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Circulating apolipoprotein B-containing lipoproteins, notably the low-density lipoproteins,

enter the inner layer of the arterial wall, the intima, where a fraction of them is

retained and modified by proteases, lipases, and oxidizing agents and enzymes.

The modified lipoproteins and various modification products, such as fatty acids,

ceramides, lysophospholipids, and oxidized lipids induce inflammatory reactions in

the macrophages and the covering endothelial cells, initiating an increased leukocyte

diapedesis. Lipolysis of the lipoproteins also induces the formation of cholesterol

crystals with strong proinflammatory properties. Modified and aggregated lipoproteins,

cholesterol crystals, and lipoproteins isolated from human atherosclerotic lesions, all can

activate macrophages and thereby induce the secretion of proinflammatory cytokines,

chemokines, and enzymes. The extent of lipoprotein retention, modification, and

aggregation have been shown to depend largely on differences in the composition of the

circulating lipoprotein particles. These properties can be modified by pharmacological

means, and thereby provide opportunities for clinical interventions regarding the

prevention and treatment of atherosclerotic vascular diseases.
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INTRODUCTION

Atherosclerosis develops in the inner layer of the arterial wall, the intima. Atherosclerosis-prone
locations, such as bifurcations of the coronary arteries, are characterized by a thick extracellular
matrix containing collagen, elastin, and proteoglycans, and the presence of increased numbers of
lipid-laden macrophages since childhood (1–3). Apolipoprotein B (apoB)-containing lipoproteins,
i.e., LDL and remnant lipoproteins, such as small VLDL, IDL, and chylomicron remnants, cross the
endothelial cell layer from the circulation into the intima (4), where they can become entrapped by
the dense extracellular matrix (5–7).

A fraction of the lipoproteins can be modified in the intima by oxidizing agents and enzymes,
proteases, and lipases secreted by local cells (5, 6). Such modifications of the lipoprotein structure
have been shown to induce aggregation and fusion of lipoprotein particles (8, 9). Atherosclerotic
lesions contain lipoproteins that show signs of extensive oxidation, proteolysis, and lipolysis of the
various lipid molecules and that are often aggregated [recently reviewed in (10)]. The modified
lipoproteins can be taken up by macrophages, which are converted into foam cells. The initial
lesions of atherosclerosis, the fatty streaks, are characterized by the presence of numerous foam
cells and can appear at any age, independent of risk factors for atherosclerotic cardiovascular
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disease (11). Moreover, in contrast to more advanced lesions, the
fatty streaks are potentially fully reversible (12).

During atherogenesis, macrophages, dendritic cells, mast cells,
and T lymphocytes are recruited into the intima in increasing
numbers (13, 14). In the developing lesions, the macrophage
foam cells die whereby the remains of the dead cells and the lipids
they contained form a “necrotic lipid core.” As the necrotic core
of the atherosclerotic plaque grows, the lumen of the coronary
artery progressively narrows, and the myocardial tissue becomes
progressively hypoxic (15). Simultaneously, the intimal layer
between the endothelium and the necrotic lipid core, called
the fibrous or collagenous cap, becomes progressively thinner
(16) due to a decrease in the numbers of extracellular matrix
producing smooth muscle cells (SMCs) and due to enhanced
secretion of collagen-degrading enzymes by macrophages and
macrophage foam cells. A thin-cap atherosclerotic lesion is
vulnerable to rupture and it often causes an acute occluding
thrombus in the coronary artery with subsequent ischemic
myocardial damage, i.e., an acute myocardial infarction (17).

Modification of lipoproteins in the intima is one of the
first steps in atherogenesis. The modified lipoproteins and the
various proinflammatorymolecules generated during lipoprotein
modification influence the local cells and can initiate a vicious
cycle of lipoprotein modification, lipid accumulation, and
inflammation [reviewed in (18)]. In this review we discuss the
distinct types of lipoprotein modifications and the consequences
of the lipoprotein modifications on local cells as well as the
development and progression of atherosclerosis.

Lipoprotein Modification
To cross the endothelium, apoB-containing lipoproteins can bind
to activin receptor-like kinase 1 and scavenger receptor B1 on the
surface of the endothelial cells (ECs) lining the vessels after which
they are transported by transcytosis into the intima [reviewed in
(19)]. In the intima, the lipoproteins bind via ionic interactions to
the negatively charged proteoglycans of the extracellular matrix
(5–7) and can be attacked by various proteases, lipases, and
oxidizing agents and enzymes, as evidenced by lipoproteins
isolated from atherosclerotic lesions having oxidized epitopes
and showing signs of proteolysis and lipolysis [reviewed in (8,
10)]. Of note, the oxidatively modified particles from human
atherosclerotic lesions are more extensively modified than in the
corresponding plasma, raising the possibility that the changes
have been initiated already in the plasma (20). Also, each of
the above-listed types of modification has been shown to induce
lipoprotein aggregation in vitro (8). Aggregation and fusion of
lipoprotein particles increase their affinities of their affinities to
proteoglycans its and induce foam cell formation (8). Moreover,
the aggregation-susceptibility of LDL particles has been linked
with future cardiovascular events in patients having established
atherosclerosis (21, 22). The relative importance of the various
types of lipoprotein modification in atherogenesis remains to
be determined, but regarding the inflammatory potential of the
modified lipoproteins, the products generated during lipoprotein
modification (Figure 1) may be particularly relevant, as will be
discussed in this review.

Atherosclerotic lesions contain both neutral and acidic
proteases and lipases that can modify lipoprotein particles.
Among the proteases are serine proteases, cathepsins, and
metalloproteinases that have been shown to degrade apoB-100
(23–26). Of note, these proteases may also degrade the structural
proteins like collagens in the extracellular matrix and may thus
lead to cap-thinning of the plaques [reviewed in (27)]. The extent
of proteolytic degradation of the protein components of the
lipoproteins depends on the protease: plasmin, for example, can
induce fragmentation of apoB-100 of LDL and does not induce
LDL aggregation and fusion, while cathepsins proteolyze apoB-
100 of LDL into small fragments and induce the generation of
large, fused particles (24, 28, 29). Proteolysis can also promote
lipolytic modifications of the lipoproteins (30). An example of
the combination of proteolysis and lipolysis is enzymatically
modified LDL (E-LDL), which is generated by treating LDL with
a protease, such as matrix metalloproteinase 9 or cathepsin H,
and cholesteryl esterase (31–33).

Extensive oxidation can result in the fragmentation of apoB
(34). Oxidation also leads to changes in the lipoprotein lipids,
leads to the generation of malondialdehyde adducts in the lysine
residues of the proteins, and induces the generation of oxidation-
specific epitopes on the lipoproteins. Unlike proteolytic and
lipolytic modifications, oxidation decreases the interaction
of lipoproteins with proteoglycans. However, oxidized LDL
(oxLDL) has been shown to bind to decorin-coated collagen via
lipoprotein lipase thereby leading to extracellular accumulation
of oxLDL (35). OxLDL also induces foam cell formation via
interaction with various scavenger receptors on macrophages
(36, 37).

Phospholipase A2 (PLA2) is an enzyme that hydrolyzes
phospholipids generating non-esterified fatty acids (NEFAs) and
lysophospholipids. PLA2 comprises several subtypes and can
be found extracellularly as secreted PLA2s, intracellularly as
cytosolic PLA2s, and in the bloodstream as lipoprotein-associated
PLA2 (Lp-PLA2) (38). Lp-PLA2 is produced by hepatocytes, and
also by inflammatory cells such as macrophages, foam cells, and
mast cells, as well as T-lymphocytes in atherosclerotic plaques,
and in the circulation it is mainly associated with LDL (39,
40). The various PLA2s have distinct specificities, group IIa,
group V, and group X PLA2s being able to avidly hydrolyze
phosphatidylcholine on LDL particles, while Lp-PLA2 preferably
hydrolyzes oxidized phospholipids. Lp-PLA2 and several types
of secretory PLA2s have been found in atherosclerotic plaques
and in the normal arterial intima (38, 41–43). Modification of
LDL, IDL, and VLDL with PLA2 increases their affinities to
proteoglycans in vitro (44, 45), and thereby potentially enhances
the retention of LDL particles in the vessel wall. PLA2-modified
LDL also promotes macrophage foam cell formation (46, 47).

