ammation, could serve as a
better proxy than BMI for obesity-driven COVID-19 risk.

We recognize that standards of care and resource availability evolved quickly during the �rst wave of the
pandemic. As data on the e�cacy and side effects of COVID-19 therapies accrued, the use of remdesivir
and hydroxychloroquine increased and decreased, respectively. Prone positioning, applied
heterogeneously early in the pandemic, eventually became standard of care. It is possible that these
exogenous factors contributed to differences in outcomes between the in-sample and out-of-sample
cohorts. We expect that, as the SARS-CoV-2 virus mutates, the virulence pathways and host responses
may change, as noted by both the delta and omicron variants [53]. The patients hospitalized with COVID-
19 today are generally younger and consist of both unvaccinated and vaccinated patients with
breakthrough infections or repeat infections. Newer COVID-19 therapies have emerged, which could
in�uence the proteomic pro�le of patients and its association with COVID-19 severity.

By evaluating the models in a sample separate from that used to develop the models, we showed that the
predictive value of the biomarkers was robust to changes in clinical protocols and the patient
characteristics during the highly dynamic study period. Compared to studies that develop and test
predictive models within the same patient population, our approach provided a more rigorous
assessment of the generalizability of our models and the conclusions derived from our analysis. As one
of the largest proteomic analyses performed in COVID-19 patients, we were able to conduct age-strati�ed,
gender-strati�ed, and race/ethnicity-strati�ed analyses, demonstrating the strong performance of the
model with the protein biomarkers across various demographic strata (Fig. S5, S6, and S7)

Similar to previous COVID-19 analyses [54–56], this study was limited by the precision with which COVID-
19 severity could be captured and COVID-19 related outcomes could be tracked. We used ICU admission
and death as proxies for severe illness from COVID-19; however, patients may have died or been admitted
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to the ICU for reasons independent of their COVID-19 status. Patients discharged alive could still have
died outside the hospital or be admitted to ICUs at other hospitals. Another limitation was that the time
between symptom onset and blood sample collection was not uniform across all patients. Despite this,
we observed similar results when excluding patients with sample collection dates that were on or after
the date of ICU admission or greater than 14 days following presentation to care (Fig. S2, Fig. S3, and
Table S5). Finally, by only collecting discarded blood samples at a single time point, we were unable to
perform longitudinal analyses; however, biomarkers that can be interpreted with single timepoint
measurements may be more useful in clinical settings where only one lab draw is available.

Conclusions
In this study, we identi�ed a set of biomarkers that yield both mechanistic insight regarding how
cardiometabolic disease contributes to COVID-19 pathology, as well as predictive value regarding which
patients have the highest risk for severe outcomes. If considered early in the clinical evaluation of
patients with COVID-19, these insights can help clinicians estimate a patient’s cardiometabolic-driven risk,
which, in turn, can inform downstream decisions regarding how to stratify patients across pathways of
clinical care (e.g., in-hospital observation or early admission to ICU) and whether to institute treatments
that reduce the risk of poor outcomes, such as monoclonal antibodies or novel antiviral therapies.
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Characteristics of in-sample and out-of-sample patients. Blood samples were collected from 537 patients
hospitalized with COVID-19 during an early surge in the outbreak, between March 10th and June 1st of
2020. Data from patients who were hospitalized early in the surge (before April 22, 2020) was used to
analyze the cardiometabolic protein biomarkers and develop logistic regression and random forest
models for severe outcomes. These patients comprised the in-sample group (shown in grey). These
models were then used to predict the outcomes of the out-of-sample patients (shown in gold) who were
hospitalized later in the surge (starting April 22, 2020). The in-sample and out-of-sample patients were
compared across various demographic and clinical variables using a two-sided t-test for continuous
variables and chi-square test for categorical variables. All race/ethnicity categories were self-reported.
BMI categorization: < 18.5 kg/m2 for underweight, 18.5 – 24.9 kg/m2 for normal weight, 25.0 – 29.9
kg/m2 for overweight, and ≥ 30.0 kg/m2 for obese. Standard deviation, SD; African American, AA; body
mass index, BMI; coronary artery disease, CAD; chronic obstructive pulmonary disease, COPD; C-reactive
protein, CRP; lactate dehydrogenase, LDH.

