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Abstract

Background

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant patho-

gen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation

mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical

microbiology laboratories to address the need for rapid, cost-effective and accurate identifi-

cation of microorganisms. We evaluated application of machine learning methods for differ-

entiation of drug resistant bacteria from susceptible ones directly using the profile spectra of

whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates.

Methods

We developed a two-step strategy for data preprocessing consisting of peak matching and

a feature selection step before supervised machine learning analysis. Subsequently, five

machine learning algorithms were used for classification.

Results

Random forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly

identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification

accuracy rate of 97% when 80 peaks were selected as input features.

Conclusions

We conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used

direct colony method, and only one spectrum for an isolate for analysis, without modification
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of current protocol. This allows the technique to be easily incorporated into clinical practice

in the future.

Introduction

Carbapenem-resistant Enterobacteriaceae (CRE) is listed as one of the most urgent antibiotic

resistance threats by the Centers for Disease Control and Prevention (CDC) and The World

Health Organization (WHO) [1, 2]. Carbapenem resistance can be mediated by production of

carbapenemases or by the combination of outer membrane porin expression disruption and

production of various β-lactamases [3, 4]. Carbapenemases may confer resistance to virtually

all available beta-lactam antibiotics. The most frequent carbapenemases are the Klebsiella
pneumoniae carbapenemase (KPC) enzymes. KPC-producing bacteria are mostly in the form

of K. pneumoniae. Since the first report of KPC-producing K. pneumoniae in the United States

in 1996[5], KPC-producing organisms are now found in many other countries. [6–9]. In 2014,

a global study reported 6.0%, 15.7%, 16.0%, 3.8% and 14.9% of meropenem nonsusceptible K.

pneumoniae occurred in the United States, Europe, Latin American, APAC, and China [10].

The European Centre for Disease Prevention and Control (ECDC) report showed that

between 2015 and 2018, there was a small but significant increasing trend of population-

weighted mean percentages for carbapenem resistant K. pneumoniae (CRKP), from 6.8% to

7.5%, in the European Union (EU)/European Economic Area (EEA)[11]. The study of ECDC

on the health burden of antimicrobial resistance estimated that the number of deaths attrib-

uted to infections with CRKP increased six-fold between 2007 and 2015. Even in countries

with lower levels of CRKP, the impact of antimicrobial resistance on national burden is signifi-

cant because of the high attributable mortality of these infections [12]. Therefore, rapid detec-

tion of carbapenem-resistance is important to guide the initial choice of antimicrobial

treatment, as well as to prompt initiation of effective infection control measures. However,

detection of carbapenem resistance using susceptibility testing methods are time consuming.

Polymerase chain reaction (PCR) is a rapid, accurate and reliable method to detect resistant

genes. However, it is limited to reference laboratories and can only detect known enzymes.

MALDI-TOF MS is now widely used to identify clinical microorganisms because of low-

ered cost and faster turn-around times [13, 14]. In recent years, four approaches have been

reported for detection of certain drug resistant bacteria [15, 16] based on the postulation that

any or combination of the polypeptides related to drug resistance could possibly alter the spec-

tra obtained by MALDI-TOF MS and possibly enable differentiation from the drug-susceptible

bacteria. One approach concerns the analysis of antibiotics and their degradation products

[15, 17–19]. The hydrolysis degradation product of the β-lactam antibiotic shows a molecular

mass different from that of the native molecule. The detection of β-lactamase activity was per-

formed by analyzing the spectra containing peaks representing the β-lactam molecule, its salts

(usually sodium salts), and/or its degradation products. For example, with MALDI-TOF MS,

the presence of carbapenemases was confirmed by the detection of carbapenem hydrolysis

(loss of molecular peaks: 476 5 m/z for ertapenem and its sodium salts, 498 5 m/z, 520 5 m/z;

383.0 m/z for meropenem and its sodium salts, 405.2 m/z and 427.4; 300.0 m/z for imipenem)

and presence of their degradation products (450 m/z for ertapenem; 401.1 m/z for meropenem

and its sodium salts, 423.3 m/z, 445.6 m/z, 467.839 m/z; and 254.0 m/z for imipenem). More-

over, the combination the β-lactam antibiotic with β-lactamase inhibitors has the potential of

identification of the type of β-lactamase [20, 21]. The second approach directly detect β-
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lactamase [22] A peak of approximately 29 kDa that represented β-lactamase was detected in

the spectra. The third approach detects the specific peaks in the resistant group [23]. Some

peaks were invariably present in, and unique to drug resistant organism or susceptible ones.