Treatment of LDL with an enzyme secreted by different cell
types within the arterial intima, namely the sphingomyelinase
(SMase), leads to conformational changes in apoB-100 and
induces lipoprotein particle aggregation with ensuing increased
proteoglycan binding (44, 48, 49). Secretory SMase implicated
in atherogenesis has an acidic pH optimum, but can hydrolyze
oxidized, PLA2-treated, or proteolyzed LDL at neutral pH (30,
49). In addition, VLDL particles appear to be very susceptible
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FIGURE 1 | Sites of modification in apoB-100-containing lipoproteins. Surface modifications include modifications of apo-B100 by proteases, oxidation by superoxide

anion radicals (O−

2 ), glycosylation by advanced glycosylation end-products (AGEs), binding of malondialdehyde (MDA) adducts, or acetylation (Ac). Phospholipids can

be oxidized as well as hydrolyzed by phospholipase A2 (PLA2 ) to lysophosphocholine (LPC) and a fatty acid (FA), while sphingomyelins can be hydrolyzed by

sphingomyelinase (SMase) to yield ceramides and phosphorylcholines. Core modifications include cholesteryl ester oxidation and well as hydrolysis by cholesterol

esterase (CEase) or lysosomal acid lipase (LAL) to yield unesterified cholesterol and a fatty acid (FA). Triacylglycerol can be hydrolyzed by LAL to diacylglycerol and a

fatty acid (FA).

to hydrolysis and aggregation by SMase (50, 51). Interestingly,
ceramide, the lipolytic product of SMase action, is found
exclusively in very large aggregates (49), such as those formed
in vitro by modification of LDL by SMase at pH 5.5-6 (48).
Generally, the sizes of LDL aggregates after in vitro modification
differ substantially depending on the type of modification and the
conditions used (48, 52). Although the aggregate size can affect
aggregate uptake by, e.g., leukocytes (53), no studies have been
performed to systematically study the effect of aggregate size on
their pro-inflammatory properties either in vitro or in vivo.

Hydrolysis of the core lipids (cholesteryl esters and
triglycerides) of lipoproteins has the potential to induce the

generation of large amounts of NEFAs. The lipolytic hydrolysis
is enhanced if the surface of the particles is also modified, e.g.,
by proteolysis, which allows penetration of some of the core
lipids into the surface membrane of the lipoproteins (54). The
E-LDL is an example of such multiply modified lipoprotein and
antibodies generated against E-LDL bind to extracellular lipids
in atherosclerotic lesions (55). Hydrolysis of cholesteryl esters
has the potential to generate large amounts of cholesterol and
lead to the generation of cholesterol crystals (56), which are a
typical feature of very advanced atherosclerotic lesions (14).
More recently, small cholesterol crystals have been identified also
in early atherosclerotic lesions (57).
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Complement
The complement system is a tightly regulated proteolytic
cascade, a key component of innate immunity comprising
over 30 soluble and membrane-bound proteins that responds
rapidly to clear invading pathogens and damaged host cells, as
well as to limit tissue destruction and initiate tissue healing.
Complement activation is triggered by exposure to endogenous
danger molecules that are released from damaged or dying cells
and called danger-associated molecular patterns (DAMPs) (58).
Depending on the initiation, the complement cascade follows
either the lectin, classical, or alternative pathway. While these
pathways have different activation cascades, they all converge
downstream with the formation of their respective Complement
(C) 3 convertases and the generation of C3a and C3b. If the
complement activation is of sufficient magnitude, the membrane
attack complex C5b-9 is formed. This important innate immune
effector has pore-forming, lytic properties designed to destroy
pathogens and damaged cells (59–61).

Circulating C3 levels were found to be significantly elevated
in patients having familial hypercholesterolemia with subclinical
coronary atherosclerosis, however, there was no correlation
between circulating C3 levels and increased plaque burden,
indicating a local regulation of the C3 in atherosclerotic arteries
(62). Indeed, active components of the C3 complement are
found within the extracellular matrix of human arteries (63).
Complement components, including C3 were also identified
in extracellular lipoproteins isolated from human carotid
atherosclerotic lesions (56), and E-LDL was shown to colocalize
with C5b-9 in human atherosclerotic lesions (55). Potential
triggers of complement activation in the arterial wall include
modified lipoproteins, cholesterol crystals, antigen-antibody
immune complexes, C-reactive protein (CRP), and apoptotic
cells [reviewed in (59, 63–65)]. Importantly, aggregated and
fused lipoproteins isolated from human atherosclerotic lesions
possess complement-activating properties (66). These particles
do not contain immunoreactive apoB-100 but contain both
esterified and unesterified cholesterol, and have sizes ranging
from 100 to 500 nm (33). E-LDL with or without bound CRP,
oxLDL, malondialdehyde-LDL, and oxLDL-immune complexes
have been shown to induce complement activation [reviewed in
(67)]. E-LDL, but not oxLDL, can trigger C1 activation and bind
complement components (68, 69). Factor H, amajor complement
inhibitor, colocalizes in human atherosclerotic lesions with C3d
in the subendothelial proteoglycan-rich layer, while C5b-9 is
found in deeper areas of atherosclerotic lesions suggesting that in
different areas of the lesions the components may differ in their
abilities to regulate complement activation (63).

Foam Cell Formation
Foam cells are the histological hallmark of atherosclerotic
lesions from the very beginning of the lesion development,
and their contribution to atherogenesis remains throughout
the lesion progression (13, 15). They are derived mostly
from macrophages that take up modified and aggregated
lipoproteins and lipoprotein-immune complexes via several
different mechanisms (36). In addition to the macrophages,
also vascular SMCs take up modified lipoproteins and can

become foam cells (70, 71). The various uptake mechanisms
include scavenger receptors that are important particularly in
the uptake of oxLDL, Fc-gamma receptors interacting with
immune complexes, cell surface proteoglycan-aided uptake of
PLA2-modified LDL, and phagocytosis of aggregated LDL and
even cholesterol crystals (46, 72–75). Native VLDL remnant
particles have been shown to induce foam cell formation through
the VLDL receptor pathway in macrophages, and modification
of VLDL particles by acetylation leads to macrophage foam
cell formation via scavenger receptor-mediated uptake of the
modified particles (76).

A specific uptake mechanism in macrophages has been
reported for large LDL aggregates, such as SMase-modified
LDL particles. Thus, aggregated LDL triggers the formation of
extracellular surface-connected compartments into which the
macrophages (77) and dendritic cells (78) secrete lysosomal
enzymes, such as lysosomal acid lipase (LAL) (78–80). The
process leads to a partial hydrolysis of the aggregated LDL
outside the cells and to internalization of the partially
hydrolyzed lipoproteins into lysosomes, where they are fully
hydrolyzed. Actin polymerization and Toll-like receptor (TLR)
4 activation drive the intracellular catabolism of the aggregates
(80, 81). In addition, treatment of LDL with macrophage-
conditioned media containing catalytically active LAL induces
LDL fusion and lipid droplet formation in VSMCs (54). LAL
activity may be particularly prominent in the macrophage-rich
acidic microenvironments observed in human atherosclerotic
lesions (82).

Once lipoproteins have reached the lysosomes, their
components are completely hydrolyzed (Figure 2). Importantly,
cholesteryl ester hydrolysis by LAL results in the formation
of unesterified cholesterol, which will then be re-esterified in
the cytoplasm and packaged into intracellular lipid droplets
characteristic of foam cells (83). Uptake of aggregated LDL
has been shown to lead to accumulation of ceroid, a product
of lipid oxidation consisting of protein-lipid complexes, in
lysosomes (84). Lysosomal oxidation is likely mediated by
iron and can be inhibited by cysteamine (85). On the other
hand, uptake of oxLDL can result in lipid accumulation
in the lysosomes (86, 87) and lead to the formation of
cholesterol crystals in the lysosomes (88). However, the
transformation of macrophages into foam cells may reduce their
atheroinflammatory potential (89).

In vascular SMCs, foam cell formation due to uptake of native
and modified VLDL was shown to depend on the activity of
lipoprotein lipase (90), while the LDL receptor-related protein 1
plays a role in the uptake of aggregated LDL (91). Aggregated
LDL particles increase the release of the soluble form of LDL
receptor-related protein 1 from cultured vascular SMCs, and
from human atherosclerotic plaques in an ex vivo model (92).
Interestingly, the level of the soluble LDL receptor-related protein
1 in the circulating blood is increased in patients with coronary
artery disease (92, 93). When compared with cultured human
macrophages, cultured human SMCs express relatively low levels
of LAL (94). Accordingly, in SMC foam cells, the ingested
neutral lipids tend to accumulate within lysosomes, while in
macrophages they appear as cytosolic droplets.
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FIGURE 2 | Effects of lipoproteins on macrophages and endothelial cells. Upon phagocytosis, modified lipoproteins are hydrolyzed in the lysosomes of macrophages.

Cholesterol is then transported to the ER where it is packaged in lipid droplets for storage. It can also crystalize in the lysosomes, leading to lysosomal dysfunction

and the release of reactive oxygen species (ROS) and cathepsins, which in turn activate cytosolic inflammasomes. NF-κB signaling is induced and the activated

macrophages secrete leukocyte chemotactic molecules, pro- as well as anti-inflammatory cytokines, and proteases. In endothelial cells, lipoproteins can be

transported through the cell via transcytosis, mediated by binding to scavenger receptor B1 (SR-B1) and activin-like kinase 1 (ALK1). If the lipoproteins have been

modified, they can also bind to lectin-type oxidized LDL receptor 1 (LOX-1) and then targeted to the lysosomes after internalization. LOX-1 activation leads to

decrease in nitric oxide (NO) and increase in reactive oxygen species (ROS), the latter being able to trigger NLRP3 inflammasome activation. Activated endothelial cells

increase the expression of adhesion molecules which accelerates leukocyte extravasation, and they also secrete leukocyte chemotactic factors, as well as

pro-inflammatory cytokines.
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While complement activation is usually regarded to be
pro-atherogenic, complement plays also a smoothing role in
mediating the effects of foam cell formation. Thus, while the
complement component C1q recognizes and opsonizes modified
forms of LDL and promotes phagocytosis and efferocytosis in
macrophage foam cells (95, 96), when bound to acLDL or
oxLDL it reduces the release of proinflammatory cytokines from
macrophage foam cells and atherosclerosis inmousemodels (97).
In addition, C1q downregulates both the levels and activities
of apoptosis-related proteins in human and mouse macrophage
foam cells, thereby leading to a measurable increase in the
survival of these cells, which, again, could slow down the build-up
of the necrotic core in the atherosclerotic plaques (95). Further,
factor H, the main regulator of the alternative complement
activation pathway, has been shown to bind to humanmonocytes
and macrophage foam cells and has the potential to reduce
complement activation and inflammation, and to increase the
binding of apoE to these cells. It further increased cholesterol
efflux, and cholesterol-loaded macrophages displayed reduced
transcription of proinflammatory/proatherogenic factors and
increased transcription of anti-inflammatory/anti-atherogenic
factors, thereby indicating that apoE and factor H interact with
monocytic cells in a concerted action and that this interaction
tends to reduce complement activation and inflammation in
atherosclerotic lesions (98).

