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Abstract: Rice leaf folder Cnaphalocrocis medinalis is one of the most serious pests of rice in rice-
planting regions worldwide. DsRNA-degrading nucleases (dsRNases) are important factors in
reducing the efficiency of RNA interference (RNAi) in different insects. In this study, a dsRNase gene
from C. medinalis (CmdsRNase) was cloned and characterized. The CmdsRNase cDNA was 1395 bp
in length, encoding 464 amino acids. The CmdsRNase zymoprotein contains a signal peptide and
an endonuclease NS domain that comprises six active sites, three substrate-binding sites, and one
Mg2+-binding site. The mature CmdsRNase forms a homodimer with a total of 16 α-helices and
20 β-pleated sheets. Homology and phylogenetic analyses revealed that CmdsRNase is closely
related to dsRNase2 in Ostrinia nubilalis. Expression pattern analysis by droplet digital PCR indicated
that the expression levels of CmdsRNase varied throughout the developmental stages of C. medinalis
and in different adult tissues, with the highest expression levels in the fourth-instar larvae and the
hemolymph. CmdsRNase can degrade dsRNA to reduce the efficiency of RNAi in C. medinalis.
Co-silencing of CmCHS (chitin synthase from C. medinalis) and CmdsRNase affected significantly
the growth and development of C. medinalis and thus improved RNAi efficacy, which increased by
27.17%. These findings will be helpful for green control of C. medinalis and other lepidopteran pests
by RNAi.

Keywords: Cnaphalocrocis medinalis; RNA interference; RNAi efficiency; dsRNA degrading
nuclease; dsRNase

1. Introduction

RNA interference (RNAi) is a highly conserved mechanism triggered by double-
stranded RNA (dsRNA) in the evolutionary process; therefore, homologous mRNAs are
degraded efficiently and specifically. The essence of RNAi is post-transcriptional gene
silencing. The transcription of the silenced genes continues to proceed normally, but the
transcribed messenger RNA (mRNA) undergoes sequence-specific degradation in the
cytoplasm, with the result that these genes cannot be normally expressed as proteins [1].
RNAi exists in most eukaryotes, but the efficiency of RNAi varies greatly among different
species [2–5]. RNAi has high efficiency, specificity, and transmissibility, and is widely
used as a powerful tool in the exploration of gene function analysis, biomedical research,
biological pest control, and other fields. The use of RNAi technology to control pests is
currently one of the hotspots in scientific research. The difference in RNAi efficiency among
different species of insects limits the use of RNAi technology in basic insect research and
pest control; for example, the RNAi efficiency in most coleopteran insects is high and long-
lasting [6–9], whereas the RNAi efficiency in most dipteran, hemipteran, and lepidopteran
insects is variable and unstable [10–12]. There are many factors that affect the efficiency of
RNAi in insects, including delivery methods [13–15], dsRNA transport in cells [16], target
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genes [4,6], and tissues [17,18]. At present, there is evidence that maintaining the integrity
of dsRNA before entering cells is a key factor in ensuring the efficiency of RNAi [19,20]. As
dsRNA-degrading nuclease (dsRNase) can degrade dsRNA, researchers have focused on
the molecular function of dsRNase when studying what affects the efficiency of RNAi.

Double-stranded ribonuclease, also known as dsRNase, belongs to the DNA/RNA
non-specific endonuclease (NUC) family. NUCs are found in bacteria, viruses, nematodes,
crustaceans, and mammals. In insects, NUCs include endonuclease G (EndoG) and dsR-
Nases [21,22]. EndoG belongs to the single gene family in mitochondria and participates
in mitochondrial DNA replication and repair [23,24], and in the case of cell apoptosis it is
transferred into the nucleus to participate in DNA degradation. Additionally, dsRNase
can degrade dsRNAs. Arimatsu et al. first studied the characteristic of dsRNase from
the digestive juice of Bombyx mori in 2007; this type of dsRNase can degrade extracellular
dsRNA, single-stranded RNA (ssRNA), and DNA [22,25]. Although dsRNase sequences
have been cloned from many insects, their functional characteristics have been identified
in only a few insects. At the present time, in addition to B. mori, dsRNases from Schis-
tocerca gregaria, Locusta migratoria, Leptinotarsa decemlineata, Anthonomus grandis, Bemisia
tabaci, Cylas puncticollis, and Spodoptera litura have been identified as having the ability to
degrade dsRNA [26–28]. Wynant et al. [26] identified four dsRNases from desert locust,
specifically expressed in the midgut. After silencing dsRNase2 with RNAi, the ability of
the intestinal juice to degrade dsRNA weakened. Peng et al. [28] identified five dsRNases
from S. litura, all of which have endonuclease_NS domains at the C-terminus; dsRNases1–4
contain a signal peptide at the N-terminus and dsRNase5 contains no signal peptide at
the N-terminus. The activity of the zymoproteins expressed in the baculovirus expression
system was determined and the results showed that the four dsRNases containing signal
peptides have the ability to degrade dsRNA. These results showed that multiple dsRNases
in S. litura caused the low efficiency and instability of RNAi in this insect.

