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A B S T R A C T

This paper summarizes the symmetric image encryption results of 27 different algorithms, which

include substitution-only, permutation-only or both phases. The cores of these algorithms are

based on several discrete chaotic maps (Arnold’s cat map and a combination of three general-

ized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals

and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients
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between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square

Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute

of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms

include a set of new image encryption algorithms based on non-chaotic generators, either using

substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two

different permutation scenarios are presented where the permutation-phase has or does not have

a relationship with the input image through an ON/OFF switch. Different encryption-key

lengths and complexities are provided from short to long key to persist brute-force attacks.

In addition, sensitivities of those different techniques to a one bit change in the input parameters

of the substitution key as well as the permutation key are assessed. Finally, a comparative dis-

cussion of this work versus many recent research with respect to the used generators, type of

encryption, and analyses is presented to highlight the strengths and added contribution of this

paper.

ª 2015 Production and hosting by Elsevier B.V. on behalf of Cairo University.
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ciphers and block ciphers where the image-pixels are encrypted

Symmetric encryption algorithms can be classified into stream
Introduction

one-by-one in stream ciphers and using blocks of bits in
block ciphers. Although block ciphers require more hardware

and memory, their performance is generally superior to stream
ciphers since they have a permutation phase as well as a sub-
stitution phase. As suggested by Shannon, plaintext should

be processed by two main substitution and permutation phases
to accomplish the confusion and diffusion properties [1,2].

The target of the permutation process is to weaken the cor-

relations of input plaintext by spreading the plaintext bits
throughout the cipher text. On the other hand, the substitution
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process target is to decrease the relation between the plaintext
and the ciphertext through nonlinear operations and a pseudo
random number generator (PRNG). PRNG’s can be designed

by using chaotic systems or based on fractal shapes [3–5].
Recently, many fractional-order chaotic systems have also
been introduced to increase the design flexibility by the added

non-integer parameters [6,7].
Due to the high sensitivity of chaotic systems to parameters

and initial conditions as well as the availability of many circuit

realizations [8,9], chaos based algorithms are developed and
studied as the core of encryption algorithms. Recently, many
substitution-only encryption algorithms have been introduced
based on discrete 1-D chaotic maps such as the conventional

logistic map [10–12] and the conventional tent map [13], or dis-
crete 2-D chaotic maps such as the coupled map lattice [14].
Such encryption algorithms cover the encryption of text-

messages, grayscale and color images. In order to improve
the encryption process, both substitution and permutation
phases were used based on the conventional logistic map

[15], the Gray code [16] and a 2-D hyper-chaos discrete nonlin-
ear dynamic system with the Chinese reminder theorem [17]
where compression performance was discussed. The use of

conventional 1-D and 2-D discrete maps in substitution and
permutation phases with noise analysis was introduced in
[18,19]. Similarly the encryption algorithm can be achieved
using other higher order discrete maps such as the 3D Baker

map [20] and the 3D Arnold’s cat map [21]. Zhang et al. [22]
used an expand-and-shrink strategy to shuffle the image with
reconstructed permuting plane. Furthermore, Sethi and Vijay

[23] introduced two phases to encrypt the image, whereas in
[24] four different chaotic maps were used in generating sub-
keys, and the logistic map and the Arnold’s cat map were used

in [25–29].
On the other hand, non-chaotic methods have proved their

existence and importance in implementing the confusion and

diffusion stages. Such methods usually increase the algorithm
complexity to protect against cryptanalysis. For instance, Wu
et al. [30] used the Latin squares algorithm to design a new 2D
substitution–permutation network. Pareek et al. [31] divided

the image into non-overlapping blocks and each block was
scrambled using a zigzag-like algorithm. Furthermore, [32]
divided the image into a set of k-bit vectors; each of these vectors

was substituted by XORing it with the previous vector and then
permuted by circularly right rotating its bits. Alternatively,
Pareek et al. [33] divided the image into non-overlapping blocks

and for each encryption round the size of the block changed
according to the round key.Within the same block, permutation
was performed using a zigzag-like algorithm.

The combination of both chaotic and non-chaotic algo-

rithms showed some advantages in many cryptosystems. For
example, Li and Liu [34] used the 3D Arnold map and a
Laplace-like equation to perform permutations and substitu-

tions, respectively. Wang and Yang [35] used the water drop
motion and a dynamic lookup table with the help of the logis-
tic map to perform the diffusion and confusion processes.

Furthermore, Fouda et al. [36] used a piecewise linear chaotic
map to generate pseudo random numbers and these numbers
were used in generating the coefficients of the Linear

Diophantine Equation (LDE). By sorting the solutions of
LDE, large permutations were created and used in scrambling
the image pixels. Whereas Zhang and Zhou [37] used compres-
sive sensing along with Arnold’s map in order to encrypt color
images into gray images, Zhang and Xiao [38] used a coupled

logistic map, self-adaptive permutation, substitution-boxes
and combined global diffusion to perform the encryption.
Finally, AbdElHaleem et al. [39] used a chess-based algorithm

to perform the permutation process and the Lorenz system to
perform the substitution process. In summary, permutations
and substitutions can be performed using chaotic systems,

non-chaotic algorithms or a combination of both.
Although many encryption algorithms have been published

during the last few decades but, up till now, there is no com-
pletely non-chaotic image encryption algorithm that can pass

all NIST-tests and produce good analysis results. Therefore,
three different algorithms (discrete chaos, continuous chaos
and non-chaotic algorithms) have been selected for the substi-

