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Abstract
Ovarian cancer patients with homologous recombination deficiency (HRD)
tumors would benefit from PARP inhibitor (PARPi) therapy. However, patients
withHRD tumors account for less than 50% of thewhole cohort, so newbiomark-
ers still need to be developed. Based on the data from the SNP array and somatic
mutation profiles in the ovarian cancer genome, we found that high frequency
of actionable mutations existed in patients with non-HRD tumors. Through
transcriptome analysis, we identified that a downstream target of the cGAS-
STING pathway, CXCL11, was upregulated in HRD tumors and could be used
as a predictor of survival outcome. Further comprehensive analysis of the tumor
immune microenvironment (TIME) revealed that CXCL11 expression signature
was closely correlated with cytotoxic cells, neoantigen load and immune check-
point blockade (ICB). Clinical trial data confirmed that the expression ofCXCL11
could be used as a biomarker for anti-PD-1/PD-L1 therapy. Finally, in vivo and in
vitro experiments showed that cancer cells with PARPi treatment increased the
expression of CXCL11. Collectively, our study not only provides biomarkers of
ovarian cancer complementary to the HRD score but also introduces a potential
new perspective for identifying prognostic biomarkers of immunotherapy.
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cGAS-STING, CXCL11, HRD, ovarian cancer, PARPi, TIME

Abbreviations: CNV, copy number variation; CXCL11, C-X-C motif
chemokine 11; DEGs, differentially expressed genes; GEO, Gene
Expression Omnibus; GSEA, gene set enrichment analysis; HR,
homologous recombination repair; HRD, homologous recombination
deficiency; ICB, immune checkpoint blockade; LOH, loss of
heterozygosity; LST, largescale state transitions; MSI, microsatellite
instability; OSC, ovarian serous cystadenocarcinoma; PARPi, PARP
inhibitor; TAI, telomeric allelic imbalance; TCGA, the Cancer Genome
Atlas; TIME, tumor immune microenvironment; TPM, transcripts per
million
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1 INTRODUCTION

The incidence rate of ovarian cancer ranks third among
female genital tract malignancies, but its mortality rate
ranks first.1 About 70% of ovarian cancer patients have
advanced cancer at the time of initial diagnosis, as there
are no obvious symptoms in the initial stage of ovar-
ian cancer.2 Ovarian serous cystadenocarcinoma (OSC), a
common type of ovarian cancer, accounts for about 90% of
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all ovarian cancers3 and it is prone to peritoneal metasta-
sis early and chemotherapy resistance. According to statis-
tics, the 5-year survival rate of ovarian cancer patients is
only 30–45%.4 The major reason for the poor prognosis of
ovarian cancer is lack of effective means of early diagnosis
and prognostic indicators. Discovering specific biomarkers
for early screening of ovarian cancer and new therapeutic
targets for ovarian cancer are the current focus of ovarian
cancer research.
Emerging clinical trials have revealed the clinical value

of homologous recombination deficiency (HRD) in ovar-
ian cancer. Homologous recombination repair (HR) plays
an important role in DNA repair mechanisms. BRCA
(BRCA1/2), RAD51 (RAD51B/C/D), BRIT1, etc. are key
components of HR-mediated DNA repair.5–7 HRD tumors
were recorded for the first time in patients that harbored
germline mutations of BRCA gene. In the phase 3 PAOLA-
1 (PAOLA-1/ENGOT-ov25) trial, the addition of main-
tenance olaparib provided a significant progression-free
survival benefit, which was substantial in patients with
HRD tumors, including those without a BRCAmutation.8
The molecular mechanism of HRD is not fully under-
stood. Current studies have found that mutations in genes,
including BRCA gene mutations, involved in the HR sig-
naling pathway can only explain about 14.1% of HRD ovar-
ian cancer patients.9 Therefore, research on transcriptome
characteristics of HRD patients may fill this gap. Although
several studies have investigated the relationship between
the transcriptome and tumor genome instability,10,11 HRD-
associated RNAs and their clinical significance in ovarian
cancer still remain largely unexplored. Moreover, HRD is
present in less than 50% of serous ovarian tumors,12 so new
biomarkers need to be developed for molecular typing of
ovarian cancer patients with non-HRD tumors.
For the first time in the present study, by taking advan-