MODIFIED LIPOPROTEINS INDUCE
INFLAMMATION VIA INNATE IMMUNE
CELLS

Continued accumulation of immunogenic modified lipoproteins
and the attendant pro-inflammatory reactions in the arterial
intima result in the development of atherosclerotic lesions
(99). Thus, atherosclerosis is driven by a chronic, low-grade
inflammation of the vascular wall that continuously attracts
immune cells into the developing atherosclerotic plaques (100).

As the first step in atherogenesis, native lipoproteins enter
the intima by transcytosis, get trapped and modified by enzymes
secreted by resident macrophages and mast cells, as described
above. Minimally modified lipoproteins from the circulation or
modified lipoproteins from the intima can be internalized by
ECs via the lectin-like oxidized LDL receptor 1 (LOX-1) and be
destined for lysosomal degradation, which activates the ECs and
initiates endothelial dysfunction [Figure 2, reviewed in (101)].
ECs also get activated by secreted cytokines and chemoattractants
derived from activated intimal macrophages (101). The activated
endothelium then secretes chemoattractants and increases the
expression of adhesion molecules so aiding the tethering, rolling,
and adhesion steps of the leukocyte diapedesis process. Within
the intima, monocytes differentiate into macrophages or DCs,
and the naïve T cells mature. Macrophages can be of pro-
inflammatory (M1) or anti-inflammatory/pro-resolving (M2)
phenotype, and their phenotype can change in response to
alterations in their microenvironmental conditions [reviewed
in (102)]. The above widely used dichotomous classification
of macrophages into pro- and anti-inflammatory phenotypes

provides a useful framework, but only represents the opposite
ends of a wide spectrum of phenotypes which includes an ever-
increasing number of subtypes, as revealed by modern single-
cell omics technologies. The polarization of macrophages is
mediated by a plethora of extrinsic factors such as cytokines,
and also by intrinsic regulatory mechanisms, such as increased
glycolysis, all of which in various combinationsmay alter the gene
expression profile and reactivity of the macrophages involved
[reviewed in (102, 103)]. The metabolic changes in macrophages
can be altered by ligand-activated transcription factors such as
peroxisome proliferator-activated receptors (PPARs) and liver
X receptors. Once activated, these receptors inhibit the pro-
inflammatory transcription factors NF-κB and AP-1 and thus
downregulate the expression of pro-inflammatory cytokines
such as interleukin (IL)-1β, IL-6, and tumor necrosis factor
(TNF) (104).

DCs and macrophages phagocytose modified LDL, which the
DCs then present to T cells, while the activated macrophages
start to secrete cytokines, chemokines, and enzymes, thus further
activating the endothelium and leading to increasingly diverse
and severe modifications of the trapped lipoproteins (Figure 2).

The modifications of the trapped lipoproteins lead to
the formation of DAMPs, which are recognized by pattern
recognition receptors (PRRs) located on the surface of antigen-
presenting cells, and also on the surfaces of non-immune cells,
such as the ECs. The membrane-bound PRRs include toll-like
receptors (TLRs), scavenger receptors (72), and the receptor for
advanced glycation end-products (RAGE) (105).When activated,
the TLRs recruit adapter proteins to activate two main pathways,
aMyD88-dependent and a TRIF-dependent pathway, that lead to
the production of inflammatory cytokines or type I interferons,
respectively (106). Several TLRs have been shown to play
important roles in atherogenesis [reviewed in (106)].

Another set of PRRs, the NOD-like receptors (NLRs), are
located in the cytoplasmic compartment of cells. Once a cell
senses intracellular damage-associated events such as membrane
damage, lysosomal rupture, or mitochondrial damage, it initiates
the assembly of the NLR family pyrin domain containing
3 (NLRP3) inflammasome (107). Inflammasomes are large
cytosolic multiprotein complexes, and once assembled, they
induce the activation of inflammatory responses, including
proteolytic activation and secretion of the proinflammatory
cytokines IL-1β and IL-18 (108). Especially the NLRP3
inflammasome plays a role in atherosclerotic plaque formation
[reviewed extensively in (108)]. Inflammasome-mediated
activation of caspase-1 can also initiate a form of lytic and
highly inflammatory cell death called pyroptosis, in which the
protein gasdermin D is cleaved, after which its N-terminus
oligomerizes and forms pores in the cell membrane (109).
Crystalline cholesterol induces lysosomal damage, and it was the
first NLRP3 activator associated with atherosclerosis (57, 75).
Crystalline cholesterol can be formed extracellularly from
lipoprotein aggregates in the intima, and intracellularly during
the lysosomal degradation of modified lipoproteins.

Several studies have shown that modified lipoproteins can
activate leukocytes and trigger a pro-inflammatory response (18,
110). This response is leading to the secretion of a plethora
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of cytokines, chemokines, growth factors, and lipids. The most
important ones in the context of this review are shown inTable 1,
and the individual responses of cell types to specific modified
lipoproteins discussed below are summarized in Table 2.

Vortexed and Acetylated Lipoproteins
Acetylated LDL (acLDL) and vortexed LDL (vxLDL) are models
ofmodified lipoproteins that have been used to study intracellular
lipid accumulation in macrophages, SMCs, and ECs (161–165).
Vortexing of LDL leads to aggregation of the particles, but
these modifications do not change the lipid moiety of LDL
particles and, therefore, experiments in which they have been
used provide information merely on their effects on lipid loading
onmacrophages. Treatment of macrophages with modified LDLs
that induce foam cell formation, including acLDL, results in up-
regulation of genes involved in the inflammation and immune
responses (110).

VxLDL induces mitochondrial dysfunction in macrophages,
a known activator of the NLRP3 inflammasome (166). Persson et
al. studied the basal and inducible cytokine expression in primary
human macrophages loaded with cholesterol using vxLDL and
they observed that the cholesterol contained in the vxLDL did
not affect IL-1β secretion, while the secretion of TNF, IL-6, and
IL-8 were significantly decreased (167). However, the amount
or composition of neutral lipids in the vxLDL did not affect
cellular activation by exogenous TNF, making it likely that lipid
loading attenuates cytokine secretion during basal conditions,
and that the effects can be overruled by TNF during an acute
inflammation (167). Sabeva et al., however, reported that IL-1
and IL-6 signaling can be induced by vxLDL in THP-1-derived
macrophages (135). Depending on the macrophage polarization,
inflammatory responses to cholesterol loading can vary vastly,
as recently shown by comparing the inflammatory responses in
M1-like and M2-like macrophages upon acLDL loading (89).

Circulating Modified Lipoproteins
Electronegative LDL (LDL(-)), carbamylated LDL (cLDL) or
HDL, glycosylated LDL (AGE-LDL), and mildly oxidized LDL
are found in the circulation, and they can initiate foam cell
formation in cell culture [reviewed in (168–170)].

LDL(-) is a naturally occurring, minor form of modified
LDL in plasma, and it can be isolated based on its differing
size, density, and charge. Compared to native LDL, LDL(-) has
similar oxidation levels, but it differs in its lipid and protein
compositions and in its apoB-100 conformation. LDL(-) also has
higher phospholipolytic activities, higher aggregation levels, and
higher proteoglycan binding affinity than LDL (133).

In ECs, LDL(-) increases TNF-induced inflammatory
responses, such as the expression of transcription factors
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and Activator Protein 1, the expression of Vascular Cell
Adhesion Molecule 1 (VCAM-1) (137), and the secretion of the
chemoattractants IL-8 and Monocyte Chemotactic Protein 1
(MCP-1) (139), C-X-C Motif Chemokine Ligand 1, the cytokine
IL-6, and the growth factors platelet-derived growth factor,
Granulocyte-Macrophage Colony-Stimulating Factor (GM-
CSF) and Vascular Endothelial Growth Factor (138, 140, 141).

TABLE 1 | Main cellular mediators of atheroinflammation.