tution phase and another three algorithms (discrete chaos,
continuous chaos and non-chaotic algorithms) for the
permutation phase. The effect of the input image on all encryp-

tion algorithms has been investigated by adding a switch that
affects the permutation phase. Complete analyses of 27
encryption algorithms are presented with their sensitivity anal-

yses and comparisons with recent papers.
Section ‘Encryption key and evaluation criteria’ of this

paper describes the fundamentals of the encryption key and
the standard statistical and sensitivity evaluation criteria. In

section ‘Substitution-only encryption algorithm’, three substi-
tution methods are discussed, based on discrete chaotic maps,
a continuous chaotic system and fractals, along with their

encryption outputs and evaluations. Section ‘Comparison of
permutation techniques’ introduces five different methods for
the generation of a permutation matrix based on chaotic and

non-chaotic procedures. In section ‘Mixed permutation–substi
tution image encryption algorithms’, a complete encryption
algorithm with permutation–substitution phases is discussed

for all possible combinations with their evaluation criteria
and a comparison between 27 encrypted images. Moreover a
comparison with eleven recent papers is presented. Finally,
section ‘Conclusions and recommendations’ provides conclu-

sions and future work directions.

Encryption key and evaluation criteria

The encryption key is a representation of specific information
that is needed for the successful operation of a cryptosystem. It
usually consists of several parameters that are used to initialize

and operate the cryptosystem. Modern cryptography concen-
trates on cryptosystems that are computationally secured
against different attacks. One of the most common attacks is

the brute-force attack in which all possible combinations of
the encryption key are tried. Therefore, an encryption key of
length 128 bits or more is considered secure against brute force
attacks since it is considered to be computationally infeasible.

Encryption evaluation criteria can be divided into two main
categories; the first group includes the statistical tests (pixel
correlation coefficients, histogram analysis, entropy values

and the NIST statistical test suite) [40,41] and the second
group includes the sensitivity tests (differential attack mea-
sures, one bit change in the encryption key and the mean

square error) [37,42].
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Statistical tests

Pixel correlation coefficients

Since the adjacent pixel values of the original image are very

close in horizontal, vertical and diagonal directions, the corre-
lation coefficients will be close to 1 in all these directions. The
correlation coefficient q can be calculated as follow [40]:

Covðx; yÞ ¼ 1

n
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i¼1
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j¼1
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q ¼ Covðx; yÞffiffiffiffiffiffiffiffiffiffiffi
DðxÞ

p ffiffiffiffiffiffiffiffiffiffi
DðyÞ

p ; ð1cÞ

where n is the number of elements in the two adjacent vectors x
and y. For strongly encrypted images, the correlation coeffi-

cients approach zero.

Histogram analysis

Histogram analysis shows the distribution of pixel color values

across the whole image where curves and peaks for some speci-
fic colors appear. For strongly encrypted images this distribu-
tion should be flat.

Entropy

The entropy of a specific image measures the randomness of
the image-pixels, which enables avoiding any predictability.

For a binary source producing 28 symbols of equal probabili-
ties (each symbol is 8 bits long), the entropy of this source is
given by [37]:

Entropy ¼ �
X28
i¼1

PðSiÞlog2PðSiÞ: ð2Þ

where the optimal entropy value is 8 for a perfectly encrypted

image.

NIST statistical test suite

NIST SP-800-22 statistical test suite is a group of 15 different

tests designed to examine the randomness characteristics of a
sequence of bits by evaluating the P-value distribution (PV)
and the proportion of passing sequences (PP) [41]. If a

P-value for a test is 1, then this means the sequence is
considered as a truly random sequence.

Sensitivity tests

Differential attack measures

Strong encryption algorithms should be sensitive to any small

change in the input image and produce a totally different out-
put. Quantitatively, different measures are defined for evaluat-
ing the protection levels against differential attacks [42]. Let E1

and E2 be the encrypted images corresponding to the original
image without changes and with only one pixel change,
respectively.

The Mean Absolute Error (MAE) measures the absolute
change between the encrypted image E and the source image
P. Let W and H be the width and height of the source image,
respectively, then:

MAE ¼ 1

W�H

XH
i¼1

XW
j¼1
jPði; jÞ � Eði; jÞj ð3Þ

The Number of Pixels Change Rate (NPCR) measures the per-
centage of different pixels between E1 and E2 and it is calcu-
lated by the following:

Dði; jÞ ¼
0 E1ði; jÞ ¼ E2ði; jÞ
1 E1ði; jÞ – E2ði; jÞ

�
ð4aÞ

NPCR ¼ 1

W�H

XH
i¼1

XW
j¼1

Dði; jÞ � 100% ð4bÞ

The Unified Average Changing Intensity (UACI) measures the

average intensity of differences between E1 and E2 and it is
calculated by the following:

UACI ¼ 1

W�H

XH
i¼1

XW
j¼1

jE1ði; jÞ � E2ði; jÞj
255

� 100% ð5Þ
Sensitivity to one bit change in the encryption key

A good encryption process should also be sensitive to any
slight change in any of its parameters and, hence, one bit
change in the encryption key should lead to a totally different

behavior in the encryption process [37]. This sensitivity is eval-
uated using the Mean Square Error (MSE) which indicates
how far the wrong decrypted image is from the original image.

The encryption algorithm becomes better as this value gets lar-
ger. MSE is calculated as follows.