tage of both the Cancer Genome Atlas (TCGA)/Gene
Expression Omnibus (GEO) database and the algorithm
for quantifying HRD scores, we found that high fre-
quency of actionable mutations existed in patients with
non-HRD tumors. Through transcriptome analysis, we
identified and validated the C–X–C motif chemokine 11
(CXCL11) that predicted the survival and prognosis of
OSC patients. Furthermore, we discovered a relationship
between CXCL11 expression and tumor immune microen-
vironment (TIM‘E), including cytotoxic cells, neoantigen
load, and immune checkpoint blockade (ICB). Moreover,
highCXCL11 expression was able to be used as a biomarker
for anti-PD-1/PD-L1 therapy, and the predictive effect of
CXCL11was better than that of PD-1/PD-L1. Finally, in vivo
and in vitro experiments confirmed that olaparib could
upregulate the expression of CXCL11 in ovarian cancer cell
lines. Our research perspectives and methods provide a
possible direction for molecular typing of ovarian cancer.
The results of this studymay be valuable for understanding

the relationship between HRD and TIME and improving
the clinical outcome of patients receiving anti-PD-1/PD-L1
therapy.

2 MATERIALS ANDMETHODS

2.1 Data collection and processing

OSC patients’ RNA sequencing data, somatic mutation
data, SNP array data, and corresponding clinical follow-
up information were downloaded from the publicly avail-
able TCGA database (https://portal.gdc.cancer.gov) and
the NCBI GEO database.13 RNA sequencing data were
normalized as transcripts per million (TPM) by using
the R. SNP array data were processed using Affymetrix
Power Tools and PennCNV. The somatic mutation counts,
copy number variation (CNV), fraction genome altered
scores (percentage of copy number altered chromosome
regions out of measured regions), and microsatellite insta-
bility (MSI) sensor score were obtained from the cBio-
Portal database (https://www.cbioportal.org/). In total, 348
TCGA samples data were extracted; 296 GEO samples data
were extracted (GSE140082 and GSE30161). The transcrip-
tome profile and clinical information from immunother-
apy cohorts were obtained from Imvigor210.14,15

2.2 HRD score analysis

Loss of heterozygosity (LOH)was defined as the number of
counts of chromosomal LOH regions shorter than whole
chromosome and longer than 15 Mb.16 Largescale state
transitions (LST) were defined as chromosome breakpoint
(change in copy number or allelic content) between adja-
cent regions each of at least 10 Mb obtained after smooth-
ing and filtering shorter than 3 Mb small-scale CNV.17
Telomeric allelic imbalance (TAI) was defined as the num-
ber of regions with allelic imbalance that extend to the
subtelomere but do not cross the centromere.18 The HRD
score was defined as the sum of TAI, LST, and LOH
scores.19 The HRD score of each patient is shown in
Table S1.

2.3 Genomic landscape and neoantigen
load

The datasets of the somatic mutations for OSC in TCGA
were obtained from the MC3 TCGA dataset and ana-
lyzed using the TCGA mutations package of R.20 Somatic
mutation alterations were analyzed by using the maftools
package of R.21 The four-digit HLA type for each sam-
ple was inferred using POLYSOLVER (POLYmorphic loci

https://portal.gdc.cancer.gov
https://www.cbioportal.org/
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reSOLVER), which uses a normal tissue .bam file as
input and employs a Bayesian classifier to determine
genotype.22 By comparing to matched tumor bams, POLY-
SOLVER also identified HLA mutations. Neo-epitopes
were predicted for each patient by defining all novel
amino acid 9mers and 10mers resulting from mutation
in expressed genes (median >10 TPM in the tumor type)
and determining whether the predicted binding affinity
to the patient’s germline HLA alleles was <500 nM using
NetMHCpan.23–26 The Neoantigen load of each patient is
shown in Table S2.

2.4 Gene set enrichment analysis
(GSEA)

RNA-seq data (raw counts) analysis was conducted using
the “edgeR” package of R.27 Fold change >1.5, adj. p < .05,
TPM >1, and genes with the first 75% of median absolute
deviation were set as the cutoffs to screen for differentially
expressed genes (DEGs). Heatmaps and clustering were
generated using an open-sourceweb tool ClustVis.28 GSEA
was performed using GSEA software from the Broad Insti-
tute (MIT, Cambridge, MA) to identify differential signal-
ing pathways in different groups.29 The normalized enrich-
ment score was calculated for each gene set. GSEA results
with a nominal p < .05 were considered significant.