Edwards-Jones V et al. reported some peaks unique to methicillin-resistant Staphylococcus
aureus (MRSA)(e.g., 891, 1140, 1165, 1229 and 2127) or methicillin-susceptible S.aureus
(MSSA)(e.g., 2548 and 2647). The m/z peaks 1774.1 and 1792.1 reported by Lu et al. were able

to successfully discriminate between hospital-acquired MRSA and community-acquired

MRSA isolates. The MALDI-TOF instruments acquire spectra in a linear positive-ion mode at

a laser frequency of 60 Hz across a mass/charge (m/z) ratio of 2,000 to 20,000. Therefore, the

first three approaches can detect molecules beyond the detection limit.

The fourth approach involves the analysis of ribosomal DNA methylations [24]. The meth-

ylation of rRNA confers resistance to antibiotics that inhibit protein synthesis. Methyltransfer-

ase activity was investigated by detection of digested rRNA to yield smaller products that were

subsequently analyzed by MALDI-TOF MS. This approach requires specific sample prepara-

tions and purified ribosomes and enzymes, which also impedes its use in routine clinical labo-

ratory. In addition, all these applications are limited by the need to know the specific target

peak as a biomarker.

Some studies describe application of machine learning methods for differentiation of drug

resistant from susceptible bacteria by directly using the profile spectra of whole cells MALDI--

TOF MS. Griffin et al [25] successfully used a support vector machine (SVM) algorithm to

accurately identify vanB positive, vancomycin-resistant Enterococcus faecium from vancomy-

cin-susceptible isolates, directly using the profile spectra of whole cells. Although these prelim-

inary results were promising, clonal relatedness of these strains was not clarified. It is therefore

impossible to exclude the chance that the findings reflect only a favorable epidemiological con-

dition in the geographical region of the authors. In addition, ethanol-formic acid extraction

was used for sample preparation. It involves several centrifugation steps and is more labor-

intensive than direct analysis of bacteria without additional protein extraction, which is usually

done in routine work flow.

Mather et al. [26] successfully differentiated vancomycin-intermediate S. aureus (VISA)

and heterogeneous VISA (hVISA) from vancomycin-susceptible S. aureus (VSSA) by using a

SVM algorithm. A total of 20 spectra from biological duplicate experiments were acquired for

each isolate. Only peaks present in 80% of the spectra for a given isolate (≧16/20) were selected

and merged into one representative spectrum for further analysis. The peak selection criteria

required multiple spectra for a given isolate and preprocessing for superspectrum made it diffi-

cult for use in clinical laboratory. Furthermore, the reproducibility of these findings has not

been widely applied and published.

Supervised machine learning is a powerful tool for classification. However, MALDI-TOF

mass spectrometry data consist of hundreds or thousands of mass to charge (m/z) ratio per

specimen and an intensity level for each m/z ratio. The dimensionality is usually much larger

than the sample size. This makes many standard pattern classification algorithms fail. There-

fore, it is critical to reduce dimensions before discrimination using such data.