MSE ¼ 1

W�H

XH
i¼1

XW
j¼1
ðPði; jÞ � Eði; jÞÞ2 ð6Þ

where W and H are the width and height of the image respec-
tively, is the original pixel value at location ði; jÞ and Eði; jÞ is
the encrypted pixel value at the same location.

The previous evaluation criteria are used to evaluate 27 dif-
ferent simple encryption algorithms by selecting three different
substitution techniques as well as three different permutation
techniques. The first three encryption algorithms are based

only on substitution techniques, and the outputs of another
six encryption algorithms are based on three permutation tech-
niques under two different cases when the permutation key is

independent of (fixed) or dependent on (dynamic) the input
image. Moreover, the outputs of 18 cases, with all possible
combinations of mixed permutations (three techniques) and

substitutions (three techniques), are investigated under either
fixed or dynamic permutation key.
Substitution-only encryption algorithm

The simplest encryption algorithm is described by a delay ele-
ment, a multiplexer and a PRNG, previously discussed [7,43].

Table 1 shows three different substitution encryption algo-
rithms where the PRNG is based on continuous Lorenz dis-
cretization using Euler method [44], a combination of
generalized discrete (sine, tent and logistic) maps [43,45] and

fractals [7]. It is worthy to note that the multiplexer adds the
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required nonlinearity and the delay element improves the
encryption statistics because each pixel affects all upcoming

encrypted pixels.

PRNG based on Lorenz chaotic system

The continuous differential equations of Lorenz system are
given by the following:

dx

dt
¼ rðy� xÞ; ð7aÞ

dy

dt
¼ xðq� zÞ � y; ð7bÞ

dz

dt
¼ xy� bz; ð7cÞ

where r, q and b are the system parameters and the key

consists of these parameters as well as the initial conditions
x0, y0, and z0 [46], which guarantee chaotic behavior. There
are many hardware realizations for the above system based

on current/voltage active blocks or based on transistors
[8]. The major problem of such analog circuits is how to
control the initial conditions as well as the system parame-

ters precisely. Another methodology to overcome this issue
is to discretize this system where the state variables and
parameters are represented by registers [47]. The effect of

the discretization techniques on the output behavior was
discussed [44] where the Euler-formula gives the highest
value of Maximum Lyapunov Exponent (MLE). The Euler
formula is given in Table 1, where h should be small enough

and equal to 2h1 in digital realization to model its multipli-

cation effect as shift left by h1 bits. Many encryption algo-
rithms were introduced based on the Lorenz chaotic
system [39,48].

For the substitution phase using Lorenz attractor, the
attractor output is XORed with the current pixel from the
scrambled image and the last encrypted pixel after being mul-

tiplexed as shown in Table 1. To ensure that the chosen bits of
Lorenz are chaotic, it is recommended to choose 8 bits from
the least significant part of each output. Then, the output from
the Lorenz attractor is mapped to the range from 0 to 255 as

follows:

xl ¼ modðintðabsðxÞ � sfÞ; 256Þ; ð8aÞ

yl ¼ modðintðabsðyÞ � sfÞ; 256Þ; ð8bÞ

zl ¼ modðintðabsðzÞ � sfÞ; 256Þ; ð8cÞ

where x; y and z are the outputs from the Lorenz attractor, sf
is a scaling factor chosen as 1012, int returns the integer part

of a number, abs returns the absolute value of a number and
mod returns the remainder. It should be pointed out that the
scaling factor sf is chosen such that the selected bits are

highly chaotic.
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PRNG based on generalized discrete maps

Due to the fact that integer-order continuous chaotic systems
can only be achieved with third or higher order differential
equations having nonlinear element(s) [46], then discrete chao-

tic maps are used in most encryption algorithms due to their
simple realizations. However, the encryption keys for such
algorithms are limited to two or three parameters, which limit
the encryption performance. Recently, there have been many

efforts to increase the complexity of such maps by generalizing
their recurrence relations [43,45] where the generalized
sine, tent and logistic maps are introduced, respectively, as

follows:

xnþ1 ¼ rssin
cðapxb

nÞ ð9aÞ

ynþ1 ¼ rt minðyn; a� bynÞ ð9bÞ

znþ1 ¼ kzcð1� zdÞ ð9cÞ

It is clear that the number of parameters increases by two or

three for each map separately. The effect of these new param-
eters on the chaotic behavior is discussed in detail by the cal-
culation of the MLE for each parameter individually [43,45].

Due to the huge number of design parameters
fa; b; c; d; a; b; c; rt; rs; kg and initial values, fx0; y0; z0g a special
mixed-parameters key fV1;V2;V3;V4g is designed to enhance
the sensitivity of each parameter and initial value of all used

maps as shown in Table 1 (refer to [43] for more details).

PRNG based on fractals

A fractal object is self-similar at numerous scales of magnifica-
tion and can be represented as a mathematical equation that is
iterated for a finite number of times. Hence, a fractal image has

many variations in details and colors at all scales. The third
PRNG is based on the detailed complexity, self-similarity,
and fine structure of fractal images as well as the
Substitution Permutation Network (SPN) and a delay element

[7,49]. The relationships between the inputs and outputs of the
SPN of Table 1 are shifted XOR-functions as follows:

R1 ¼ B� K3; ð10aÞ

G1 ¼ R� K1; ð10bÞ

B1 ¼ G� K2; ð10cÞ

where K1, K2 and K3 are three channels selected from the RGB
channels of the chosen fractals [49]. The key of this PRNG
consists of the available number of fractals, fSg and the num-
bers of the four used fractals NPCR fNo1;No2;No3;No4g.