Name Function in atherogenesis

IL-1β Drives inflammation during atherogenesis and the evolution of

advanced atheroma (108, 111, 112)

IL-1α Promotes remodeling during early atherogenesis (108, 111)

IL-6 Pro-inflammatory in chronic inflammation, anti-inflammatory in

acute inflammation (112–115)

TNF Pro-inflammatory, activates leukocytes, induces endothelial

dysfunction (115, 116)

IL-8 Pro-inflammatory, neutrophil and monocyte chemotactic

factor (117, 118)

IL-10 Anti-atherogenic, downregulates production of TNF and

ICAM-1 (115, 119)

IL-35 Anti-atherogenic (120)

IL-12 Pro-atherogenic, elevated plasma levels (120)

IL-18 Pro-inflammatory (112)

IFN-γ Pro-inflammatory, multiple roles at different stages of

atherogenesis (121)

MCP-1 Pro-inflammatory, chemotactic activity for monocytes and

basophils (122)

CCR2 Chemokine receptor for MCP-1

CXCL1 Pro-inflammatory, chemotactic factor for monocytes (122)

GM-CSF Induces a pro-inflammatory phenotype in macrophages

(123, 124)

TGF-β Pro-inflammatory (125), but also atheroprotective (126)

PDGF Intra-plaque angiogenesis, elevated in atherosclerosis (127)

VEGF Intra-plaque angiogenesis, elevated in atherosclerosis (127)

ICAM-1 Allows rolling and adherence of leukocytes to the endothelium

(122)

VCAM-1 Allows rolling and adherence of leukocytes to the endothelium

(122)

MMP’s Promote plaque instability by degrading extracellular matrix

proteins (112)

p38MAPK Transcription factor for proinflammatory TNF and IL-1 family

signaling (128)

NF-κB Transcription factor for proinflammatory TNF and IL-1 family

signaling (128)

AP-1 Transcription factor for cytokines and growth factors in innate

immune response (128)

ROS Pro-inflammatory, pro-atherogenic or atheroprotective

depending on the context (129)

AA AA metabolites mediate initiation and resolution of

inflammation and have been linked to the pathophysiology of

many chronic inflammatory diseases (130)

PAI-1 Vascular PAI-1 excess is thought to promote the development

of intravascular thrombosis and atherosclerosis (131)

PECAM-1 Adhesion factor, promotes leukocyte extravasation (132)

E-Selectin Adhesion factor, promotes leukocyte extravasation (132)

P-Selectin Adhesion factor, promotes leukocyte extravasation (132)

Interleukin (IL), tumor necrosis factor (TNF), interferon-γ (IFN-γ), monocyte

chemoattractant protein-1 (MCP-1), C-C chemokine receptor type 2 (CCR2), C-

X-C Motif Chemokine Ligand 1 (CXCL1), granulocyte-macrophage colony-stimulating

factor (GM-CSF), transforming growth factor β (TGF-β), platelet-derived growth factor

(PDGF), vascular endothelial growth factor (VEGF), intercellular adhesion molecule

1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), matrix metalloproteinases

(MMP’s), p38 mitogen-activated protein kinase (p38MAPK), nuclear factor kappa-light-

chain-enhancer of the activated B-cell (NF-κB), activator protein 1 (AP-1), reactive

oxygen species (ROS), arachidonic acid (AA), plasminogen activator inhibitor-1 (PAI-1),

platelet endothelial cell adhesion molecule-1 (PECAM-1).
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TABLE 2 | Cellular responses to selected modified lipoproteins.

Cell type Response

vxLDL Macrophages IL-1β secretion (133), IL-6 secretion

(133, 134), IL-10 secretion (133), TNF

secretion (135)

acLDL Macrophages IL-1β secretion (133), IL-6 secretion

(133, 134), IL-10 secretion (133), C3

secretion (136)

LDL(-) ECs Expression of adhesion molecule

VCAM-1 (137, 138), ICAM-1 (138),

MCP-1 (138, 139), PDGF (140), IL-6 and

GM-CSF secretion (140, 141), IL-8

(138–140),

Macrophages IL-1β secretion (133), IL-6 secretion

(133, 134), TNF secretion (134), IL-8

secretion (134), IL-10 secretion (133)

Dendritic cells IL-12 and TNF production (142)

Monocytes IL-6 secretion (133, 134), TNF secretion

(134), IL-8 secretion (134)

E-LDL ECs Expression of IL-8 (143) Expression of

IL-8 (93), ICAM-1, PECAM-1, P-selectin,

and E-selectin (144)

Macrophages Strong synthesis of MCP-1, mild release

of IL-6 (145)

Dendritic cells TNF secretion (142)

LAL-LDL Macrophages IL-8 secretion, activation of transcription

factors p38 MAPK and NF-κB (146)

PLA2-LDL ECs IL-6 and GM-CSF secretion

(133, 140, 141), upregulation of

E-Selectin, ICAM-1, VCAM-1 (147) and

release of arachidonic acid (147)

Macrophages IL-1β secretion (56).

SMase-LDL Macrophages SMase-LDL treatment increases the

lipopolysaccharide-induced secretion of

TNF, IL-6, and MCP-1 (84)

oxLDL ECs LOX-1 activation and subsequent

activation of NF-κB, increase in

ROS/decrease in NO, increased

expression of MCP-1, VCAM-1, ICAM-1,

P-selectin, decreased expression of

TGF-β, and apoptosis (148, 149).

Macrophages IL-1β secretion (133), IL-6 secretion

(133, 134), IL-10 secretion (133), C3

secretion (136)

oxVLDL ECs Expression of IL-15, MMP-2, MIF,

downregulated expression of TGF-β,

ROS production (150), MCP-1

upregulation (151)

Macrophages MCP-1 upregulation (151)

Monocytes Increased MCP-1 expression (152)

cLDL ECs ICAM-1 and VCAM-1 expression (153)

cHDL ECs Expression of VCAM-1 and ICAM-1 and

increased monocyte adhesion (154).

AGE-LDL ECs Expression of ICAM-1,VCAM-1

(155–157), IL-6 secretion (158), TGF-β,

TNF, and MCP-1 synthesis (155, 157)

Macrophages IL-6 secretion (158)

(Continued)

TABLE 2 | Continued

Cell type Response

Monocytes Increased expression of MCP-1 receptor

CCR2 (159)

VSMCs Increased ROS and expression of

MCP-1 (160)

Vortexed LDL (vxLDL), acetylated LDL (acLDL), electronegative LDL (LDL(-)), enzymatically

modified LDL (E-LDL), lysosomal acid lipase-modified LDL (LAL-LDL), phospholipase

A2-modified LDL (PLA2-LDL), sphingomyelinase-modified LDL (SMase-LDL), oxidized

LDL (oxLDL), oxidized VLDL (oxVLDL), carbamylated LDL (cLDL), carbamylated HDL

(cHDL), advanced glycation end-product-modified LDL (AGE-LDL), endothelial cells

(ECs), interleukin (IL), tumor necrosis factor (TNF), complement component 3 (C3),

vascular cell adhesion protein 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1),

monocyte chemoattractant protein-1 (MCP-1), platelet-derived growth factor (PDGF),

granulocyte-macrophage colony-stimulating factor (GM-CSF), platelet endothelial cell

adhesion molecule (PECAM-1), lectin-type oxidized LDL receptor 1 (LOX-1), nuclear

factor kappa-light-chain-enhancer of the activated B-cell (NF-κB), reactive oxygen species

(ROS), matrix metalloproteinase (MMP), macrophage migration inhibitory factor (MIF),

transforming growth factor β (TGF-β).

In monocytes and macrophages, LDL(-) directly induces
priming, inflammasome activation with subsequent IL-1β release
(171, 172), as well as secretion of IL-6, IL-8, and TNF (134). Puig
et al. compared the effects of oxLDL, vxLDL, and acLDL with
those of LDL(-) on THP1-derived macrophages and found that
while oxLDL induced a more pronounced IL-1β release, LDL(-)
induced a stronger release of IL-6, IL-10, and GM-CSF than did
other modified LDLs (133). Interestingly, unlike other modified
LDL preparations, LDL(-) induced a very strong triglyceride
(TG) accumulation in lipid droplets of macrophages (133), a
finding which may have clinical significance in that macrophages
isolated from human atherosclerotic aorta show significant
accumulation of TGs (173).

Protein carbamylation is a post-translational modification
of proteins involved in a variety of disease states including
inflammation, impaired renal function in chronic kidney disease,
and, moreover, elevated levels of carbamylated proteins are
present in smokers. Carbamylation has been mechanistically
linked to atherosclerosis [reviewed in (174)], especially in
patients with chronic renal failure who have vastly higher levels
of carbamylated LDL in serum and a higher ASCVD risk
(175). It has also been shown to induce endothelial dysfunction
(176), increase the expression of adhesion molecules (153), the
oxidative stress, and DNA damage in endothelial progenitor cells
(177). Also carbamylated HDL increases monocyte adhesion to
ECs via inducing NF-κB activation and the expression of VCAM-
1 and the intercellular adhesion molecule-1 (ICAM-1) (154).
Carbamylation also renders LDL more prone to oxidation, and
LDL with both modifications has more pro-atherogenic effects
on ECs and macrophages than either modification alone (178).