Here we describe an application of machine learning methods for differentiation of drug

resistant bacteria from susceptible ones directly using the profile spectra of whole cells MAL-

DI-TOF MS in 46 CRKP and 49 CSKP isolates. Data were preprocessed, consisting of peak

matching and a feature selection step. Subsequently, five supervised machine learning algo-

rithms were compared. We demonstrated that the RF algorithm outperformed other methods

including logistic regression, naïve Bayes, nearest neighbors, and SVM. Using the RF algo-

rithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall

classification accuracy of 97% when 80 peaks were selected as input features.
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Materials and methods

Bacterial strains

This study was approved by the Institutional Review Board (VGHKS18-CT8-07). All bacteria

strains used in this study were from frozen stocks that was stored in 50% glycerol and/or Muel-

ler-Hinton (MH) broth at −80˚C. Minimum inhibitory concentrations (MICs) of carbape-

nems were determined by Vitek 2 (bioMérieux, Marcy l’Etoile, France) test using the AST

N320 card (bioMérieux, Durham, NC), which included imipenem (range, 1 to 16 μg/ml) and

meropenem (range, 0.25 to 16 μg/ml), according to the manufacturers’ recommendations.

Study strains included in this study were K. pneumoniae isolates that were resistant to imipe-

nem or meropenem according to the updated 2018 CLSI breakpoints [27], and had a “carbape-

nemase” phenotype detected by the advanced expert system (AES) of VITEK 2 system.

MALDI-TOF MS analysis

MALDI-TOF MS. A portion of a colony was picked up from the blood agar plate and

spotted onto a MALDI-TOF target plate. Each deposit on the target plate was overlaid with

2 μL of matrix solution (α-cyano-4-hydroxycinnamic acid) (VITEK1MS CHCA) and air

dried.

Following sample preparation, samples were analyzed with the Vitek MS system (bioMér-

ieux SA) in linear positive-ion mode, at a laser frequency of 50 Hz across the mass-to-charge

ratio range of 2,000 to 20,000 Da. For each target slide, the E. coli reference strain ATCC 8739

[28] was used for instrument calibration according to the manufacturer’s specifications. Qual-

ity of protein extraction was assessed by the data count (DC), defined by the interpretable

number of peaks considered in the algorithm. These isolates with a score less than 90% were

repeated once.

Spectral analysis. To recognize well-defined peaks, each spectrum was processed by baseline

correction, denouncing, and peak detection. The data was transferred from the Vitek MS

acquisition station to the Vitek MS RUO v4.12 after spectrum acquisition. The data were pre-

sented as a spectrum of intensity versus mass, in Daltons (Da).

Peak matching. Mass-Up software (http://sing.ei.uvigo.es/mass-up) was used to prepro-

cess the data [29]. The list of peaks and intensities were imported to Mass-Up as CSV files. An

inter-sample peak matching was performed with the Mass-Up software configured to use a tol-

erance of 300 ppm for forward algorithm. This step unifies the peak values among samples.

Data analysis. All of the following data analysis was performed using aligned spectra out-

put from Mass-up software in mathematica software v. 12 (Wolfram Research, Champaign,

IL). The performance of the machine learning prediction procedure was evaluated using a

leave-one-out (L1O) cross-validation procedure. The overall flowchart and the representative

steps of procedures of dimension reduction and cross validation steps were shown in Fig 1.

Split data. Each spectrum was ‘left out’ in turn as testing set, all the other spectra were

training set. The testing set was not used in the training set. The dimension reduction process

and building classifier was then executed using all the remaining data. The resulting machine

learning structure was then tested using the left-out spectrum in the beginning. The process

repeats, each time omitting a different spectrum, until all spectra have been omitted once.

Dimension reduction. The Student’s t-test was used to compare the distribution of each

m/z ratio (the null hypothesis H0 is that CRKP and CSKP have the same distribution) and gen-

erate a p value for the t-statistic. Ranking the p value from the smallest (most significant

between two groups) to the largest. Select a list of top ranked k peaks to machine learning algo-

rithms to build classifier.
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Fig 1. Overall flowchart (A) and the representative steps of procedures of dimension reduction and cross validation steps (B).

https://doi.org/10.1371/journal.pone.0228459.g001
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Class prediction. Five machine learning algorithms were performed for construction of

classifiers: SVM, RF, nearest neighbors, naïve Bayes, and logistic regression. For each model,

the default settings were left unaltered; for example, with the RF model, automatic detection

was selected for the fraction of features to be randomly selected to train each tree, the maxi-

mum number of examples in each leaf, and the number of trees in the forest. In addition, the

regularization parameter is set as 0.5.