To validate the performance of these encryption algo-
rithms, Fig. 1 shows the encrypted images and the correct
decrypted images when the Lena 512� 512 image is used

[50]. It should be mentioned here that the decryption process
is the reverse of the encryption process. As shown in
Table 1, the encryption quality is measured using standard

evaluation criteria, which include pixel correlation coefficients
[40] and differential attack measures [42]. The differential
attack measures evaluate the sensitivity of the encryption algo-
rithm to one-pixel change in the input plain image. They are

calculated by taking the average of running the algorithm for
50 times, where in each time a random pixel from the original
image is selected and changed. The average RGB correlation
coefficients and differential attack measures are reported in

Table 1 for the three algorithms, where the correlation coeffi-
cients are very good but the average values of differential
attack measures are poor, especially and UACI. To discuss

the encryption-key sensitivity, the Least-Significant-Bit (LSB)
of the parameters x0, V4 and No1 is changed in the decryption
process for the Lorenz, generalized maps and fractals algo-

rithms, respectively. Fig. 1 shows the wrongly decrypted
images, which look random as clear from the values of the
MSE and entropy.
Comparison of permutation techniques

The objective of the permutation phase is to randomize the

pixels’ positions within a specific block. This phase increases
the complexity of the encryption algorithm and improves the
differential attack measures. This section gives a comparative
study of five different permutation matrix generation tech-

niques using discrete chaos, permutation vectors, Arnold’s
cat map, continuous chaos and chess-based horse move where
the permutation phase related to each of the aforementioned

techniques is described briefly. Let us divide the input image
into blocks where each block is of size N�N. Then, the objec-
tive of each technique is to generate a permutation matrix that

defines the new position of each pixel instead of its old posi-
tion. Different permutation matrices are generated for each
block and they should be independent.

Permutation based on logistic map

The first technique is based on the conventional logistic map
given by the following:

xnþ1 ¼ kxnð1� xnÞ: ð11Þ

For each block of size, N�N the map is calculated for N2 iter-

ations. Then, the output is sorted in ascending order to consti-
tute the permutation matrix for this block. Only one parameter
exists for this logistic map which is k; but x0 is the initial value
as shown in Table 2. Fig. 2(a) shows a simple example with
N= 3, which shows the original and modified locations of
the pixels. In this case, the permutation matrix is given by,

PL ¼
9 1 5
8 6 3
4 7 2

0
@

1
A which means that the pixel with indices

(1,1) will be transferred to location, 9, i.e., indices (3,3). The

problem in this permutation technique is that the sorting time
increases nonlinearly as the block size increases.

Permutation based on indices vectors

To minimize the sorting time of the previous technique,
another permutation technique can be used based on sorting
the row and column indices separately as shown in Fig. 2(b).

Therefore, to permute a block size N�N using the logistic
map, 2N iterations are required from the map (see Table 2),
where every N outputs are sorted to represent the new row

and column indices such as (312) and (231) in Fig. 2(b).
While the sorting time is linear in this technique, the
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Fig. 1 The encrypted images and their correctly and wrongly decrypted images for the three substitution algorithms.

Table 2 Brief description and comparison of the five different permutation techniques.

Name Logistic Map Indices Vectors Arnold's Cat Map Lorenz System Chess-Based Horse Move
Type Discrete Chaos Discrete Chaos Discrete Chaos Continuous chaos Non-chaotic algorithm

Sorting Yes Yes No Yes No
Iterations 

( × Matrix)
2 2 2 2/3 2

Parameters , , , Algorithm-based

Initial value 0 (initial value) 0 (initial value) 0, 0, 0 (initial 
values) , (initial position)

Brief 
Description

Order the 2

values from 
{1,2, … . , 2}

Order the first 
values as new 
row indices 

{1,2, … , } and 
the other for 

the new column 
indices.

The new location 
can be obtained from 

the previous one 
without any kind of 

sorting. 

Eliminate the short 
term predictability by 
removing the integer 

part and then   
order the remaining 

fractions set 
{ 1,2,3,….., 1,2,3,….., 1,2,3,….

Follow the flowchart 
discussed in [42]

Chosen 
Parameters = 3.999 = 3.999 = 2, = 3 = 10, = 8, = 8/3 = 2, = 3
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permutation efficiency may be poor relative to the previous
logistic map technique.

Permutation based on Arnold’s cat map

One of the most used permutation algorithms, which does not

require sorting, is based on the Arnold’s cat map [25–29] where
the new location is a function of the old one as follows:

xnew

ynew

� �
¼

1 a

b 1þ ab

� �
x

y

� �
modðNÞ þ

1

1

� �
: ð12Þ
Table 2 shows a comparison with the previous techniques and
Fig. 2(c) shows an example using this technique.

Permutation based on Lorenz system

The fourth common permutation technique is based on contin-
uous chaotic differential equations such as the Lorenz equa-
tions given by (7) [46,8]. In this technique, the three outputs

are collected and the first N2 values are sorted to identify the
permutation matrix as shown in Fig. 2(d). One of the major
problems in this technique is the time required for solving

the differential equations.
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Fig. 3 (a) Block diagrams of encryption algorithm and (b) block diagrams of decryption algorithm.
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Permutation based on chess-algorithm

While all the previous techniques are based on chaotic systems,
either discrete or continuous, this permutation technique is
based on the chess horse-move. The general block diagram of

the proposed encryption algorithm was previously discussed
[51], where the next position is generated in a cyclic way based
on the horse-move and available locations as shown inFig. 2(e).