Non-enzymatic modifications of proteins by glucose are called
advanced glycation end-products (AGEs), and they are formed
at accelerated rates in hyperglycemic diabetic patients. AGEs
can also form on lipids, as evidenced by the observation of
lipid-linked AGEs in LDL particles derived from individuals
with or without diabetes (179). The AGE-products include
circulating AGE-peptides which derive from the catabolism of
AGE-modified tissue proteins, and, moreover, AGE-modified
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LDL is formed by direct reaction between native LDL and
circulating reactive AGE-peptides (179). The AGEs, among them
also the AGE-LDL, damage vascular cells, one pathway being
their interaction with their purported receptors on vascular
ECs, SMCs, and macrophages. Among the ensuing implicated
diverse pro-atherogenic processes, those leading to endothelial
dysfunction have received much attention (155). The adverse
endothelial effects include apoptosis (180), reduced nitric oxide
synthesis, increased production of reactive oxygen species, and
increased expression of (VCAM)-1 (156). Moreover, AGE-LDL
particles induce IL-6 secretion by ECs and macrophages (158).

Phospholipolytically Modified Lipoproteins
The lipolytic products generated by the action of PLA2, fatty
acids and lysophospholipids, induce proinflammatory responses
in cultured human umbilical vein ECs (181). PLA2-treated
LDL induces exocytosis of the Weibel-Palade Bodies, an
early-phase endothelial inflammatory response from ECs in a
lysophosphatidylcholine (LPC)-dependent manner (182). LPC
acts as a find-me/eat-me signal, which belongs to a group
of soluble mediators released by apoptotic cells that attract
phagocytes into the tissue (183). PLA2-LDL has also been shown
to upregulate the adhesion factors E-selectin, ICAM-1, and
VCAM-1 in ECs (147). In primed human macrophages, PLA2-
treated LDL and especially LDL and VLDL treated with both
PLA2 and LAL have shown to elicit a strong induction of NLRP3-
dependent IL-1β secretion (56).

Treatment of LDL particles with SMase, which is secreted by
several cell types within the arterial wall, leads to the generation of
ceramide and to conformational changes in apoB-100 that induce
particle aggregation and increased proteoglycan binding (48–50).
These effects could be alleviated by treatment of the LDLs with an
apoA-Imimetic peptide prior to the hydrolysis (184). SMase-LDL
has been shown to induce the secretion of TNF, IL-1β, IL-6, and
the chemoattractant MCP-1 from human macrophages derived
from cultured THP-1 monocytes (56, 84). LDL which has been
lipolytically modified by secretory PLA2 or SMase potentiates the
cellular release of proinflammatory lipid mediator arachidonic
acid, and triggers activation of the cytoplasmic PLA2 in human
THP-1 monocytes (185).

Regarding SMase, another point to consider is that it is
expressed by macrophages. Endogenous sphingomyelins on the
cell membrane can be hydrolyzed, and the generated ceramides
can accumulate or be converted into numerous metabolites
[reviewed in (186)]. These metabolites are involved in a variety of
processes connected to cardiovascular health, they modulate the
signaling and metabolic pathways driving insulin resistance, TG
production, apoptosis, and fibrosis [reviewed in (187)]. Cellular
uptake of SMase-modified LDL brings substantial amounts of
ceramides into lysosomes, and, moreover, as LDL contains
significant amounts of SM, uptake of modified LDL can also
in other ways affect the sphingomyelin pool in macrophages
and thus the concentrations of ceramides in them. Kinscherf
et al. showed in their early work that loading of macrophages
with oxLDL and acLDL delivers a substantial amounts of
sphingomyelin into the cells and also stimulates ceramide
formation in them (188).

Enzymatically Core-Modified Lipoproteins
Modifications of the lipoprotein core at neutral pH are more
difficult to perform due to the protective surface monolayer
of the lipoproteins. Therefore, the core-modifying treatments
are usually preceded by a modification of the surface. To
generate enzymatically modified LDL (E-LDL), LDL is first
treated with a protease and subsequently with cholesterol
esterase. Such multiply-modified LDL has been detected by
immunohistochemical means in human atherosclerotic lesions
at all stages of lesion development (55). Treatment of ECs
with E-LDL leads to the expression of IL-8 (143), induces the
adhesion of monocytes and T lymphocytes to EC monolayers,
and stimulates the upregulation of the adhesion factors ICAM-
1, platelet-endothelial cell adhesion molecule-1 (PECAM-1), P-
selectin, and E-selectin (144). In aortic SMCs, E-LDL upregulates
the expression of ICAM-1, which correlates with increased
adhesion of T lymphocytes (144). It also strongly induces SMC
foam cell formation and upregulates the expression of lectin-like
oxLDL receptor 1 (LOX-1) with ensuing increase in the uptake of
oxLDL (189).

In macrophages, E-LDL induces strong secretion of MCP-
1 and mild release of IL-6 (145). It also promotes monocytic
differentiation into dendritic cells, and, when dendritic cells are
treated with CRP and/or E-LDL, the production of IL-12 and
TNF is significantly increased, and a strong Th1 reaction and T
cell proliferation are elicited (142).

LAL hydrolyzes TGs and cholesteryl esters in the core of
the lipoprotein particles. LAL is an essential lysosomal enzyme
and its deficiency leads to cholesteryl ester storage disease (190).
Expression of LAL has been shown to become downregulated in
several cell types when the cells are loaded with modified LDL
(191, 192). LAL is also secreted from activated macrophages and
can then act on lipoproteins also extracellularly (54). Treatment
of macrophages with LAL-LDL activates the transcription factors
p38 MAPK and NF-κB, induces the secretion of IL-8 (146),
and may also promote vascular dysfunction and atherogenesis
[reviewed in (193)]. LDL and VLDL, when treated first with
enzymes that hydrolyze the particle surface before treatment with
LAL are able to trigger a robust, NLRP3-mediated IL-1β secretion
in human macrophages (56).

VLDL remnants treated with lipoprotein lipase to hydrolyze
the TGs have been shown to induce increased expression of
TNF, IL-1β, and IL-8 over native VLDL or lipoprotein lipase,
with concurrent activation of NF-κB and activator protein 1 in
peripheral blood mononuclear cells and THP-1 monocytes (194).

Oxidized Lipoproteins
Oxidation is the most studied form of lipoprotein modification,
and the pro-inflammatory effects of oxidized phospholipids
in inflammation and various inflammatory diseases are well
established (195).

OxLDL acts as a DAMP and triggers sterile inflammatory
responses (195). In ECs it causes endothelial dysfunction and
induces a pro-inflammatory and pro-thrombotic state (196). It
also enhances monocyte chemotaxis and adhesion to EC in
culture (197). The uptake of oxLDL by macrophages is mediated
by scavenger receptors such as CD36, and it induces the assembly
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of a TLR4/TLR6 heterodimer, and results in NF-κB signaling and
priming of these cells for inflammasome activation (198). OxLDL
uptake by CD36 additionally results in intracellular cholesterol
crystallization and can thereby directly activate the NLRP3
inflammasome in macrophages (88). Both minimally oxidized
LDL and more highly oxidized LDL cause the secretion of pro-
inflammatory cytokines by macrophages (70, 71) by activating
TLR4 (199, 200). Li et al. showed in THP-1 monocytes that
oxLDL and oxHDL increases the expression of NLRP3 and
activates caspase-1 and induces IL-1β and IL-18 secretion in
a dose-dependent manner (201). However, other studies have
shown that oxLDL inhibits the production of inflammatory
cytokines by macrophages in response to inflammatory stimuli,
such as LPS (202). More recently, it was shown that oxLDL,
as well as oxHDL3, reduces the secretion of mature IL-1β by
inhibiting the activation of the NLRP3 inflammasome induced
by known inflammasome activators including the acute-phase
serum amyloid A protein, ATP, nigericin, andmonosodium urate
crystals (203). By binding to LOX-1 on SMCs, oxLDL can also
induce SMC transition to an inflammatory phenotype. Thus,
treating cultured SMCs with oxLDL stimulates the expression
of the chemokines MCP-1 and C-X-C Motif Chemokine Ligand
1, the cytokine TNF, and the cell adhesion molecule VCAM-1
[reviewed in (204)].

OxLDL can also induce pyroptosis in macrophages (205)
and ECs (206), and oxLDL-induced pyroptosis has also been
implicated in endothelial dysfunction and vascular SMC foam
cell formation [reviewed in (109)].

OxLDL is also able to induce a novel form of cell death
coined ferroptosis, which is linked to atherogenesis (207, 208).
Bai et al. showed that some of the key morphological features
of ferroptosis, such as mitochondrial shrinkage, increased
iron content, increased release of lactate dehydrogenase, and
reduced expression of the solute carrier family 7 member
11 and glutathione peroxidase 4 were induced by oxLDL in
mouse aortic ECs to a comparable amount achieved with
the ferroptosis inducer erastin; the phenotype was rescued by
co-stimulation with ferroptosis inhibitor ferrostatin-1 (209).
Further, oxLDL- and erastin-treated cells had similarly increased
levels of markers of intracellular lipid peroxidation, such as total
ROS, lipid ROS, lipid peroxide, and malondialdehyde, while
treatment with ferrostatin-1 downregulated the generation of
these lipid peroxidation products (209). Similar induction of
ferroptosis by oxLDL was observed in human coronary artery
ECs (210).