Different insects respond differently to RNAi. Some insects have dsRNases in their
intestines and hemolymph which degrade exogenous dsRNA that enters their own cells,
thereby reducing the efficiency of RNAi [9,29,30]. Wang et al. [9] compared the differences
in the efficacy of RNAi in four insects from various orders. The order of the sensitivity of
insects to RNAi was as follows: Periplaneta americana > Zophobas atratus >> L. migratoria
>> S. litura. P. americana and Z. atratus were sensitive to RNAi by injection and feeding,
L. migratoria was sensitive to RNAi by injection, and S. litura was not sensitive to RNAi
by injection and feeding. The hemolymph of S. litura degrades dsRNA at the fastest rate
and the digestive juices of S. litura and L. migratoria can also quickly degrade dsRNA.
The results indicated that the differences in the RNAi efficacy among these four insects
were caused by the degradation of dsRNA in their bodies. Studies have shown that the
efficiency of RNAi in some lepidopteran pests is low, mainly because of the presence
of dsRNase in vivo, which degrades the incoming dsRNA, thus severely restricting the
application in pest control based on plant-mediated RNAi. However, some studies have
revealed that when RNAi is used to silence target genes, RNAi efficiency can be significantly
improved if dsRNase is silenced simultaneously [26]. When LmCht10 or LmCHS1 dsRNA
was orally delivered to L. migratoria, simultaneously injecting dsLmdsRNase2 increased
the effect of RNAi [31]. For L. decemlineata, removal of dsRNase activity in the gut juice
enhanced RNAi efficiency, but using the same method in S. gregaria did not improve the
efficacy [32]. For C. puncticollis, the efficiency of RNAi by injection was higher than that
of RNAi by feeding. Researchers such as Prentice [33] first injected C. puncticollis larvae
with dsCpdsRNase3 and then fed them with dsSnf7 4 days later; the results demonstrated
that larval mortality increased significantly and RNAi efficiency improved. Lepidopteran
insects contain dsRNases that degrade exogenous dsRNA, resulting in reduced efficiency
of RNAi by injection or feeding. If dsRNase genes are silenced while silencing target genes,
RNAi efficiency will be significantly improved.

Rice leaf folder Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) has been extensively
reported as a notorious insect pest of rice in Asian rice-growing areas [34,35]. This species
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is a holometabolous insect, undergoing four developmental stages in its life cycle: egg,
larva, pupa, and adult. C. medinalis larvae generally go through five instars and adults can
migrate over long distances. This insect is a migratory rice pest and widely distributed in
rice-planting regions worldwide [36]. Larvae feed on mesophyll tissues of rice leaves, which
severely affects the photosynthesis of rice, leading to approximately 10–20% yield loss or
even total crop failure. In this study, dsRNase from C. medinalis, named CmdsRNase, was
cloned with reverse transcription-polymerase chain reaction (RT-PCR) and characterized
with bioinformatics methods and digital PCR (dPCR). Functional analysis of CmdsRNase
was performed using RNAi technology.