Table 2 and Fig. 2 show a comparison and process evalua-

tion of each technique. Because we chose three different substi-
tution techniques, let us similarly choose three different
permutation techniques. The Arnold’s cat map, Lorenz system

and the chess-based algorithms are chosen as they represent
discrete chaotic maps, continuous chaotic maps and non-
chaotic systems, respectively.

Mixed permutation–substitution image encryption algorithms

This section investigates the encryption response of 24 differ-

ent algorithms where Fig. 3(a) shows a complete block dia-
gram for these encryption algorithms based on both
permutation and substitution phases. In these algorithms, the

permutation phase block represents one of the selected permu-
tation techniques (Lorenz chaotic system, Arnold’s cat map
and chess-based algorithm) and the substitution phase block
represents one of the selected substitution techniques (Lorenz

chaotic system, generalized discrete maps and the fractal-
based algorithm). Therefore, nine different cases are investi-
gated to cover all possible permutation–substitution combina-

tions. It is to be noted that the output of each permutation
phase is stored as a scrambled image as shown in Fig. 3(a),
which represents the effect of permutation-only encryption

algorithms and, thus, a total of twelve cases are evaluated.
Moreover, there is a switch in the encryption block diagram
which relates the permutation key to the input image. Hence,
these outputs will be repeated when S ¼ 0 and S ¼ 1, which
Fig. 4 Design of the encryption key for each of the
correspond to static permutation key (independent of the input
image) and dynamic permutation key (dependent on the input
image).

In this section, the color version of the ‘‘Lena’’ image
(512 · 512) is encrypted. In this symmetric-key cryptosystem,
the decryption process is the inverse of the encryption process

as shown in Fig. 3(b). To encrypt a source image, the whole
image is first scrambled using the chosen permutation algo-
rithm. The permutation parameters are extracted from the

encryption key and the switch S controls their dependence
on the source image. If the switch S is disconnected (S= 0),
the parameters are calculated from the key only. If S is con-
nected (S ¼ 1), the source image contributes to the calculation

of the permutation parameters. When, S ¼ 1 the algebraic sum
of the input image three color channels is calculated by the
following:

PSum ¼ RSum þ GSum þ BSum; ð13Þ

where RSum, GSum and BSum are the sums of the red, green and
blue channels of the input image, respectively.

Encryption key design

Fig. 4 shows the structure of the encryption key. It consists of
two sets of parameters for each technique: the substitution

parameters and the permutation parameters. Since the switch
S affects the permutation parameters only, then the new
parameters can be calculated from the following equations:

Lorenz permutation parameters

x0 ¼ xkey þ
modðPS;FÞ þ 1

F
; ð14aÞ

y0 ¼ ykey þ
modðPS;FÞ þ 1

F
; ð14bÞ

z0 ¼ zkey þ
modðPS;FÞ þ 1

F
; ð14cÞ
chosen substitution and permutation techniques.
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Fig. 5 The scrambled image and its adjacent pixel correlation coefficients where (a–c) and (d–f) are for the continuous chaos, discrete

chaos and chess-based algorithm when S ¼ 0 and S ¼ 1, respectively.
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where F is an integer value, which reflects the effective preci-
sion of PS on the initial conditions.

Arnolds’ Cat map permutation parameters

a ¼ modðPS þ akey;N� 1Þ þ 1; ð15aÞ

b ¼ modðPS þ bkey;N� 1Þ þ 1: ð15bÞ

Chess-based permutation parameters

Sc ¼ modðPS þ Sc�key
;NÞ þ 1; ð16aÞ

Sr ¼ modðPS þ Sr�key
;NÞ þ 1; ð16bÞ

where the value of Ps depends on the switch S and (13) as
follows:

Ps ¼
0 S ¼ 0

Psum S ¼ 1

�
: ð17Þ

For the color version of Lena ð512� 512Þ; i.e.

N ¼ 512 ¼ 29, L ¼ 9, so it requires 4 bits to store L. Then,
the total encryption key length can be calculated from both

the substitution and permutation key lengths as shown in
Fig. 4. It is to be noted that some of the substitution parame-
ters are chosen to enhance the sensitivity to any bit change in
that key. For example, although the generalized discrete chao-

tic maps have 10 parameters and 3 initial values as shown in
Table 1, they are merged into only 4 key parameters
fV1;V2;V3; and V4g as shown in Fig. 4. In the substitution

phase, the substitution-key length can be controlled as in the
case of fractals-based substitution, ð4Nþ 8Þ bits, or fixed as
in the two other cases (96 and 128 bits for the Lorenz and gen-

eralized maps, respectively). Similarly for the permutation
phase, the key length can be controlled for the two cases of
Arnold’s cat map and chess-based algorithm with ð4þ 2LÞ
and ð4þ Lþ KÞ bits, respectively. In the Lorenz-based permu-
tation technique, the key length is fixed and equals 100 bits.
For example, let us assume that the Lorenz technique is
selected for both substitution and permutation then the key
length will be 96 bits for the substitution phase and 100 bits

for the permutation phase. This gives a total key length of
196 bits, which is large enough to resist brute-force attacks.