2.5 Identification of prognostic related
genes associated with HRD score

Univariable Cox regression analysis was performed to
select the prognostic related genes using the comput-
ing environment R with the survival package.30 The
prognosis-related genes with a p-value < .05 in the
univariate Cox regression analysis were considered as
candidate variables. The results were further analyzed
through the LASSO regression approach to seek a balance
between the maximization of prediction accuracy and the
minimization of interpretation.31 The screening process is
shown in Figure 1.

2.6 Immune cells infiltration in bulk
tumor gene expression data

In order to study the enrichment of immune cells in
CXCL11-negative and CXCL11-positive groups, we used
TIMER,32 an efficient algorithm for predicting immune
cell infiltration of bulk tumor gene expression data (https:
//cistrome.shinyapps.io/timer/). For each sample, TIMER
quantified the relative abundance of six types of infiltrat-
ing immune cells, including T cells, B cells, macrophages,
neutrophiles, and dendritic cells.

F IGURE 1 Computational overview of homologous
recombination deficiency (HRD)-related RNAs detection. Columns
reflect ovarian cancer samples, and the rows reflect three
biomarkers of the HRD score. Color reflects the scores for each
biomarker in each sample. HRD-related RNAs were detected by
comparing the RNA expression profile between the top 20% patients
with high HRD scores and the bottom 20% patients with low HRD
scores

2.7 Cells and culture

A2780 and A2780cisR (cisplatin resistant) human ovarian
cell lines were gifts from Fudan University Shang-
hai Cancer Center. IOSE-80 and HEY-T30 ovarian
cell lines originated from a gift from Dr Luopei Guo

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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(Obstetrics and Gynecology Hospital of Fudan Univer-
sity). ES-2, SKOV3, OVCAR3, and CAOV3 ovarian cell
lines were purchased from GeneChem (Shanghai, China).
All cell lines were cultured according to ATCC guidelines
at 37◦C in a 5% CO2 incubator. The olaparib (Selleck, cata-
log number S1060) was dissolved in DMSO, and the final
concentration of DMSO in themediumwas 0.1%. After the
cells were plated for 24 h, cells were overlaid with (0, 2, 10,
25, 50 μM) olaparib-conditioned medium and harvested
for 24 h.

2.8 Real time-quantitative PCR
(RT-qPCR) analysis

For cDNA synthesis, 1 μg total RNA was processed using
the HiScript RT SuperMix for qPCR (+gDNA wiper) kit
(Vazyme). The ChamQ Universal SYBR qPCR Master
Mix (Vazyme) was used for the thermocycling reaction.
The RT-qPCR analysis was carried out in triplicate times.
Primer sequences were as follows:

Beta-ACTIN: Forward: 5′-GTGGCCGAGGACTT
TGATTG-3′,

Reverse: 5′-CCTGTAACAACGCATCTCATATT-3′,
CXCL11: Forward: 5′-GACGCTGTCTTTGCATAGGC-
3′,

Reverse: 5′-GGATTTAGGCATCGTTGTCCTTT-3′.

3 RESULTS

3.1 HRD score significantly correlated
with the prognosis and molecular
characteristics of TCGA-OSC cohort

According to the HRD algorithm, LOH, TAI, and LSTwere
used as the basis for calculating the HRD score. Optimal
cutoff scores were determined by assessing the score that
had the minimum p-value of the log-rank test (Figure 2A).
HRD status was defined as HRD if HRD score was >57;
HRDstatuswas defined as non-HRD ifHRDscorewas≤57.
The Kaplan–Meier survival curve (Figure 2A) showed that
overall survival (OS) of patients in the HRD group is much
longer than the cases in the non-HRD group; hazard ratio
(HR) = 0.49 (0.37, 0.65), log-rank test, p < .00001. Subse-
quently, we investigated the correlation between the HRD
score and other hallmarks of genomic instability, includ-
ing somatic mutation counts, fraction genome altered, and
MSI. The median value of somatic cumulative mutations
in the HRD group was significantly higher than that in
the non-HRD group (Wilcoxon signed rank test, p< .0001;

Figure 2B). We next compared the fraction genome altered
scores between the HRD and non-HRD groups. As shown
in Figure 2C, the fraction genome altered scores in the
HRD group were higher than those in the non-HRD group
(Wilcoxon signed rank test, p< .05; Figure 2C). The plot of
“somatic mutation counts versus fraction genome altered”
clearly showed that the distribution of points in the HRD
group was concentrated in the upper right of the coordi-
nate system, while that of the non-HRD group was scat-
tered (Figure 2D). The results of transcriptome level analy-
sis were consistent with those at the genome level: through
GSEA analysis, it was found that the three signal path-
wayswith themost significant differences between the two
groupswereDNAreplication, homologous recombination,
andmismatch repair (Figure S1A). Therewas no difference
in the MSI status of the two groups (Figure S1B).