2. Results
2.1. Characteristics of CmdsRNase

The open reading frame (ORF) of the CmdsRNase cDNA is 1395 bp in length, encoding
464 amino acids (Figure 1). The molecular formula of CmdsRNase was C2330H3534N676O663S17,
with a molecular weight of 52.17 kDa and a theoretical isoelectric point (pI) of 8.88. This
zymoprotein contains a signal peptide of 16 amino acids at the N-terminus. Functional do-
main analysis revealed that CmdsRNase possesses an endonuclease NS domain (Figure 2a)
that comprises six active sites, three substrate-binding sites, and one Mg2+-binding site
(Figure 2b). The mature CmdsRNase contains four O-glycosylation (S8, S123, S140, and
S208) and two N-glycosylation sites (N36 and N297). CmdsRNase includes 36 negatively
charged amino acid residues (Asp + Glu) and 43 positively charged amino acid residues
(Arg + Lys), with a calculated instability index (II) of 39.05, which indicates that it is a
stable protein since a protein with an II greater than 40 is unstable. The aliphatic index of
CmdsRNase was predicted to be 75.71 and the grand average of hydropathicity (GRAVY) to
be −0.31. Homology modeling showed that the mature CmdsRNase (amino acids 159–440)
forms a homodimer, with a total of 16 α-helices, 20 β-pleated sheets, and 36 random coils
(Figure 3a). As shown in Figure 3b, deep red indicates the evolutionarily conserved amino
acids that are of vital importance in the structure and function of CmdsRNase.
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Figure 2. Analyses of the amino acid sequence of CmdsRNase (dsRNase from C. medinalis).
(a) Schematic diagram of the domain of CmdsRNase. The red box, blue box, and blue line rep-
resent the signal peptide, endonuclease_NS domain, and linker region, respectively. (b) Multiple
sequence alignment of dsRNases from different insect species: CmdsRNase (C. medinalis), BmdsRNase
(B. mori, BAF33251.1), SgdsRNase (S. gregaria, AHN55088.1), LmdsRNase (L. migratoria, ARW74135.1),
OndsRNase (Ostrinia nubilalis, MT524712.1), and McdsRNase (Mamestra configurata, HM357845.1).
Blue inverted triangles represent active sites of six key amino acid residues, the yellow triangle
indicates Mg2+-binding sites, and black triangles mark substrate-binding sites.
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Figure 3. Three-dimensional molecular structure of CmdsRNase. (a) This graphic was drawn using
PyMOL 2.5 based on the CmdsRNase.pdb data. Red represents α-helices, yellow indicates β-pleated
sheets, and green denotes random coils. S208 and N297 indicate O- and N-glycosylation, respectively.
(b) The highly conserved region (in deep red) is displayed in the structure. The homology model was
performed by the ConSurf software (https://consurf.tau.ac.il) (accessed on 20 December 2021) and
optimized using PyMOL 2.5.

2.2. Homology Comparison and Cluster Dendrogram

CmdsRNase showed 75.37% similarity with dsRNase2 from O. nubilalis based on
BLAST against the NCBI NR database containing its amino acid sequence. The phylogenetic
tree of 36 dsRNases from 25 insect species showed that dsRNases from the same order
grouped into a clade and CmdsRNase clustered together with dsRNA-degrading nuclease
from O. nubilalis (Figure 4). These results indicate that dsRNase is conserved during
evolution and that C. medinalis is the cloest relative of O. nubilalis.

https://consurf.tau.ac.il
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Figure 4. An evolutionary tree of insect dsRNases. Bootstrap values are marked at internal nodes
and CmdsRNase is labeled with a solid triangle. The species name and GenBank accession num-
ber corresponding to each sequence are as follows. Lepidoptera: SfdsRNase, Spodoptera frugiperda
(CAR92521.1); SldsRNase, S. litura (QJD55608.1); McdsRNase, M. configurata (AEA76311.1); Ond-
sRNase1, O. nubilalis (QOE54913.1); OndsRNase2, O. nubilalis (QOE54910.1); PxdsRNase2, Plutella
xylostella (QZW25238.1); PxdsRNase3, P. xylostella (QZW25239.1); ObdsRNase, Operophtera brumata
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(KOB65521.1); CsdsRNase, Chilo suppressalis (AKB95584.1); SidsRNase, Sesamia inferens (AKB95590.1);
DpdsRNase, Danaus plexippus plexippus (OWR44806.1). Diptera: DsdsRNase1, Drosophila suzukii
(QXY82428.1); AadsRNase, Aedes aegypti (EAT42072.1); CqdsRNase1, Culex quinquefasciatus
(EDS34867.1); CqdsRNase2, C. quinquefasciatus (EDS38458.1); AddsRNase1, Anopheles darlingi
(ETN62076.1); AddsRNase2, A. darlingi (ETN61460.1); AddsRNase3, A. darlingi (ETN61459.1). Or-
thoptera: LmdsRNase2, L. migratoria (ARW74135.1); LmdsRNase3, L. migratoria (ARW74136.1);
LmdsRNase4, L. migratoria (ARW74137.1); SgdsRNase1, S. gregaria (AHN55088.1); SgdsRNase4,
S. gregaria (AHN55091.1); Coleptera: CpdsRNase1, C. puncticollis (QCF41178.1); CpdsRNase3, C.
puncticollis (QCF41177.1); DvdsRNase2, Diabrotica virgifera virgifera (QNH88358.1); DvdsRNase3,
D. virgifera (QNH88359.1); TcdsRNase, Tribolium castaneum (QJD55726.1); LddsRNase1, L. decem-
lineata (APF31792.1); LddsRNase2, L. decemlineata (APF31793.1); DpdsRNase1, Dendroctonus pon-
derosae (ENN82866.1); DpdsRNase1, D. ponderosae (ERL84039.1); Hemiptera: PsdsRNase, Plau-
tia stali (BCL51433.1); BtdsRNase, Bemisia tabaci (AQU43107.1); HhdsRNase, Halyomorpha halys
(XP_014282547.1).