While minimally oxidized LDL is found in circulation, the
vast majority of circulating oxLDL is bound to antibodies and
found as oxLDL immune complexes, which can prime dendritic
cells and macrophages for inflammasome activation (211). While
the circulating immune complexes may be too large to cross
an intact endothelium, immune complexes can also be formed
within the arterial intima (212). Interestingly, immune complexes
composed of oxLDL and anti-LDL IgG antibodies can trigger
activation of cultured human mast cells, an innate immune
type of cell present in human atherosclerotic lesions, and, when
activated, capable of proteolytically modifying LDL and HDL
particles (213, 214).

In ECs, oxidized VLDL initiates the expression of the
fibrinolysis inhibitor plasminogen activator inhibitor-1 and stress
response protein heat shock factor 1 compared to the effects
obtained with VLDL or LDL (215), and induces endothelial
apoptosis (216). It also induces expression of IL-15, matrix
metalloproteinase-2, macrophage migration inhibitory factor, as
well as downregulated expression of transforming growth factor
beta (TGF-β) (150). In macrophages, both oxidized VLDL and
its remnants induce foam cell formation that can be attenuated
by pre-incubation with TGF-β (217). In both monocytes and
macrophages, oxidized VLDL induces the expression of MCP-1
(151, 152).

Oxidized HDL (oxHDL) plasma levels have been shown to
correlate with ASCVD and coronary artery calcification [recently
reviewed in (218)]. OxHDL induces endothelial dysfunction in
ECs by a positive feedback mechanism in which an oxidative
burst generates oxHDL from native HDL, activates LOX-1 which
in turn increases the expression of NADPH oxidase 2, TNF,
and LOX-1 receptor at the endothelial plasma membrane (219).
It has also been shown to decrease the expression of CD63 in
macrophages, thus attenuating the ability of the cell to ingest
modified lipoproteins (220, 221). OxHDL also binds to CD36
on platelets and induces proinflammatory and procoagulant
effects (222).

Neutrophil Extracellular Traps
Another innate immune pathway contributing to vascular
inflammation is neutrophil extracellular trap (NET) formation,
also called NETosis (223). NETs are structures of chromatin
filaments coated with histones, proteases, as well as granular and
cytosolic proteins, which are ejected by activated neutrophils to
immobilize and eliminate pathogens as a part of the first-line
immune defense.

Recent research has revealed that NETosis is associated
with the initiation and progression of various noninfectious
diseases (224), and NETosis has also been shown to promote
thrombosis (225). NETs have been found in vascular lesions such
as atherosclerotic plaques (226), and infiltration of neutrophils
into arteries during the early stages of atherosclerosis has been
observed in hypercholesterolemic mice (227). One theory about
the reason for NETs in plaques is that periodontal pathogens
enter the bloodstream from severely infected periodontal tissues,
then reach the inflamed atherosclerotic lesions where they can
directly contribute to the development of the lesions [reviewed
in (228)].

Non-infectious triggers such as LDL-derived cholesterol
crystals might also induce NETosis in atherosclerosis. NETs
prime macrophages, which in turn start to produce pro-IL-
1β and IL-8 (117). Cholesterol crystals can bind to CD36 on
the macrophages and thereby trigger inflammasome activation
with the ensuing secretion of mature IL-1β. Thus, NETs may
contribute to atherogenesis by initially activating macrophages
(229, 230). Studies in apoE-/- mice with deletions of two
neutrophil proteases showed attenuated NETosis as well as
smaller atherosclerotic lesions, and lower systemic IL-1β levels,
when compared to ApoE–/– mice expressing these proteases

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 March 2022 | Volume 9 | Article 841545

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Lorey et al. Modified Lipoproteins Induce Inflammation

(230), indicating a potential role for NETs and/or these proteases
in this process.

Kato et al. demonstrated the appearance of oxLDL in vascular
tissues and circulation even prior to atherosclerotic lesion
development in apoE-KO mice (231). OxLDL as well as its
various oxidized phospholipid components, especially oxPCs
and LPC, mediate NETs formation and subsequent endothelial
inflammatory responses in both HL-60-derived neutrophils and
human polymorphonuclear neutrophils (232, 233).

ADAPTIVE IMMUNE SYSTEM RESPONSE
AND AUTOIMMUNE COMPONENT

Adaptive immunity is heavily involved in atherogenesis
[reviewed in (234)] and comprises a humoral component of
specific antibodies produced by B cell-derived plasma cells,
and a cellular component with T cells that either activate B
cells or differentiate into effector T cells, which are matured
by being presented antigens by antigen-presenting cells. Of the
T cells, those expressing CD8 mature into cytotoxic CD8+ T
cells and those expressing CD4 into helper CD4+ T cells or
regulatory T cells. Both CD4+ and CD8+ T cells are recruited
into atherosclerotic lesions and display signs of activation (235).
On the other hand, the regulatory T cells comprise the only
T cell subset that has only negative regulatory effects on the
autoimmune response, and therefore also a dampening influence
on atheroinflammation. The recruitment of regulatory T cells
into the arterial intima is promoted by the activation of the
nuclear receptor peroxisome proliferator-activated receptor γ

(PPAR-γ), which can further exert anti-atherosclerotic effects by
inhibiting the expression of various pro-inflammatory factors,
improving the function of endothelial cells, inhibiting MCP-1
expression, and restraining the differentiation of monocytes into
macrophages [reviewed in (236)].

T cells with a specificity for apoB-derived epitopes have been
identified, so linking adaptive immune responses to the vascular
retention of LDL (237). Vaccination of humanized atherosclerotic
mice with two epitopes from human native apoB-100 that trigger
T-cell activation protected the mice against atherosclerosis (238).
T cells constitute about 10% of all cells in human plaques, and
70% of them have been described to be CD4+, and the remaining
largely CD8+ T cells (239).

The final stage of B cell maturation into antibody-producing
plasma cells occurs after their activation. There are two main
subtypes, B1 cells which produce the majority of natural IgM
and to a lesser extent IgG, and B2 cells which can differentiate
directly into memory B cells (240). T cells and macrophages are
found in all stages of atherosclerosis, whereas B cells are only
occasionally found in the atherosclerotic plaques themselves.
Rather, a larger number of B cells may be found in the adventitial
layer of the arterial wall, where tertiary lymphoid organs can
be formed (241). Resident B2-type lymphocytes isolated from
human carotid atherosclerotic walls have been found to bemainly
activated plasmablasts lacking terminal differentiation to plasma
cells, and preferentially expressing IgG and IgA (242).

Functionally, the effects of B and T cells in atherosclerosis,
the primary site of lipoprotein modification, are mixed. In a
recent consensus paper (6) the involvement of lymphocytes
is described as follows: Dendritic cells take up modified LDL
and present specific epitopes such as apoB peptides to naive
T cells, inducing their differentiation into CD4+ helper T
cells (243). These CD4+ T cells, together with the specific
cytokines that they secrete, provide help to B cells, and regulate
the activity of other T cell subtypes. The pro-atherogenic
role of interferon gamma (IFN-γ)-secreting Th1 cells and the
anti-atherogenic effect of IL-10/TGF-β-secreting T regulatory
cells are well established (244). Cytotoxic CD8+ T cells have
been shown to promote atherogenesis (245). Hermansson et
al. studied the mechanism of T cell recognition of LDL
particles by generating T cell hybridomas from human apoB-
100 transgenic mice that were immunized with human oxLDL,
and found that none of the hybridomas responded to oxLDL,
but, instead, to native LDL and isolated apoB-100. However,
sera from these immunized mice contained antibodies against
oxLDL, suggesting that T cell responses to apoB-100 aid B
cells to generate antibodies against the epitopes present in both
native LDL and oxLDL. ApoB-100-responding CD4+ T cell
hybridomas expressed a single T cell receptor variable β chain,
and immunization of humanized atherosclerotic mice with a
peptide derived from that T cell receptor-induced antibodies that
blocked T cell recognition of apoB-100, significantly reduced
atherosclerosis with a concomitant reduction of macrophage
infiltration in the lesions (246). Ruuth et al. observed similar
inhibition of T cell activation by oxLDL, but they found that
SMase-LDL activated T cells and that the degree of LDL
aggregation induced by SMase associated positively with the
degree of T cell activation, as measured by the secretion
of interleukin-2 (22). Up to 10% of CD4+ T cells isolated
from human atherosclerotic plaques displayed specificity for
oxLDL (247).

If incubated with whole blood, native and vxLDL elicit
vastly different T cell activation, native LDL activating
CD4+ cells only to a small extent, and vxLDL potently
activating CD8+ cells (248). The response might be
indicative of in vivo formed intimal aggregation of
modified LDL.

Distinct roles for different B cell subsets have been reported,
anti-oxLDL immunoglobulin IgM antibodies produced by B1
cells being atheroprotective, and anti-oxLDL IgG antibodies
produced by B2-cell subsets likely being pro-atherogenic (237,
249, 250). Although only small numbers of B cells are found
in atherosclerotic lesions, both IgG and IgM antibodies derived
from such cells accumulate in the lesions. Recently, Upadhye et
al. identified bone marrow B-1a cells that contribute abundantly
to IgM production with a unique IgM pool, which includes anti-
malondialdehyde-modified LDL (MDA-LDL) antibodies. They
also showed that expression of the chemokine receptor CXCR4
is a critical factor for the B-1a localization and production of
IgM against oxidation-specific epitopes. Expression of CXCR4
on human B-1 cells was greater in humans with low coronary
artery plaque burden, suggesting an antiatherogenic function for
the cells (251).
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Natural IgM vs. IgG
Natural antibodies are antibodies that spontaneously arise
without prior infection or defined immune exposure.Most serum
antibodies at birth are IgM natural antibodies and, as such, they
represent a primitive innate-like “layer” of the adaptive immune
system (252, 253). Antigens that are specifically recognized
in atherosclerosis include microbial antigens, endogenous heat
shock proteins, β-2 glycoprotein I, and modified LDL, especially
oxLDL (253). The degree of oxidation of LDL in humans
is variable, and two major modifications prepared in vitro—
copper-oxidized LDL and MDA-LDL—are recognized by human
autoantibodies. Both forms share MDA-lysine as their main
oxidation-specific epitope but MDA-LDL contains roughly a
10-fold higher amount of the epitope (254).