In these analyses, different combinations of the most significant peaks with smaller p value

by the Students’s t-test were used to build the models. The testing spectrum that was “left out”

in the beginning was then repeated with the same parameters in feature selection and feature

extraction of the training set and input to classifiers. The classifier output was then compared

to the known group of the spectrum, and a performance tally is recorded. The process repeats,

each time omitting a different spectrum, until all spectra have been omitted once. Classifier

performance was assessed by calculating the accuracy, sensitivity and specificity with which

test observations were classified over all iterations of the L1O cross-validation process.

Sensitivity of the methods was assessed by calculating the percentage of CRKP that were

correctly identified. Specificity was assessed by calculating the percentage of CSKP that were

correctly identified. Accuracy was assessed by calculating the percentage of CRKP and CSKP

that were correctly identified. The machine learning algorithm predictions were output as

probabilities and exported to a comma-separated file.

Random Amplified Polymorphic DNA (RAPD). Bacteria were grown overnight on

Columbia agar medium supplemented with 5% sheep blood. The bacterial DNA was prepared

by QIAamp DNA Mini Kit (Qiagen Inc., Valencia, Calif., USA) according to the manufactur-

er’s instructions. The primer used for PCR was AP4 [30].

The reaction mixture contained 10 mM Tris-HCl (pH 8.3), 1.8 mM MgCl2, 2 μM primer,

400 μM each deoxynucleoside triphosphate, 2.5 U of Super-Therm Gold DNA polymerase

(JMR Holdings), and 2μL of DNA in a final volume of 25μL. Amplification was performed in a

GeneAmp PCR 9700 thermal cycler (Perkin-Elmer). Initial denaturation was for 4 min at

94˚C. Amplification was performed with 50 cycles of 1 min at 94˚C, 2 min at 30˚C, and 2 min

at 72˚C, with a single final extension step of 10 min at 72˚C. PCR products were separated by

electrophoresis in a 1.5% agarose gel and stained with ethidium bromide.A CRKP strain, S, is

included in all runs to ensure comparability between different runs.

Results

Bacteria strains

A total of 46 CRKP strains isolated consecutively from January 2016 to October 2017 were

selected from frozen stock, one isolate for each patient. Bacteria isolates included in this study

were isolated from clinical specimens including 7 (7.4%) pus/wound, 5 (5.3%) sputum, 20

(21.1%) urine, 54 (56.8%) blood, and 5 (5.3%) body fluids like ascitic fluid, bile, pleural fluid

and 4 (4.2%) other specimens like catheter tips. There was no nosocomial outbreak of CRKP

during the study period. The distribution of cases by month ranged from 0 to 5, with a mean

of 2.1 cases per month (standard deviation, 1.4). Fifty CSKP isolates were randomly selected

over the same period, 49 of them successfully sub-cultured and included in this study.

Among the 46 CRKP, 29 (63.0%) were detected as “carbapenemase (+ or–ESBL)”, 17

(37.0%) were carbapenemase (+ or–ESBL) plus “impermeability CARBA (+ESBL or +HL

AmpC)”. Phenotypes of the 49 non-CRKP isolates were one or combinations of wild (penicil-

linase), acquired penicillinase + impermeability (cephamycins), acquired cephalosporinase

(except ACC-1), acquired penicillinase, ESBL (CTX-M Like), ESBL+ impermeability (cepha-

mycins), extended spectrum β-lactamase, or inhibitor resistant penicillinase (IRT or OXA).
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Analysis of CRKP and CSKP proteomic profiles

Protein extraction was assessed with data count (DC) rated by Saramis v4.12. None of these

peaks was distinctive to the CRKP or CSKP group. There was one peak (9478.87 Da) present

in 82.6% of the CRKP isolates and only 2.2% of the CSKP isolates, one peak (7705.009 Da) was

present in 80.4% of the CRKP isolates and only 2.2% of the CSKP isolates, and the other peak

(9541.41 Da) was present in 76.1% of the CRKP isolates and only 2.2% of the CSKP isolates

(Table 1).