Permutation-only encryption algorithm

The output of the scrambled images of Lena is shown in
Fig. 5 for six different cases: three permutations with S ¼ 0
and three with S ¼ 1. These outputs represent the

permutation-only encryption algorithm, where the encrypted
images are visually more random in chaotic generators than
in the chess-based algorithm. The average correlation coeffi-

cients of the three channels are shown in Fig. 5 where the
effect of continuous Lorenz is better than that of the discrete
chaos. It is clear that S ¼ 1 (dynamic permutation key) does

not highly affect the continuous permutation because the cor-
relation coefficients are already in the good range. However,
it enhances the correlation coefficients of the discrete permu-

tation such that the horizontal correlation coefficients are
divided by 5, which decreases the gaps between the correla-
tion coefficients in different directions. Regarding the chess-
based algorithm shown in Fig. 5(c) and (f), the encrypted

image is visually not good as clear from the average correla-
tion coefficients, especially the vertical measure, which reflects
the vertical lines in the encrypted images either with S ¼ 0 or

S ¼ 1. Note that, in the permutation algorithms, the pixels
RGB values do not change but the locations of the pixels
do change. Therefore, the histograms of all six cases are iden-

tical to those of the original image, which makes all these
algorithms unsecured. Moreover, the differential attack mea-
sures and other evaluation techniques will fail for these out-
puts, which clarifies the need for permutation–substitution

encryption algorithms.



Table 3 Average encryption measures over the three RGB channels as well as mean square error and entropy results for images with

resolution 512 · 512.
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Permutation–substitution encryption algorithms

Two sets of results have been tested based on the switch S, where 9

cases are discussed in each scenario showing all possible combina-
tions of the selected substitution and permutation techniques.
When S ¼ 1 the input image channels are processed using (13)
to calculatePSum, then, the permutation parameters obtained from

the encryption key are further modified using PSum as in (14)–(17).
Table 3 shows the average correlation coefficients of the

RGB channels and the differential attack measures for 18



Table 4 Encrypted and wrong decrypted images.
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different encrypted outputs (9 cases for both S ¼ 0 and
S ¼ 1. Moreover, the MSE and entropy are also added

in Table 3 for the 18 encryption algorithms under two dif-
ferent wrong decryption processes when the LSB of the
substitution and permutation keys is changed.

It is worth noting that the average correlation coefficients

for all algorithms are in the order of 10�3, which reflects
that the pixels are almost uncorrelated in all directions.
Table 4 shows the 18 encrypted images and Fig. 6 illustrates

the horizontal correlation distributions in the RGB channels
for the original Lena image and four different encrypted
outputs. The first observation from this figure is that the

influences of all permutation-only algorithms are limited
and their effect exists in similar regions related to the orig-
inal distribution and they do not cover the whole domain.

However, the horizontal distribution of the correlations in
the RGB channels becomes similar in the 18 mixed permuta
tion–substitution algorithms as shown in the last column,
where uniform distributions are obtained in all channels.
The minimum correlation values from these 18 outputs are

in the order of 10�4 when using the chess-algorithm for per-
mutation, generalized discrete maps for substitution and
S ¼ 1.

The differential attack measures are among the main

requirements for secure encryption. From the previous studies
and Table 3, the effect of different substitution techniques for
one permutation technique is minor and can be neglected in

both S ¼ 0 and S ¼ 1. Nevertheless, the main objective of
the switch S is to improve the differential attack measures
and, especially, the NPCR and UACI measures as shown in

Table 3. The NPCR measures jump from 46%, 33%, 49%
at S ¼ 0 to 99.6%, 99.6%, 99.6% at S ¼ 1 corresponding to
Lorenz, Arnold and chess-algorithm permutation techniques,

respectively. Similarly, the UACI measures jump from 15%,
11%, 16% at S ¼ 0 to 33.4%, 33.4%, 33.4% at S ¼ 1 corre-
sponding to Lorenz, Arnold and chess-algorithm permutation



Table 5 Sample NIST results for encrypted Lena (1024� 1024).

Original Lena Permuted (Lorenz) Permuted (Arnold) Permuted (Chess) Encrypted (Chess + 
Gen. Map + S=0)

RED

GREEN

BLUE

Fig. 6 The horizontal pixel correlation distribution for the RGB channels.
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techniques, respectively. These NPCR and UACI values are in
the good ranges as reported before [42].

The sensitivity analyses for two different cases are shown in
Table 4 for each encryption algorithm and their RMS and
entropy values are given in Table 3. The first case is when

wrong decryption is applied after changing a single LSB of
one parameter from the permutation key with a subscript
P. The second case is when the LSB is chosen from the substi-

tution key with a subscript S. Based on the results of Table 3
for all encryption algorithms, the wrong decryption
permutation-key gives the best performance using the Lorenz
permutation algorithm. In the chess-based algorithm, the cyc-
lic rotation effect of the horse-move is illustrated in Table 4.

The main disadvantage of using Arnold’s cat map is that the
wrong decrypted images are very bad as all the details of the
original image exist as shown in Table 4. However, the second

wrong decryption case for all 18 algorithms illustrates a great
response as evident from the higher values of the RMS and the
entropy, which are very close to 8. Therefore, the key design

should focus on the substitution case to improve the sensitivity
analysis and the Arnold’s cat map is not recommended for
secure encryption.