3.2 Genomic landscape of non-HRD
group showed a high proportion of
actionable mutations in NF1 and CDK12

Genomic characteristics, such as the oncogene activa-
tion (e.g., ERBB2 amplification, EGFR tyrosine kinase
mutation) and inactivation of tumor suppressor genes
(e.g., MMR, BRCA1/2) have shown a strong correlation
with clinical response to target therapy. Therefore, we
compared the genomic mutational landscape between the
HRD and non-HRD groups. The results showed that the
genomic landscape of non-HRD group was significantly
different from that of the HRD group. Only nine of the top
20 genes with the highest mutation rate in the two groups
overlapped (Figure S1C). The mutational landscapes of
these two subgroups displayed a distinct mutation ratio
in TP53 (94.0% [non-HRD] vs. 62% [HRD]), and the
mutation classification of the non-HRD group was more
abundant, including a higher proportion of frameshift del,
nonsense mutation, and so on (Figure 3A,B). Through
the screening of actionable genes in the OncoKB database
(https://www.oncokb.org/actionableGenes), among the
20 genes with the highest mutation frequency in the non-
HRD group, two genes were biomarkers for targeted drugs
(NF1 and CDK12). Moreover, most of the variant classifi-
cations of these two genes were those affecting gene struc-
ture. Patients withmutations in these two genes accounted
for 13% of the non-HRD group. The mutational landscapes
of HR genes in the two subgroups also exhibited a distinct
difference. HR gene mutations in the HRD group were
mainly concentrated in BRCA1/2 (7%), while the non-HRD
group was scattered across different HR genes (Figure
S2A,B). We also compared the CNV of HR genes in the two
subgroups, and observed BRCA2 homozygous deletion
was only present in the HRD group (Figure S2C).

https://www.oncokb.org/actionableGenes
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F IGURE 2 Homologous recombination deficiency (HRD) score was significantly correlated with the prognosis and molecular
characteristics of TCGA-OSC cohort. (A) Kaplan–Meier estimates of overall survival of patients with the HRD or non-HRD tumors calculated
by the HRD score in the TCGA-OSC cohort. On the right are the AUC curves of HRD score in TCGA-OSC cohort. (B) Violin plot of somatic
mutations in the HRD and non-HRD groups. Somatic mutation counts in the HRD group were significantly higher than those in the
non-HRD group (Wilcoxon signed rank test, ****p < .0001). (C) Violin plot of fraction genome altered in the HRD and non-HRD groups
(Wilcoxon signed rank test, *p < .05). (D) Two-dimensional plan of fraction of the genome and somatic mutation counts in different
subgroups (Kolmogorov–Simonov test, p < .01)



6 of 16 SHI et al.

F IGURE 3 Mutational landscape of TCGA-OSC cohort stratified by the homologous recombination deficiency (HRD) and non-HRD
groups. (A) Genetic profile of the HRD OSC patients. (B) Genetic profile of the non-HRD OSC patients. The genes in the red box are
actionable genes

3.3 CXCL11 expression associated with
the HRD score and its prognostic value in
OSC

To identify RNAs associated with the HRD score, the
TCGA-OSC cohort was sorted in ascending order of HRD
scores, and the last 20% (n = 70) and the top 20% (n = 70)
of the patients were chosen to identify DEGs. Utilizing
the egdeR method, a total of 124 DEGs were screened out.
Among them, 38 RNAs were found to be upregulated and
86 to be downregulated in the HRD group. Then, 124 dif-