The Student’s t-test was used as the feature selection method on the basis of leave-one-out

cross-validation. Student’s t-test was used to compare the distribution of each m/z ratio and

generate a p value for the t-statistic for each peak. The low p values obtained for each peak indi-

cate that the observed difference in intensity of the individual peaks is highly statistically signif-

icant and not coincidence-based (the lower the p value, the better a respective peak signal is

suitable for separating the two classes).

After removing one sample at a time, peaks were ranked according to the p-value calculated

by the Students t-test on the remaining samples. The top k peaks were selected to construct the

classifier. The process repeats, each time omitting a different spectrum, until all spectra have

been omitted once. Therefore, 95 ranks were produced for each peak, equating to the total

number of samples. As shown in Table 1, the peak of 7705.009 Da ranked first, no matter

which sample was left out. This peak was highly significantly different between CRKP and

CSKP isolates.

We evaluated the classification performance of the five machine learning algorithms for

detection of CRKP with leave-one-out cross-validation, where the classifier was constructed

after serial removal of a sample from the dataset with subsequent prediction for the removed

sample with different feature subset when k = 1 to 100. As criteria, precision, sensitivity, and

specificity were used and compared to estimate model validation. As shown in Fig 2, panel A,

except using naïve Bayes algorithm, the maximum classification accuracy ranged from 89% to

97% when up to100 peaks were selected.

Maximal values for all three statistical parameters were greater than 90% except results

obtained using naïve Bayes algorithm. RF outperformed other four algorithms with all three

statistical parameters greater than 90% and their minimal values not less than 75% when

1–100 peaks were selected as input variables. The ranges of accuracy, sensitivity, and specificity

were 81%-97%, 76%-96%, and 82%-100%, respectively, when 1–100 peaks selected. Classifica-

tion results were influenced by not only the machine learning algorithm, but also by the

Table 1. Top 10 peaks with least sum of 95 ranks produced each time one different spectrum omitted and their percentage of presence in each group.

m/z Present in no. (%) of: No. of times the peak ranked as:

CRKP CSKP 1 2 3 4 5 6 7 8 9 10 >10

9478.866 38 (82.6%) 1 (2.2%) 95 0 0 0 0 0 0 0 0 0 0

9541.405 35 (76.1%) 1 (2.2%) 0 91 2 1 0 0 0 0 0 0 1

6288.794 35 (76.1%) 12 (26.1%) 0 2 67 26 0 0 0 0 0 0 0

7705.009 37 (80.4%) 1 (2.2%) 0 1 25 66 1 0 0 0 0 0 2

7158.634 41 (89.1%) 12 (26.1%) 0 1 1 1 91 0 0 0 0 0 1

10287.76 35 (76.1%) 2 (4.3%) 0 0 0 1 1 92 0 0 0 0 1

4768.279 25 (54.3%) 10 (21.7%) 0 0 0 0 2 1 89 3 0 0 0

2636.88 24 (52.2%) 0 0 0 0 0 0 2 2 70 15 6 0

4362.217 21 (45.7%) 10 (21.7%) 0 0 0 0 0 0 2 8 58 18 9

5379.418 25 (54.3%) 10 (21.7%) 0 0 0 0 0 0 0 5 7 54 29

https://doi.org/10.1371/journal.pone.0228459.t001
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number of peaks selected. We found that sensitivity was improved and variability decreased

when 50 to 80 peaks were selected as features for building classifier, irrespective of which algo-

rithm was used.

In Fig 2, panel B, while increasing the number of peaks selected as input variables, the clas-

sifier robustness increased. RF exhibited satisfactory performance. Results of classification per-

formance were shown in Table 2. The maximal overall performance achieved when 80 peaks

was selected by using RF. When 80 peaks selected as input features, classification sensitivity,

specificity and accuracy achieved 93%, 100% and 97%, respectively.