2.3. Gene Expression Profiles

The droplet digital PCR (ddPCR) results showed that CmdsRNase was expressed in the
larvae, with the highest level in the fourth-instar larvae, and was almost not expressed in
the eggs, pupae, and adults (Figure 5). This gene was expressed in the tissues tested from
C. medinalis adults, with the highest level in the hemolymph, followed by the midgut, and
with the lowest level in the head and integument. The CmdsRNase expression level in the
hemolymph was 59 times that in the head and integument (Figure 6).
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Figure 5. Expression levels of CmdsRNase at different developmental stages of C. medinalis. (a) His-
togram. (b) Droplet generation diagram. Blue and black dots indicate positive and negative, respec-
tively. E, Egg; 1–5, first–fifth-instar larvae; P, Pupa; A, Adult. Each bar represents the mean ± SD.
Different letters above the bars indicate significant differences at p < 0.05 based on Duncan’s test.
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Figure 6. Expression levels of CmdsRNase in various tissues of C. medinalis adults. (a) Histogram.
(b) Droplet generation diagram. Blue and black dots indicate positive and negative, respectively.
Each bar represents the mean ± SD. Different letters above the bars indicate significant differences at
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2.4. Degradation of dsRNA by Crude CmdsRNase

The agarose gel electrophoresis assay showed that 120 ng of dsRNA was totally
degraded by 10 µg of crude CmdsRNase in 1 min at 28 ◦C (Figure 7a) and by 5 µg of crude
CmdsRNase in 5 min at 28 ◦C (Figure 7b). The results indicated that the crude CmdsRNase
possessed the ability to degrade dsRNA.
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Figure 7. Degradation of dsRNA by the crude CmdsRNase. (a) Degradation of dsRNA (120 ng)
by 10 µg crude CmdsRNase at different times. (b) Degradability of dsRNA (120 ng) by different
quantities of crude CmdsRNase within 5 min. M: DL2000 DNA marker; C: Control.

2.5. Effect of dsCmdsRNase Injection on RNAi Efficiency

To further verify the function of dsRNase in C. medinalis, dsRNAs of CmRNase and
CmCHS (chitin synthase gene from C. medinalis) were jointly injected into the third-instar
larvae to verify whether this enzyme can degrade dsRNA in the hemolymph. The expres-
sion level of CmCHS after co-injection of dsCmdsRNase + dsCmCHS was significantly lower
than that of CmCHS at the third and fourth days after injection of dsCmCHS alone. The
CmCHS expression level at the third day post co-injection was reduced by 2 times compared
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with the dsCmCHS-injected group, in which the CmCHS level was reduced by 2.3 times
compared with the control. The CmCHS level at the fourth day post co-injection decreased
by 2.4 times compared with the dsCmCHS-injected group, in which the CmCHS level
decreased by 2 times compared with the control (Figure 8). Three days after co-injection
of dsCmdsRNase + dsCmCHS and injection of dsCmCHS, RNAi efficiency of CmCHS in
C. medinalis reached 78.04% and 56.84%, respectively; this efficiency increased by 27.17%
(Figure 9). The corrected mortality of the dsCmCHS-injected larvae (53.3%) was 6.4 times
that of the dsGFP-injected larvae (8.3%) at the seventh day after injection, and the corrected
mortality of larvae injected with dsCmdsRNase + dsCmCHS (81.7%) was 1.5 times that of
the dsCmCHS-injected larvae (53.3%), whereas dsGFP had little influence on larval survival
(Figure 10).
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Figure 8. Expression levels of CmCHS at different times after dsRNA injection. The CmCHS expression
levels in the third-instar C. medinalis larvae were detected with ddPCR four days after injection of
dsCmCHS or the mixture of dsCmdsRNase and dsCmCHS. Larvae injected with dsGFP were used as
the control group. Each bar represents the mean ± SD. One asterisk above bars indicates a significant
difference at p < 0.05 and two asterisks indicate a very significant difference at p < 0.01 according to
Duncan’s test.
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Figure 9. RNAi efficiency at different times. RNAi efficiency in the third-instar C. medinalis larvae
was calculated four days after injection of dsCmCHS or the mixture of dsCmdsRNase and dsCmCHS.
Data are shown as the means ± SD.
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Figure 10. Corrected mortality of larvae within seven days after dsRNA injection. Corrected mortality
of the third-instar C. medinalis larvae was calculated within seven days after injection with dsCmCHS
or the mixture of dsCmdsRNase and dsCmCHS. Larvae injected with dsGFP were used as the control
group. Different letters above the broken lines indicate significant differences between treatments on
the same day (p < 0.05, Duncan’s test).