ferentially expressed RNAs were used to perform unsu-
pervised cluster analysis on 348 TCGA-OSC samples. As
shown in Figure 4A, we found that not all DEGs clustered
the HRD and non-HRD groups well in the entire TCGA-
OSC cohort. Only the DEGs in the red block region were
able to cluster the HRD and non-HRD groups well. To fur-
ther screen out DEGs related to the HRD score and prog-
nosis of the patients, the univariate analysis was conducted
in the 124 DEGs for the whole TCGA-OSC cohort. A total
of 17 genes with prognostic potentiality were identified by
the univariate analysis and log-rank test (p < .05). The 17
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F IGURE 4 Screening prognosis related RNA based on the homologous recombination deficiency (HRD) score. (A) Unsupervised
clustering of 348 OSC patients based on the expression pattern of 124 differentially expressed genes (DEGs). (B and C) Lasso coefficient
profiles of the 17 prognosis-associated HRD genes. (D) Heatmap of the signature consisting of the HRD score and the CXCL11 expression
signature based on the Cox coefficients. Patients were divided into high-risk and low-risk groups and the median risk score was utilized as the
cutoff value. (E) Kaplan–Meier estimates of overall survival of patients with the CXCL11-positive or CXCL11-negative tumors in the
TCGA-OSC cohort (log-rank test)
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HRD-related genes were then subjected to Lasso–Cox pro-
portional hazards regression and 10-fold cross-validation to
identify the best gene model. The Lasso coefficient profile
plot was produced against the log (lambda) sequence, and
the minimize kmethod resulted in one optimal coefficient
(Figure 4B,C). C–X–Cmotif chemokine ligand 11 (CXCL11),
a downstream target of the cGAS-STING pathway, reached
the optimal regression efficiency to speculate the prognos-
tic ability. A heatmap of CXCL11 expression and the HRD
score and the scatterplot of OS with corresponding risk
scores are illustrated in Figure 4D. Kaplan–Meier anal-
ysis displayed that the survival outcomes of TCGA-OSC
patients with high CXCL11 expression (CXCL11-positive)
were significantly better than patients with low CXCL11
expression (CXCL11-negative) (HR = 0.39 [0.29, 0.51], log-
rank test p < .00001) (Figure 4E). To verify whether
the CXCL11 expression signature has similar prognostic
value in different OSC cohorts, we further confirmed
this phenomenon in two independent OSC cohorts in
the GEO database (including GSE140082 and GSE30161):
results from Kaplan–Meier analysis also showed that
patients in the CXCL11-positive group demonstrated a bet-
ter prognosis than those in the CXCL11-negative group
(Figure S3A,B).

3.4 Comparison of immune cells
infiltration within CXCL11-positive and
CXCL11-negative groups

The expression of cytokines/chemokines is essential for
attracting immune cells,33 suggesting that tumor infiltrat-
ing immune cellsmight be different in theCXCL11-positive
and CXCL11-negative groups. To validate this assumption,
the TIMER algorithm34 was applied to estimate enrich-
ment of various immune cell types within different sub-
groups. We developed a heatmap with TIMER results to
visualize the relative abundance of six immune infiltrat-
ing cell subpopulations from the TCGA-OSC cohort (Fig-
ure 5A). As depicted in the heatmap, there were signifi-
cant differences in immune cell infiltration between the
two subgroups. Antitumor lymphocyte cell subpopula-
tions, such as CD4+/CD8+ T cells and dendritic cells were
enriched in the CXCL11-positive group (Wilcoxon signed
rank test, p < .01). The neutrophils were also enriched
in the CXCL11-positive group (Wilcoxon signed rank test,
p < .001) (Figure 5B). We then investigated the correla-
tion of immune cell infiltration with the expression of
CXCL11 by spearman correlation coefficients. The results
revealed that the expression of CXCL11 was significantly
associated with immune cell infiltration in the TCGA-OSC
cohort (Figure 5C). We also further analyzed the correla-
tion between the immune cell infiltration signal and the

expression ofCXCL11 in the TCGA pan-cancer cohorts and
found similar results (Figure S3C).
Furthermore, GSEA on the gene expression profile of

the CXCL11-positive group against the CXCL11-negative
group revealed the CXCL11 expression signature-related
biological signaling pathway. Genes involved in antigen
processing and presentation, autoimmune thyroid and
cytokine receptor interaction signaling pathways were the
most significantly enriched in the CXCL11-positive group
(Figure 5D). However, taste transduction, basal cell carci-
noma, and hedgehog signaling pathways were enriched in
the CXCL11-negative group (Figure 5E).