There was one CRKP repeatedly misclassified by RF algorithm despite varying the number

of peaks selected as input features. However, when Logistic Regression, Nearest Neighbors or

SVM algorithm was used, it can be classified correctly all the time.

Strain relatedness

Clonal relatedness of the study strains were clarified using RAPD fingerprinting method (Fig

3). The distribution of CRKP strains by month ranged from 0 to 5, with a mean of 2.1 cases

per month. We found that RAPD profiles of CRKP strains showed different patterns. Thus,

our machine learning model’s classification of the CRKP and CSKP does not seem to be due to

variations in strain type.

Fig 2. Performance of five machine learning algorithms with leave-one-out cross validation using 46 CRKP and

49 CSKP mass spectra, in terms of accuracy, sensitivity and specificity for differentiate CRKP from CSKP.

Accuracy (Accu), sensitivity (Sen) and specificity (Spe) are used to evaluate prediction systems. Panel A, Boxplots (25th

to 75th percentiles, Min to max) of accuracy, sensitivity, and specificity for differentiation of CRKP from CSKP when

1–100 peaks selected. In Panel B, Values of accuracy, sensitivity and specificity with number of ranked peaks

(k = 1–100) with increasing p-value (X axis) selected for machine learning algorithms. k: number of ranked peaks

selected with increasing p-value for classification by using all five machine learning algorithms.

https://doi.org/10.1371/journal.pone.0228459.g002

Table 2. Performance of five machine learning algorithms with L1O cross validation using 46 CRKP and 49 CSKP mass spectra, in terms of accuracy, sensitivity

and specificity for differentiate CRKP from CSKP.

Algorithm Metric No. of ranked peaks selected with increasing p-value

50 60 70 80 90 100

Random Forest Accuracy 94% 94% 95% 97% 95% 94%

Sensitivity 91% 91% 91% 93% 89% 87%

Specificity 96% 96% 98% 100% 100% 100%

Logistic Regression Accuracy 93% 92% 92% 93% 91% 91%

Sensitivity 93% 93% 96% 98% 96% 98%

Specificity 92% 90% 88% 88% 86% 84%

Naïve Bayes Accuracy 86% 88% 87% 89% 88% 89%

Sensitivity 74% 76% 74% 78% 76% 78%

Specificity 98% 100% 100% 100% 100% 100%

Nearest Neighbors Accuracy 91% 84% 87% 87% 83% 85%

Sensitivity 87% 83% 87% 89% 87% 91%

Specificity 94% 86% 88% 86% 80% 80%

Support Vector Machine Accuracy 87% 84% 84% 86% 85% 87%

Sensitivity 96% 96% 96% 100% 98% 98%

Specificity 80% 73% 73% 73% 73% 78%

https://doi.org/10.1371/journal.pone.0228459.t002
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Discussion

In this study, we demonstrated that MALDI-TOF MS can reliably differentiate CRKP from

CSKP. We were able to achieve 97% classification accuracy of CRKP and CSKP isolates by

MALDI-TOF MS spectral files using RF algorithm when 80 top ranked peaks were selected to

input into machine learning algorithms to build the classifier.

MALDI-TOF MS has focused on the existence or lack of particular spectral peaks to recog-

nize antibiotic-resistant bacteria in the previous reports [15–23]. Unlike most studies in which

MALDI-TOF MS was used to predict antibiotic resistance, we did not focus on target peaks

from enzymes or metabolites related to drug resistance. In this study, there were only three

peaks in CRKP and CSKP isolates, which were not exclusive to either group. Whether these

target peaks are potential biomarkers require further study which analyze and process large

series of bacterial strains. The proposed method herein can be adapted to other classification

problems by using MALDI-TOF data. This technology has the potential for broad application

to detection of other drug resistance, genotyping, or any classification problems.