IgG and IgM antibodies against oxidation-specific epitopes
of oxLDL such as MDA-modified lysine residues or the
phosphorylcholine headgroups of oxidized phospholipids have
also been found in the plasma, and oxLDL-immune complexes
are present in plasma (255) as well as in atherosclerotic lesions of
humans and animals (212). Several clinical studies investigated
the association of oxLDL autoantibodies with atherosclerosis
progression, and in most, atherosclerosis or its progression
was directly associated with oxLDL IgG levels, and inversely
associated with IgM (256, 257) [reviewed in (240)]. While
oxidation-specific epitopes are also commonly found on surfaces
of apoptotic cells, microvesicles, and bacteria (195), antibodies
against the epitopes were shown to have the capacity to block
oxLDL uptake (258), the case for their role in atherogenesis
being strong.

Antibodies against carbamylated LDL have also been found
in individuals with uremia or tobacco smoking, and these
antibodies also cross-react with MDA- and malondialdehyde
acetaldehyde-LDL (259, 260). Further, also IgG against AGE-
LDL has been found in human serum and to be associated with
diabetes mellitus (261).

LIPID MEDIATORS IN MODIFIED
LIPOPROTEINS IMPAIR RESOLUTION

Inflammation is usually followed by its resolution, an active
process that reduces leukocyte recruitment, stimulates
efferocytosis, repairs tissue damage, and ultimately restores
tissue homeostasis. It is partly mediated by proteins such as the
anti-inflammatory cytokine IL-10 (119), endogenous gases such
as nitric oxide (262), and also by regulatory T cells (263). In
recent years, specialized pro-resolving lipid mediators, among
others, were discovered to play major roles in mediating the
resolution of atherosclerotic lesions [reviewed in (264)]. In the
progressing atherosclerotic lesions, efferocytosis of lipid-laden
apoptotic cells is impaired, a malfunction that leads to chronic
inflammation and a constant influx of circulating monocytes,
thus promoting the growth of a necrotic lipid core (263). In
macrophage foam cells of atherosclerotic plaques, the lipid
mediators, such as 5-lipoxygenase, show nuclear localization,
thereby shifting their metabolism to promote the generation of

pro-inflammatory leukotrienes and to decrease the production
of specialized pro-resolving mediators (265).

OxLDL has been shown to impair efferocytosis in mouse
macrophages and to induce apoptosis (266), potentially due
to oxidized phospholipids [reviewed in (267)] and cholesterol
(268) which are potent mediators of inflammation and influence
the ability of the macrophages to perform this function of
cell removal. Copper-oxidized LDL was also found to contain
lipofuscin-like fluorophores (269), known inducers of the
NLRP3-inflammasome (270) and of necroptosis (271). Oleic and
linoleic acids associated with E-LDL induced IL-8 expression
in ECs (143). Ceramides arising from SMase activity have
been shown to inhibit efferocytosis by alveolar macrophages
(272, 273). PLA2-LDL induces the release of arachidonic acid
from ECs (147). Arachidonic acid can be converted into
prostaglandins, thromboxanes, and leukotrienes, all of which are
potent modulators of inflammation. PLA2 treatment also releases
LPC which is a well-known chemotactic eat-me signal during
apoptosis, and which also increases the expression of ICAM-1
and VCAM-1 in ECs and enhances monocyte binding to the
endothelium (274). Thus, modified lipoproteins and their cargo
directly contribute to impaired resolution in atherogenesis.

DYSFUNCTIONAL HDL

HDLs are considered antiatherogenic [reviewed in (275)]. Firstly,
low levels of HDL-C are present in many conditions that are
associated with an increased ASCVD risk. The most prominent
antiatherogenic property associated with HDL is their ability to
induce macrophage cholesterol efflux. HDL also enhances the
endothelial synthesis of the vasodilator nitric oxide and thus
can also ameliorate endothelial dysfunction. Furthermore, HDL
reduces coronary atherosclerosis by decreasing the expression of
adhesion molecules on ECs and thereby reducing the infiltration
of pro-inflammatory cells and LDL into the subendothelial space.
HDL also inhibits lipid oxidation and exerts anti-inflammatory
and antiapoptotic actions [reviewed in (275)].

However, oxidative stress can modify HDL. Within the
subendothelial space, apoA-I can be oxidized on multiple
residues by the proinflammatory enzyme myeloperoxidase (275,
276), and the resulting dysfunctional HDL is associated with an
increased incidence of cardiovascular events [reviewed in (218)].
During inflammatory states, inflammatory cytokines induce
hepatic expression of the acute-phase serum amyloid A (277)
and group IIa sPLA2 (278), which then leads to the formation of
HDL particles that are relatively enriched in SAA, while depleted
of apoA-I and phospholipids. Also, increased oxidative stress
during inflammation generates dysfunctional HDL that contains
oxidatively modified or carbamylated apoA-I.

HDL remodeling during inflammation also leads to the loss
of HDL-associated enzymes such as serum paraoxonase and
arylesterases 1 and 3 that normally impede peroxidation of LDL
particles; so, the loss of these enzymes decreases the antioxidative
and anti-inflammatory capacity of HDL (279).

ApoE-/- mice with dysfunctional HDL displayed an increased
cholesterol efflux capacity and lipoprotein peroxidation when
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treated with an apoA-I mimetic peptide (280). This peptide has
also been able to attenuate LDL aggregation after hydrolysis by
SMase provided the peptide was added prior to hydrolysis (184).

Impaired cholesterol efflux capacity of HDL correlates
with the severity of atherosclerosis, including the early stages
of disease development (281, 282). Thus, cholesterol efflux
and resulting foam cell formation can be attributed to the
dysfunctional HDL rather than the alterations of circulating
levels of normal HDL particles, making dysfunctional HDL
a better biomarker of atherosclerosis than the level of HDL-
cholesterol (168). Mast cells are present in atherosclerotic
lesions where they become activated to secrete heparin-bound
neutral proteases capable of degrading apoA-I (283). The mast
cell proteases avidly degrade lipid-poor HDL particles and
thereby prevent their ability to induce cholesterol efflux from
macrophage foam cells, i.e., the first step of reverse cholesterol
transport (283). We consider that the HDL-modifying enzymes
and agents present in inflamed atherosclerotic lesions are
the most critical components of the malfunctioning reverse
cholesterol transport system. Accordingly, emerging knowledge
and understanding of the various steps of reverse cholesterol
transport, particularly of the initiation step when macrophage
foam cells and HDL particles interact in an atherosclerotic lesion,
is crucially important when attempting to develop novel HDL-
targeted therapies (284).

CLINICAL IMPLICATIONS OF
INFLAMMATION INDUCED BY MODIFIED
LIPOPROTEINS

As discussed in this Review, the apoB-containing lipoprotein
particles and the lipids contained in them are critical players
in atherogenesis. A large and overwhelming body of evidence
strengthens the causal role for the cholesterol contained in
the LDL particles throughout all stages of atherogenesis (285).
Indeed, without cholesterol there is no atherosclerosis. Of
particular clinical significance are the clinical observations on
lifelong high or low concentrations of LDL-cholesterol (LDL-C).
Thus, in patients with familial hypercholesterolemia, the genetic
absence of LDL-receptors, which normally remove LDL particles
from the circulation, leads to high LDL-C concentrations since
birth and inevitably results in accelerated development of
coronary atherosclerosis and its clinical sequelae, such as acute
myocardial infarction (286). In contrast, individuals with a life-
long history of low LDL-C levels due to genetic defects in
the function of the LDL-receptor-suppressing PCSK9 molecule
have a dramatic reduction in coronary heart disease even in
the presence of other risk factors (287). Finally, the ability of
therapeutic lowering of LDL-C has proven the essential role of
cholesterol in atherosclerosis and its clinical sequelae (288).

Considering the multitude of inflammatory pathways
involved in atherogenesis as discussed here, we wish to add that
there is no atherosclerosis without superimposed inflammation
in the arterial wall. The contribution of inflammation to the
development of atherosclerosis has received support from the
findings that statin drugs exert anti-inflammatory effects on

atherosclerotic lesions and reduce clinical events due to coronary
atherosclerosis, and that part of these beneficial effects may
be independent of LDL-C lowering (289). The clinical trials
have also demonstrated that many patients remain at increased
risk because of persistent elevation in high-sensitivity CRP
despite significant reductions in LDL-C level, and that this
“residual inflammatory risk” is a viable pharmacologic target of
ASCVD (290).