3.5 CXCL11 expression associated with
molecules in antigen processing and
presentation pathway

The results from the TIMER and GSEA analysis showed
that there were significant differences between the
CXCL11-positive and the CXCL11-negative groups in anti-
gen processing and presentation pathway, hinting that the
expression of antigen-related genes might be associated
with CXCL11 expression. To prove this assumption, we
explored the correlation of antigen-related genes with
CXCL11 expression by using the Pearson correlation coef-
ficient. We found that the expression of MHC class I/II
(I: HLA-A, HLA-B, and HLA-C; II: HLA-DP, HLA-DM,
HLA-DOA, HLA-DOB, HLA-DQ, and HLA-DR) and
antigen binding (B2M, TAP1/2, and so on) molecules were
highly correlated with the CXCL11 expression signature
(Figure 6A). There were significant differences in the
expression of HLA-A, HLA-B, and other key antigen pre-
senting molecules between the two subgroups (Wilcoxon
signed rank test, p < .001, Figure 6B). The results were
confirmed in the GEO validation cohort (Figure S4). As
antigen processing and presentation pathway plays a
crucial role in immune recognition of predicted (neo-)
antigen produced by cancer cells, we further investi-
gated the relationship between neoantigen load and
the CXCL11 expression signature by Pearson correla-
tion coefficient. Correspondingly, predicted neoantigen
load was highly correlated with CXCL11 expression
(Figure 6C).

3.6 CXCL11 expression associated with
ICB-related genes

In recent years, ICB therapy, represented by anti-PD-
1/L1, has played an increasingly important role in antitu-
mor treatment. The characteristics of TIME and immune
checkpoint genes in tumor cells have a profound impact
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F IGURE 5 CXCL11 expression signature was associated with the immune infiltration. (A) TIMER analysis identified the relative
infiltration of six types of immune cell subpopulations with different CXCL11 subgroups. (B) Violin plot of immune cell subpopulations in the
CXCL11-positive and CXCL11-negative groups (Wilcoxon signed rank test, **p < .01, ***p < .001). (C) Correlation between the CXCL11
expression signature and immune cell subpopulations in the TCGA-OSC cohort. (D) GSEA identified that antigen processing and
presentation, autoimmune thyroid and cytokine receptor interaction signaling pathways were upregulated in the CXCL11-positive group
compared to the CXCL11-negative group. (E) GSEA identified that taste transduction, basal cell carcinoma, and hedgehog signaling pathways
were upregulated in the CXCL11-negative group compared to the CXCL11-positive group
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F IGURE 6 Correlation between the expression of CXCL11 and antigen-related genes. (A) Correlation between the CXCL11 expression
signature and antigen-related genes in the TCGA-OSC cohort. (B) Violin plot of top 10 antigen-related genes in the CXCL11-positive and
CXCL11-negative groups (Wilcoxon signed rank test, ***p < .001). (C) Correlation between CXCL11 expression signature and neoantigen load
in the TCGA-OSC cohort

on ICB therapy. Therefore, we collected more than 40
common ICB-related gene signatures and analyzed the
relationship between CXCL11 expression and ICB-related
genes.35 As displayed by heatmap, CXCL11 expression
was significantly correlated with the expression of multi-
ple ICB-related genes (Figure 7A). Ten of the most rele-
vant ICB-related genes were: LAG3, ICOS, CTLA4, CD48,
HAVCR2, PDCD1 (PD-1), PDCDILG2 (PD-L2), TIGIT,
CD274 (PD-L1), andCD86, and their expression levels were
enriched in the CXCL11-positive group (Wilcoxon signed
rank test, p< .001, Figure 7B). Generally, the key regulatory
factors involved in immunity perform similar functions in
different tissues.36 We thus explored CXCL11 expression
and ICB-related gene signatures across cancer types. We
found that the coexpression of CXCL11 and ICB-related
genes was not only present in ovarian cancer, but also in
32 other cancer types (Figure 7C).

3.7 CXCL11 expression could be used as
a potential biomarker for ICB therapy

All of the above results indicate that CXCL11 expression is
closely related to the biomarkers for ICB therapy. There-
fore, we collected the transcriptome profile and clinical
information from an immunotherapy cohort (Imvigor210)
of urothelial cancer treated with atezolizumab, so as to
explore the relationship between CXCL11 expression and
immune response.14 In this cohort, tumor patients with
high CXCL11 expression exhibited markedly improved
clinical benefits and significantly prolonged survival (Fig-
ure 8A). Significant therapeutic advantages and immune
responses to PD-L1 blockades were observed in sam-
ples with high expression of CXCL11 compared to those
with low expression (Fisher extract test, p = .0002, Fig-
ure 8B; Kruskal–WallisH test, p< .001, Figure 8C). Further
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F IGURE 7 Correlation among the expression of CXCL11 and ICB-related genes. (A) Correlation between the CXCL11 expression
signature and ICB-related genes in the TCGA-OSC cohort. (B) Violin plot of top 10 ICB-related genes in the CXCL11-positive and
CXCL11-negative groups (Wilcoxon signed rank test, ***p < .001). (C) Correlation between CXCL11 expression signature and ICB-related genes
in the TCGA-pan cancer cohorts