Table 6 Comparison between this review article and eleven recent books and papers. (See below-mentioned reference for further

information.)
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Table 5 shows the results of the 15 NIST tests [41] per-
formed on Lena 1024� 1024 where seven cases are discussed:

three permuted images and four fractal-based substitution
cases having Lorenz and chess permutation techniques with
S ¼ 0 and S ¼ 1. It is clear from these results that the permu-

tation only techniques are not enough to pass all tests but the
mixed techniques succeed in all tests based on chaotic/non-
chaotic systems such as in the Lorenz/fractals case or even

non-chaotic/non-chaotic algorithms as in the chess/fractals
results. Those results further assert the randomness of the
encrypted images.

Because it is difficult to simultaneously achieve the best

encryption execution time and high security, the objective of
this review article is not to provide the best execution time
but to provide good encryption quality with nonconventional

algorithms. The encryption time for the studied cases can be
estimated from the times of the substitution and permutation
phases. Using a computer with 2.2 GHz processor, 4G

RAM, and for the 256� 256 Lena color image, the
substitution-only times are 1.149, 3.78 and 0.782 s for the
Lorenz, generalized maps and fractals, respectively. Although
substitution based on generalized discrete maps has the largest

execution time, its complexity and security are high due to the
number of parameters and calculations of the generalized
maps. Regarding the permutation phase times, they are

0.017, 0.005 and 8.85 s for the Lorenz, Arnold and chess based
algorithms, respectively.
The comparison results of the recent publications drawn
from 11 sources are presented in Table 6 with respect to the

used PRNG’s (chaotic and non-chaotic), basic idea of the
encryption algorithm, the input data, the applied encryption
analyses and some additional details. It is clear that all these

papers are based on chaotic generators in the substitution
phase and some of them focus only on substitution encryption
algorithms [10–14]. The permutation phase of the other papers

is related to the conventional discrete chaotic maps except for
Zanin and Pisarchik [16], which is based on the Gray code (lin-
ear matrices) but without any analysis. Some analyses were not
reported and some results are not in the good ranges such as

UACI [13], which is 20%, and the NPCR [11]. Some papers
reported the execution time for grayscale images and three
papers [11,13,18] for color-images. In addition, some analyses

such as the NIST statistical tests are not performed.
Additional features, which are not covered in this review
article, have been introduced in some of these references

such as the FPGA hardware design and post-processing [2],
data loss and noise attacks [18], and the compression
performance [17].

Conclusions and recommendations

This paper covered both substitution and permutation phases,

where different techniques were discussed such as discrete
chaotic maps (the conventional Arnold’s cat map and a
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combination of three generalized maps), a continuous chaotic
system (Lorenz) and non-chaotic algorithms (fractals-based
and chess-based horse movement). Complete analyses of 27

different encryption algorithms were summarized in which
substitution-only, permutation-only and permutation–substitu
tion phases are discussed with and without dependency on the

input image. Therefore, several complete encryption algo-
rithms were provided and compared using miscellaneous anal-
yses, which include the NIST statistical tests, key-sensitivity

tests and execution times. A comparison with eleven recent
publications is provided in Table 6, which illustrates the
advantages and wide scope of this review article.

Based on the presented analyses and comparisons, the fol-

lowing recommendations, on how to design a secure image
encryption algorithm, can be given. Even though some of these
recommendations can be considered as common rules in mod-

ern symmetric encryption algorithms, they have not been
widely followed. Finally, some future research directions are
also provided.

� Permutation-only image encryption schemes are generally
insecure: A permutation-only encryption algorithm reallo-

cates the pixels so that the correlation coefficients may be
improved but the encrypted image still has the same his-
togram. Such histograms can reveal some useful informa-
tion about the plain images. For example, images of

human faces usually have narrower histograms than images
of natural scenes. In addition to revealing such information,
permutation-only encryption schemes usually fail in key

sensitivity analysis and NIST results and have poor differ-
ential attack measures.
� Substitution-only image encryption schemes are generally

more secure than permutation-only schemes: Whether
the substitution algorithm is based on discrete chaotic,
continuous chaotic or non-chaotic (e.g., fractals) genera-

tors, it improves the correlation coefficients, flattens the
histograms and can pass the key sensitivity and NIST
tests. However, the differential attack results are not
good enough since there are no changes in the pixels’

positions.
� Permutation–substitution encryption algorithms generally
have the best security: A substitution phase can make

the cipher-image look random and pass many evaluation
criteria. A permutation phase can improve the differential
attack measures and is useful in increasing the computa-

tional complexity of a potential attack and in making
the cryptanalysis of the encryption scheme more compli-
cated or impractical. Hence, permutation–substitution
encryption algorithms usually improve all the encryption

evaluation criteria and will, most probably, pass the
NIST tests.
� Cipher-image feedback with multiplexing is very useful for

enhancing the security: The multiplexer adds nonlinearity
and the delay element improves the encryption statistics
because each pixel affects all upcoming encrypted pixels.