2.6. Effect of RNAi on Phenotypes of C. medinalis

After CmCHS was silenced, phenotypic changes of C. medinalis were recorded. Larvae
injected with dsCmCHS or dsCmdsRNase + dsCmCHS displayed phenotypic alterations,
such as lower vitality, smaller body size, and lighter weight. The abdomen of larvae
shrank (Figure 11D), the body color turned black (Figure 11E), and the head got bigger
(Figure 11D,F). Some larvae with CmCHS gene knockdown died. In addition, CmCHS
RNAi larvae could not molt and pupate normally; however, the larvae in the control group
grew normally and there were no obvious phenotypic changes. Some pupae from larvae
with CmCHS RNAi blackened and exhibited deformed phenotypes (Figure 12). RNAi also
caused adult deformities, such as abnormal wing folding and unfolding (Figure 13B,C),
and malformation, with pupa-shaped abdomens observed in adults (Figure 13D). In the ex-
perimental group injected with dsCmdsRNase + dsCmCHS, it was observed that there were
normal-sized adults without wing deformities, but they had no ability to fly. These results
indicate that co-silencing of both CmCHS and CmdsRNase can lead to serious developmental
disorders and death of C. medinalis.
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Figure 11. Abnormal morphology of C. medinalis larvae after dsRNA injection. (A) Phenotypes of
larvae after dsGFP injection. (B,C) dsCmCHS-injected larvae. (D–F) Larvae injected with dsCmdsRNase
+ dsCmCHS. Red circles indicate the phenotypic changes in the larvae. Each scale bar represents 1000 µm.
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Each scale bar represents 1000 µm.
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Figure 13. Abnormal morphology of C. medinalis adults after dsRNA injection. (A) dsGFP-injected
adult. (B) Abnormal wing unfolding. (C) Wing and terminal abdominal deformities. (D) Adult
deformity with pupa-shaped abdomen. Malformed phenotypes are marked with red circles. Each
scale bar represents 1000 µm.

3. Discussion

The analysis of the overall expression pattern of CmdsRNase, especially the high expres-
sion in the hemolymph and midgut of the larvae, showed that the activity of the nuclease
increased during the larval stage, and the high level of dsRNase in the hemolymph and
midgut may help reduce larval RNAi efficiency. Recent research on S. litura supports
this view [28]. However, in Spodoptera exigua, the nuclease activity of the intestinal super-
natant at different developmental stages is relatively low, and the lower level of dsRNase
may be one of the factors leading to the higher RNAi response of this insect [37]. With
tissue specificity, almost all insect dsRNases are highly expressed in the intestine and
hemolymph [31,33]; the expression profile of CmdsRNase in C. medinalis is consistent with
the general pattern, indicating the function of CmdsRNase to degrade dsRNA that enters
the gut lumen or hemolymph.

It has been reported that LmdsRNase1 in L. migratoria can effectively degrade dsRNA
at pH5 and is highly expressed in blood cells, but the physiological pH value of hemolymph
(7.0) strongly inhibits the activity of LmdsRNase1, making dsRNA stable in the hemolymph
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for a long time. Therefore, although dsRNase is expressed in different tissues, some may
not degrade dsRNA due to physiological pH or substrate-specific factors [26]. Our results
showed that the hemolymph and the crude CmdsRNase extracted from the hemolymph
had similar ability to degrade dsRNA; this may be because the hemolymph contained dsR-
Nases that degrade dsRNA. Although CmdsRNase is mainly expressed in the hemolymph,
dsRNase in the hemolymph of C. medinalis is active, which is consistent with the results of
the study on dsRNase in the hemolymph of Manduca sexta [38]. The conditions for dsRNase
to degrade dsRNA are different in different insects.