Recent trials have successfully demonstrated the ability
of anti-inflammatory interventions to reduce recurrent
cardiovascular events even in patients with optimal control
of LDL-C level (291). In the Canakinumab Anti-inflammatory
Thrombosis Outcomes Study (CANTOS) (292), the pro-
inflammatory cytokine IL-1β was inhibited by administering
systemically the monoclonal antibody canakinumab to patients
after myocardial infarction, and a reduction of recurrent
major adverse cardiovascular events was observed (292). Since
then, clinical trials testing anti-inflammatory compounds have
shown beneficial effects on cardiovascular outcomes. Reduction
of cardiovascular events has been observed in several trials
involving, in addition to the state-of-the-art lipid-lowering
drug regimen, the broad anti-inflammatory drug colchicine.
Thus, colchicine was used in the Colchicine Cardiovascular
Outcomes Trial (COLCOT) in individuals with a recent
myocardial infarction (293), and in the low-dose colchicine
trials LoDoCo1 (294) and LoDoCo2 involving individuals
with clinically chronic stable coronary disease (295). The pro-
inflammatory cytokine IL-6 was targeted by the specific antibody
tocilizumab in the ASSessing the effect of Anti-IL-6 treatment in
MI (ASSAIL-MI) trial (296, 297), and the treatment attenuated
the inflammatory response and the degree of myocardial
damage in patients with non-ST-elevation myocardial infarction.
Moreover, after acute myocardial infarction hydroxychlorine
reduced the levels of IL-6 at least for a period of 32 months
suggesting that this anti-inflammatory drug may reduce
cardiovascular events after such an event (298). However,
other anti-inflammatory drugs, like the immunosuppressant
methotrexate (299) or the p38 mitogen-activated protein
kinase (MAPK) inhibitor Losmapimod (300) did not show any
effects revealing the specificity of the clinically relevant anti-
inflammatory pathways. Of concern are the observations that
systemic anti-inflammatory treatments with IL-1β antibodies
increased the individual’s susceptibility to fatal infections (301),
and that the COLCOT colchicine trial saw a small increase in
pneumonia (291).

Interestingly, the adverse effects of air pollutants may occur to
a large part via generation of ROS and reactive nitrogen species
from organic chemicals present in the inhaled particulate matter
(302). Pulmonary oxidative stress and inflammation also results
from the activation of pulmonary epithelial cells, macrophages,
neutrophils, and ECs by the particulate matter deposited in
the lungs. Moreover, the ultrafine particulate matter can reach
the systemic circulation where the particles have the potential
to directly oxidize HDL or other circulating lipoproteins.
Taken together, the pollutants promote the generation of
oxLDL, oxHDL, and induce a prothrombotic dysfunction of the
coronary endothelium. By causing systemic oxidative stress and
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FIGURE 3 | Lipoproteins modified in the intima induce inflammation. Lipoproteins smaller than 80 nm can enter the intima by transcytosis, they get trapped by

proteoglycans and during retention they are exposed to enzymes secreted by intimal cells. Modified lipoproteins tend to aggregate, depending on the modification

cholesterol crystals can form. Modified lipoproteins also are recognized by antibodies and form immunocomplexes in the intima. The aggregates and crystals can be

phagocytized by macrophages or dendritic cells, which can form foam cells or activate T cells, respectively. Mast cells are degranulated during atherogenesis, leading

to matrix degradation and lipoprotein degradation. Activated macrophage foam cells secrete more enzymes thus increasing the rate of modification, they secrete

cytokines inducing an inflammatory state in the intima, as well as chemoattractants. Endothelial cells either directly by contact with modified lipoproteins or due to

pro-inflammatory cytokines from foam cells themselves secrete chemoattractants and increase expression of adhesion molecules, increasing the rate of leukocyte

extravasation into the intima. Endothelial activation and dysfunction also lead to a higher rate of lipoproteins entering the intima.

inflammation, the air pollutants form one arm in the “common
soil” of the cardio-pulmonary continuum (303).

Regarding the development of diabetic vascular injury, the
cellular responses to AGEs are thought to largely depend on

the interaction between the AGE and AGE-specific cell surface
receptors, the RAGEs, which via activation of the transcription
factor NF-κB leads to a range of proinflammatory reactions
and induction of oxidant stress in the cells involved (304).
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Since AGE formation may lead to oxidative stress and oxidative
stress may accelerate the formation of specific AGEs, both
AGE-LDL and ox-LDL could be involved in the accelerated
development of atherosclerosis in patients with type 2 diabetes
(305, 306). Based on the above findings, we may postulate
that the observations of specific AGEs being associated with
the severity of subclinical atherosclerosis and macrovascular
complications in patients with long-standing type 2 diabetes, and
the requirement of long-standing glucose-lowering (for 10 years)
to lower cardiovascular risk, both could at least partly depend
on the generation of AGE-LDL in these patients (307, 308).
Indeed, among the molecular mechanisms of how hyperglycemia
promotes atherosclerosis, the direct protein-modifying effects
of glucose appear to be prominent, the glycated LDL particles
being both pro-inflammatory and foam cell-forming species of
modified lipoproteins (309).

The atherogenic potential of cholesterol in TG-rich
lipoprotein particles (TGRLs) and their remnants is being
increasingly acknowledged (310–313). Indeed, elevated remnant
cholesterol associates with increased risk for acute myocardial
infarction, ischemic stroke and, even stronger for peripheral
arterial disease, which is also considered to have a strong
atherosclerotic component in its pathogenesis (314). The clinical
significance of the TGRL remnants has been mostly assigned
to their ability to enter the arterial intima and to contribute
to the formation of foam cells. However, the mechanisms
by which postprandial lipemia induces atherosclerosis also
involve induction of endothelial dysfunction, oxidative stress,
and inflammation (315). Importantly, the lipoprotein lipase
-mediated hydrolytic modification of the TGRLs takes place not
only in capillaries but also in atherosclerosis-susceptible arterial
segments where it results in high local concentrations of lipolytic
products, such as oxidized free fatty acids which jointly with the
TGRLs cause a multitude of inflammatory reactions in the ECs
and the cells within the intima (316, 317).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Modified lipoproteins are the main drivers of atherogenic
inflammation of the arterial wall (Figure 3). To decrease the
vascular wall inflammation due to modified lipoprotein several
concepts are being discussed. Without the entry of cholesterol-
containing apoB-lipoproteins into the arterial wall, there is
no atherosclerosis. Moreover, it is the current consensus that
local inflammation in the evolving atherosclerotic lesions is
an inherent part of atherogenesis. Regarding the therapeutic
options of atherosclerotic cardiovascular diseases, the lipid-
lowering and anti-inflammatory therapies do not compete, but
they are complementary and compatible. Currently, a myriad of
new treatment options of both dyslipidemia and inflammation
in ASCVD is emerging, to mention the availability of RNA-
based inhibitors of the hepatic synthesis of apoB-containing
lipoproteins which could be administered even once a year
(318). Moreover, ASCVD-related events could be substantially
reduced by prescription-grade eicosapentaenoic acid in patients
with hypertriglyceridemia (319). In that study, the beneficial

effect likely at least to some extent resulted from lowering
cholesterol accumulation and reduction of inflammation in
the arterial wall via changes in composition of lipoproteins
and cells.

Finally, the perception that inflammation would replace
traditional risk factors of atherosclerosis poses a false dichotomy
(320). Currently, lowering the concentration of the apoB-
containing lipoproteins and their remnants either by dietary or
pharmacological means is the mainstream approach to combat
atherosclerosis both in the primary and secondary prevention
settings, while the anti-inflammatory therapies serve as adjunct
therapies in the setting of secondary prevention strategies. This
chronology adopts our traditional understanding of cholesterol
accumulation being the primary event and an inflammatory
reaction being a secondary event taking place in the arterial
intima, the concept originating in the early work dealing with
animal models of atherosclerosis. This basic concept is also
reflected in the present-day clinical approach in which the
inflammation is considered to present a residual cardiovascular
risk after very efficient lowering of LDL-C in patients with
clinically manifest ASCVD (321). However, as discussed in
this review in-depth, we may consider the cholesterol- and
TG-containing lipoproteins entering the arterial intima as
innocent bystanders, who are attacked by the “healthy” resident
macrophages which have been present in the intima lifelong,
and which are performing their physiological patrol tasks in
this tissue like they do in any tissue (322). Then, it is, after
all the close encounter of the two which ignites and sustains
the atherogenic process in which cholesterol accumulation and
inflammation coexist. This novel understanding is necessary
when aiming at developing new anti-atherosclerotic therapies
aiming at primary prevention of ASCVD, as it dictates that the
inflammatory component is not only a residual risk but a risk
existing throughout the development of atherosclerosis. Recent
results obtained in mice with early atherosclerosis revealed that
inhibition of IL-1β and NLRP3 inflammasome reduces leukocyte
accumulation in atherosclerotic aortas (323). Thus, we may
predict that cardiovascular interventions utilizing lowering the
levels of circulating apoB-containing lipoproteins, prevention of
their modifications, and reduction of the numbers of lesional
macrophages already at an initial or early stage of the long
subclinical asymptomatic phase of atherosclerosis may ultimately
provide us the tools required for full eradication of the clinically
manifest ASCVD.
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