� Permutation phases which are dependent on the input
image enhance the security: When the permutation param-
eters are dynamic, the permutation–substitution encryption

algorithm becomes sensitive to any small change in the
input image, produce a totally different output and, hence,
the differential attack measures are improved.
� Key sensitivity results may not be satisfactory for some

permutation techniques: A one bit change in the encryption-
key should lead to a totally different behavior in the encryption
process. The substitution parameters are usually sensitive

to such small changes. However, care should be taken when
including the permutation parameters in the encryption-key
design.
� Combining chaotic and non-chaotic generators can yield a

fast and secure encryption algorithm: For the studied algo-
rithms, performing substitutions using fractals and permu-
tations using a chaotic generator represents a good

encryption choice. In addition to security, which was the
main objective of this review article, focusing on the speed
of the encryption algorithm should be the target of future

research so that video encryption can be performed.
� Additional features can enhance the utilization of an image
encryption algorithm: For instance, image compression can
be performed along with image encryption. Implementing

an FPGA hardware design that corresponds to the software
design is also needed.
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[39] AbdElHaleem SH, Radwan AG, Abd-El-Hafiz SK. A chess-

based chaotic block cipher. In: IEEE international new circuits

and system conference (NEWCAS); 2014. p. 405–8.

[40] Corrochano EB, Mao Y, Chen G. Chaos-based image

encryption: handbook of geometric computing. Berlin-

Heidelberg: Springer; 2005.

[41] Rukhin A et al. A statistical test suite for random and

pseudorandom number generators for cryptographic

applications. Publication: NIST Special; 2001, p. 800–22.

[42] Wu Y, Noonan JP, Agaian S. NPCR and UACI randomness

tests for image encryption. J Select Areas Telecomm (JSAT)

2011:31–8.

[43] Abd-El-Hafiz SK, Radwan AG, AbdElHaleem SH. Encryption

applications of a generalized chaotic map. Appl Math Inf Sci

(AMIS) 2015;9(6):1–19.

[44] Zidan MA, Radwan AG, Salama KN. The effect of numerical

techniques on differential equation based chaotic generators. In:

The 23rd international conference on microelectronics (ICM);

2011. p. 1–4.

[45] Radwan AG. On some generalized logistic maps with arbitrary

power. J Adv Res 2013;4:163–71.

[46] Gonzales OA, Han G, De Gyvez J, Sanchez-Sinencio E. Lorenz-

based chaotic cryptosystem: a monolithic implementation. IEEE

Trans Circ Syst I 2000;47:1243–7.

[47] Zidan MA, Radwan AG, Salama KN. Controllable v-shape

multi-scroll butterfly attractor: system and circuit

implementation. Int J Bifurcat Chaos (IJBC) 2012;22(6):

1250143.

[48] Radwan AG, Abd-El-Hafiz SK, Abd-El-Haleem SH. Image

encryption in the fractional-order domain. In: International

conference on engineering and technology (ICET); 2012. p. 1–6.

[49] AbdElHaleem SH, Radwan AG, Abd-El-Hafiz SK. Design of

pseudo random keystream generator using fractals. In: IEEE

international conference on electrical circuits & systems

(ICECS); 2013. p. 877–80.

[50] USC-SIPI Image Database, University of Southern California,

Signal and Image Processing Institute., November 2013, http://

sipi.usc.edu/database/.

[51] AbdElHaleem SH, Radwan AG, Abd-El-Hafiz SK. A chess-

based chaotic block cipher. In: IEEE international new circuits

and system conference (NEWCAS); 2014. p. 405–8.

[52] Pisarchik AN, Zanin M. Chaotic map cryptography and

security. Horizons in computer science, vol. 4. Springer; 2012.

http://refhub.elsevier.com/S2090-1232(15)00075-2/h0040
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0040
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0040
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0045
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0045
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0045
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0050
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0050
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0055
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0055
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0055
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0060
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0060
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0065
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0065
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0070
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0070
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0070
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0075
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0075
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0075
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0080
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0080
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0085
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0085
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0085
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0090
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0090
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0095
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0095
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0095
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0095
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0105
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0105
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0105
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0110
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0110
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0110
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0110
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0120
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0120
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0120
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0125
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0125
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0125
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0135
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0135
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0135
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0140
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0140
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0140
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0145
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0145
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0145
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0145
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0150
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0150
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0155
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0155
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0155
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0160
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0160
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0165
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0165
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0175
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0175
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0175
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0180
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0180
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0180
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0185
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0185
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0185
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0190
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0190
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0190
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0200
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0200
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0200
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0205
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0205
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0205
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0210
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0210
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0210
http://refhub.elsevier.com/S2090-1232(15)00075-2/h9000
http://refhub.elsevier.com/S2090-1232(15)00075-2/h9000
http://refhub.elsevier.com/S2090-1232(15)00075-2/h9000
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0225
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0225
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0230
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0230
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0230
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0235
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0235
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0235
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0235
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0260
http://refhub.elsevier.com/S2090-1232(15)00075-2/h0260

	Symmetric encryption algorithms using chaotic and non-chaotic generators: A review
	Introduction
	Encryption key and evaluation criteria
	Statistical tests
	Pixel correlation coefficients
	Histogram analysis
	Entropy
	NIST statistical test suite

	Sensitivity tests
	Differential attack measures
	Sensitivity to one bit change in the encryption key


	Substitution-only encryption algorithm
	PRNG based on Lorenz chaotic system
	PRNG based on generalized discrete maps
	PRNG based on fractals

	Comparison of permutation techniques
	Permutation based on logistic map
	Permutation based on indices vectors
	Permutation based on Arnold’s cat map
	Permutation based on Lorenz system
	Permutation based on chess-algorithm

	Mixed permutation–substitution image encryption algorithms
	Encryption key design
	Permutation-only encryption algorithm
	Permutation–substitution encryption algorithms

	Conclusions and recommendations
	Conflict of Interest
	Compliance with Ethics Requirements
	Acknowledgment
	References