analysis revealed that tumor infiltrating immune pheno-
type and neoantigen load were significantly elevated in
tumors with high expression of CXCL11, which was closely
linked to immunotherapeutic efficacy (Figures 8D,E).
Besides, the association between the expression of CXCL11
and immunotherapy survival remained statistically sig-
nificant after taking into account gender, smoking,
ECOG score, immunophenotype, and PD-1/PD-L1 status
(Figure S5).

3.8 Olaparib-treated ovarian cancer
cells upregulate CXCL11 expression in vivo
and in vitro

It has been reported that PARP inhibitor (PARPi) treat-
ment markedly induced DSBs. To confirm that upregu-
latedCXCL11 expression could be derived fromHRD tumor

cells, we first re-analyzed the RNA seq data of high-grade
serous ovarian cancer tumor tissues harvested from tumor-
bearing mice after 18 days of treatment with olaparib or
vehicle (GSE120500).37 Boxplots showedmarkedly upregu-
lated expression ofCXCL11 in tumors treated with olaparib
compared with vehicle control (Figure 9A).
We next compared the expression levels of ICB-related

genes with the highest correlation with CXCL11 between
the olaparib treatment group and the control group. As
shown in Figure 9B, the expression of these genes in the
olaparib treatment group was significantly higher than
that in the vehicle control group (Wilcoxon signed rank
test, p < .01). To further validate that genomic instability
ovarian cancer cells activate the CXCL11 expression signa-
ture, we conducted in vitro experiments. As measured by
RT-qPCR (Figure 9C,D), olaparib treatment caused signifi-
cant upregulation ofCXCL11mRNAexpression inmultiple
ovarian cancer cell lines. Together, these data indicate that
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F IGURE 8 CXCL11 expression could be used as a potential biomarker for ICB therapy. (A) Curve for overall survival is shown for high
and low CXCL11 expression in the PD-L1 treatment cohort. (B and C) Proportion of immune response to anti-PD-L1 treatment in high versus
low CXCL11 expression subgroups. CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease. (D) TMB and
neoantigen load (E) in the immunotherapy cohort were compared among distinct CXCL11 expression signature subgroups. (F) CXCL11
expression signature in different immune phenotype subgroups. The tumor immunophenotype was defined according to
immunohistochemistry results of the CD8 antibody (Wilcoxon signed rank test, ****p < .0001)
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F IGURE 9 Olaparib elicits the expression of CXCL11 in vivo and in vitro. (A and B) Olaparib elicits the expression of CXCL11 and
ICB-related genes in vivo (Wilcoxon signed rank test, **p < .01). (C and D) qPCR evaluation of CXCL11 expression in different cell lines.
Olaparib elicits the expression of CXCL11 in multiple ovarian cancer cell lines (Student’s t-test, *p < .05, **p < .01). (E) Forest plot
representation of the multivariate Cox regression model delineated the association between the CXCL11 expression signature and survival in
the TCGA-OSC cohort
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cancer cells with DSBs could upregulate the expression of
CXCL11 in vivo and in vitro.

4 DISCUSSION

Over the years, many efforts have been made to investi-
gate the initiation, development, and treatment of ovarian
cancer.38 Postoperative histopathological characteristics of
patients such as tumor size, stage and grade, and residual
lesions are still used as the most important prognostic fac-
tors for ovarian cancer. However, the 5-year relative sur-
vival rate of ovarian cancer patients is still unsatisfactory.
HRD has been reported to be not only a ubiquitous fea-
ture of breast cancer but is also one of the most influen-
tial factors for ovarian cancer prognosis. However, HRD is
present in less than 50% of serous ovarian tumors, so new
biomarkers need to be developed for molecular typing of
ovarian cancer patients. In this study, we deeply analyzed
the molecular characteristics of OSC patients with differ-
ent HRD scores and identified biomarkers that could be
complementary to the HRD score, our contributions are as
follows:

(1) A comprehensive analysis of the genomic land-
scape of non-HRD group showed a high propor-
tion of actionable gene mutations. (2) We found
that CXCL11 expression, a downstream target of
the cGAS-STING pathway, was positively associ-
atedwithHRD and displayed a strong ability to pre-
dict the prognosis of OSC patients. (3) We intro-
duced CXCL11 as a potential reliable biomarker for
the efficacy of ICB therapy, and the predictive effect
of CXCL11was even better than that of PD-1/PD-L1.