Many bioinformatics modeling tasks, such as sequence analysis over microarray analysis or

spectral analysis, have high dimensional characteristics. Computation of hundreds of peaks

from such tasks is a challenge for applying machine learning methods. To benefit the predict-

ability of the machine learning process as well as the computation speed, it is essential to

reduce dimensionality through feature selection. We use Student t-test to compare the distri-

bution of each peak in CRKP and CSKP groups and generate a p value for the t-statistics on

the basis of L1O cross validation. Significant peaks with top ranking according to the p-value

were selected as input features to construct classifier. In addition to reducing the dimensional-

ity, it is also beneficial for reducing the effect of interference peaks obtained from culture or

MALDI-TOF process. Also, the basal level of signal that is fundamentally not related with drug

resistance will be excluded.

Due to limited availability of CRKP isolates, our study has the limitation of a relatively

small sample size. We used a L1O cross validation procedure to assess the predictive ability of

different learning algorithms. The tested data is not part of the training set used in the building

model. The training set in each L1O iteration is different. The set of peaks selected in feature

selection may vary from one iteration to another. We tested all available data with this method

and used the largest possible training set in each trial. Furthermore, due to the re-sampling

procedure in RF, the use of external samples may not be required to validate the prediction

model [31].

If in each of the five algorithms the same isolates were consistently incorrectly classified,

then this would indicate that they were most likely misidentified. This was not the case in our

Fig 3. Random amplified polymorph in DNA fingerprinting (RAPD) types of 46 carbapenem-resistant K. pneumoniae generated by arbitrarily primed PCR.

Lanes S, standard strain included in every experiment as a control. Results for the study strains were shown in the order of the date of isolation. Lane M shows the 1-kb

DNA ladder.

https://doi.org/10.1371/journal.pone.0228459.g003
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study, the isolates that were incorrectly classified in one algorithm were correctly identified

using at least one other algorithms. This would implicate that this is a reflection of the varying

power between the different algorithms.

The combination of two methods, bagging (a contraction of bootstrap-aggregating) and the

Classification And Regression Trees (CART)-split criterion [32,33], makes the RF a very effec-

tive way to build models of classification that are highly predictive. Bagging generates boot-

strap samples from the original data set, constructs a predictor from each sample, and decides

by voting for classifications [34, 35]. The bootstrap-aggregating procedure yields better model

performance as it reduces the model’s variance without increasing the bias. This means that

while a single tree’s predictions in its training set are sensitive to noise, the vote of many trees

is not, as long as the trees are not correlated. Training many trees on a single training set

would give strongly correlated trees; bootstrap sampling is a way to de-correlate trees by show-

ing them different training sets. In RF, thousands of tree-like models are grown on boot-

strapped data samples. Tree-like models split the data into groups repeatedly by the predictor

variable and value leading to the most homogeneous post-split groups. RF further de-correlate

the tree-type models by allowing each tree to choose on each split only from a small sub-selec-

tion of predictors. This way, each tree will fit some of the true patterns in the data, and some

noise, that is unique to its bootstrap sample. The noise should balance out when the projec-

tions of all trees are averaged, and only the true signal remains. Therefore, RF can used when

the number of variables is much larger than the number of observations, and returns measures

of variable importance and is suitable for spectral analyses.

We also ensured that our findings were not simply due to clonal relatedness in the study

strains. Random amplified polymorphic DNA (RAPD) method is used for the molecular epi-

demiology of ESBL-producing K. pneumoniae strains in a previous study (31). RAPD analysis

is significantly simpler to perform and produces results more rapidly. Interassay reproducibil-

ity has been criticized with RAPD typing because it can be affected by minor variation in fac-

tors influencing regular PCR. Therefore, a control strain was included in each run to ensure

inter-assay reproducibility.

We used the direct colony method which involves spotting a small amount of bacteria

directly onto the target plate without extraction procedures. The same spot can be analyzed

not only for identification purpose, but also add-on information of drug resistance. Further-

more, only one spectrum for an isolate was use to analysis. These benefits make it possible to

incorporate this method into clinical practice without altering the current protocol.

Early detection of multiple drug-resistant microorganisms has the ability to enhance clini-

cal decision making and patient outcomes. Although additional studies are required before

this test is integrated into the normal workflow in clinical environments, we demonstrated the

ability of machine learning methods to identify CRKP.
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