Figure 2

Volcano plot of the 92 cardiometabolic biomarkers and 24 hospital laboratory tests. The plot includes, for
each biomarker and hospital lab, the odds ratio on the x-axis and P value (-log10) on the y-axis resulting
from a logistic regression model with ICU/death as the outcome, adjusted for the covariates: age, gender,
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BMI, and self-reported race/ethnicity. To account for non-normality, the P values were calculated after
applying rank-based inverse normal transformation. To preserve interpretability, the odds ratios were
calculated from the data standardized to have a mean of 0 a standard deviation of 1. The threshold P <
0.05/116 hospital laboratory tests and biomarkers = 4×10-4 was used to identify signi�cant results
(shown in red). Nominally signi�cant results (P < 0.05) are shown in green. Standard deviation, SD; C-
reactive protein, CRP; lactate dehydrogenase, LDH.
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Figure 3

Hierarchical clustering and correlation matrix with signi�cant cardiometabolic biomarkers. A heatmap
(top left) and correlation matrix (top right and bottom) for the 31 biomarkers signi�cantly associated with
ICU/death (P < 0.05/116 hospital laboratory tests and biomarkers = 4×10-4). The correlation matrix shows
how the biomarkers, ordered based on hierarchical clustering, correlate with one another (top right) and
how they correlate with the demographic factors, clinical variables, and hospital laboratory tests
(bottom). The color re�ects the magnitude and direction of the Pearson correlation coe�cient. The cells
corresponding to correlations with P > 0.05 were left blank. The P values and odds ratios (OR) reported
for the association of each variable with ICU/death are the same as those shown in Fig. 2. Box A shows
the association of the largest cluster, comprised of 16 biomarkers, with type 2 diabetes, chronic kidney
disease (CKD), and cardiac disease. Boxes B and C show how this cluster correlates with the hospital
labs. Finally, Box D shows correlations between the hospital laboratory tests and a smaller cluster,
comprising the �ve biomarkers that were negatively associated with ICU/death. Standard deviation, SD;
con�dence interval, CI; African American, AA; chronic obstructive pulmonary disease, COPD; coronary
artery disease, CAD; heart failure with preserved ejection fraction, HFpEF; heart failure with reduced
ejection fraction, HFrEF; blood urea nitrogen, BUN; erythrocyte sedimentation rate, ERS; lactate
dehydrogenase, LDH; aspartate aminotransferase, AST; white blood cells, WBC; C-reactive protein, CRP;
absolute lymphocyte count, ALC; estimated glomerular �ltration rate, eGFR.
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Figure 4

Prediction of ICU/death outcome in out-of-sample patients. (A) Violin plots for the set of seven
cardiometabolic protein biomarkers that were included in the best model with biomarkers for both logistic
regression and random forest. The �gure depicts the distribution and box plot of these seven biomarkers,
strati�ed by the ICU/death outcome, in the in-sample patient population. The P values shown for each
biomarker are based on the rank-inverse normalized data, while the odds ratios (OR) are based on the
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data standardized to have a mean of 0 and standard deviation of 1. (B) The predictive performance of
the best models with and without biomarkers in the out-of-sample patients. The �gure shows the receiver
operating characteristic curve and corresponding area under the curve (AUC) for the best logistic
regression (left) and random forest (right) models with biomarkers (gold) and without biomarkers
(bronze) in the out-of-sample patients. The best model with biomarkers, for both the logistic regression
and random forest, included the same set of seven biomarker, shown in (A), along with two hospital labs:
procalcitonin and LDH. All models were developed and trained using only the in-sample data. Thrombotic
thrombocytopenic purpura, TTP; acute respiratory distress syndrome, ARDS.
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