The basket study design is noteworthy because it allows
for the possibility that different tumor types with the
same molecular biomarker might differ in their sen-
sitivity to therapy targeted at that biomarker.39 Poten-
tially actionable mutations were seen in 13% of non-
HRD patients: (a) loss-of-function mutations in NF1 were
found in 8% of the patients; (b) loss-of-function muta-
tions in CDK12 were found in 5% of the patients. The
NF1 gene encoding neurofibromin works as a negative
regulator of RAS activity. Patients with NF1 gene loss-of-
function mutations are more likely to develop RAS hyper-
activity and tumorigenesis.40,41 The availability of small
molecule compounds (such as selumetinib and imatinib)
that target RAS signaling implied in the pathogenesis of
plexiform neurofibromas has led to multiple clinical tri-
als, and FDA has approved Koselugo (selumetinib) for
the treatment of pediatric patients with NF1 mutations.42

CDK12 (cyclin-dependent kinase 12) is a kinase involved
in regulation of the cell cycle and regulation of tran-
scriptional elongation of many DNA-damage-response
genes. Loss of the CDK12/cyclin K complex renders triple-
negative breast cancer and HEK293 cells sensitive to
various DNA-damaging agents, including camptothecin,
etoposide, and mitomycin C.43 Comprehensive genomic
analysis of non-HRD ovarian cancer has broadened our
knowledge of the molecular events relevant to patients
who cannot receive olaparib plus bevacizumab treatment,
and provides a direction for targeted therapy of these
patients.
Through the whole transcriptome analysis of the

patients with HRD tumors, we identified that CXCL11
expression could be a reliable prognostic risk gene in the
TCGA-OSC cohort and its efficacy was proved in the GEO-
OSC cohorts. CXCL11 is a small cytokine belonging to
the CXC chemokine family.44 As a downstream target of
cGAS-STING, CXCL11 is a critical chemokine that binds
CXCR3 on T cells, regulating differentiation of naive T
cells and leading migration of immune cells to their focal
sites.45,46 In the recent issue of Cancer Cell, Lu and Guan
demonstrated that activation of the cGAS-STING pathway
in tumor tissues was significantly and positively correlated
with the prognosis of patients bearing dMMR tumors but
not that of patients with pMMR (proficient MMR) tumors.
In addition to dMMR, HRD also induces genomic insta-
bility and serves as an effective therapeutic biomarker for
breast cancer and ovarian cancer.47,48 As a complement to
Guan and Lu’s work, our results further demonstrated that
the correlation between genomic instability and activated
cGAS-STING signaling in dMMR tumors may be extended
to HRD tumors.
Emerging evidence has shown the importance of CXC

chemokines in tumor immunotherapy.49,50 Our results
showed that CXCL11 expression was positively associated
with TIME, including neoantigen load and infiltrating
immune cells, and could be used as a potential biomarker
for ICB therapy.
Under this situation, the determination of whether

upregulated CXCL11 unavoidably results from the cGAS-
STING activation needs further experimental testing. As a
downstream target of the cCAS-STING pathway, upregu-
lated CXCL11 showed superior predictive power compared
with the HRD score. Importantly, the clinical examina-
tion of CXCL11 in tumor tissues or serum is more feasible
than applying the steps necessary for calculating the HRD
score, and the prediction accuracy of upregulated CXCL11
is even better than the HRD score itself. We introduced,
for the first time, a prospective biomarker associated with
HRD tumors, which merits further investigation in multi-
ple cohorts.
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5 CONCLUSIONS

To summarize, this work provided a new perspective on
the molecular characteristics of the genomic and tran-
scriptome of patients with OSC. Our results were the
first to find that the non-HRD patients had the opportu-
nity for targeted therapy, laying the foundation for molec-
ular typing of OSC. Furthermore, this work identified
the CXCL11 expression signature that could not only pre-
dict OSC patients’ survival outcomes but also work as a
potential reliable biomarker for the efficacy of ICB ther-
apy. Our study showed high clinical application value and
provided new clues for enrolling OSC patients in preci-
sionmedicine. Through further prospective validation and
mechanism research, biomarkers derived from this work
may become important molecules for molecular typing of
OSC.
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