In insects, dsRNases reduce RNAi efficiency by degrading dsRNA. In S. gregaria,
interfering with dsRNase2 improved RNAi efficiency, while interfering with other dsRNases
had no effect [26,32]. In C. puncticollis, only dsRNase3 could affect RNAi efficiency [33];
however, in S. litura, the combined action of multiple dsRNases led to a decrease in RNAi
efficiency [28,30], indicating that the number of dsRNases and their mechanisms of action
may be different in various insects. In the present study, by co-injecting dsCmCHS and
dsCmRNase + dsCmCHS in C. medinalis, the degrading activity of CmdsRNase on dsRNA was
confirmed and the RNAi efficiency in this pest was significantly elevated. This experiment
was only a preliminary study on the function of a single dsRNase; it does not rule out the
existence of a synergistic effect between this enzyme and other dsRNases of C. medinalis.
In the next step, we will try to silence multiple enzymes simultaneously so as to further
improve the efficacy of RNAi in C. medinalis.

4. Materials and Methods
4.1. Insect-Rearing and Sample Preparation

C. medinalis was collected from a rice field in Guiyang, Guizhou, China, and maintained
in an insectary of the Institute of Entomology, Guizhou University, at 26 ± 1 ◦C and
75 ± 5% relative humidity under a 14:10 h light: dark photoperiod. After three consecutive
generations, insects at the same developmental stage were collected and stored in RNAlater
(Qiagen, Duesseldorf, Germany) at −20 ◦C until use. These samples included eggs, first–
fifth-instar larvae, pupa, adults, and imaginal tissues (the head, hemolymph, fat bodies,
testis, ovary, midgut, and integument).

4.2. RNA Extraction and cDNA Synthesis

Total RNA was extracted at different developmental stages and from various imaginal
tissues of C. medinalis using an Eastep Super Total RNA Kit (Promega, Madison, WI, USA)
according to the manufacturer’s instructions. The quality and purity of the isolated RNA
were determined by using agarose gel electrophoresis and a NanoDrop 2000 spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA), respectively. Then, cDNA was
synthesized using a PrimeScript First-Strand cDNA Synthesis Kit (Takara Bio, Beijing,
China) according to the manufacturer’s instructions and stored at −20 ◦C.

4.3. Cloning CmdsRNase

Specific primers were designed based on the CmdsRNase sequence using Primer Pre-
mier 6.0 (PREMIER Biosoft, Palo Alto, CA, USA). The CmdsRNase ORF was then amplified
using RT-PCR with cDNA from C. medinalis as a template. RT-PCR was performed with
2× Taq PCR Star Mix (GenStar, Beijing, China) under the following conditions: 2 min
at 94 ◦C; 32 cycles of 30 s at 94 ◦C, 30 s at 55 ◦C, and 60 s at 72 ◦C; and 10 min at 72 ◦C.
Subsequently, the PCR products were run on a 1% agarose gel for 25 min at 130 V, and the
expected band was excised from the gel and purified using a DiaSpin DNA Gel Extraction
Kit (Sangon Biotech, Shanghai, China). The recovered PCR products were cloned into a
pMD18-T vector (Takara Bio, Dalian, China) and the recombinant pMD-18-T-CmdsRNase
vector was transformed into E. coli DH5α competent cells (Invitrogen, Carlsbad, CA, USA),
which were plated on Luria–Bertani agar plates and incubated at 37 ◦C overnight. Finally,
the colony PCR was performed to identify positive clones that were submitted to Sangon
Biotech (Shanghai, China) for sequencing.
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4.4. Bioinformatic Analyses of CmdsRNase

The ORF of CmdsRNase was located with ORFfinder (https://www.ncbi.nlm.nih.gov/
orffinder) (accessed on 6 May 2021). The molecular weight and isoelectric point of Cmd-
sRNase were predicted using the Expasy ProtParam platform (https://web.expasy.org/
protparam) (accessed on 6 May 2021). The signal peptide was predicted by SignalP-5.0 Server
(https://services.healthtech.dtu.dk/service.php?SignalP-5.0) (accessed on 6 May 2021). Do-
mains of the zymoprotein were analyzed using SMART (http://smart.embl-heidelberg.de)
and CDD (https://www.ncbi.nlm.nih.gov/cdd) (accessed on 6 May 2021). Prediction of gly-
cosylation sites was carried out using the NetOGlyc 4.0 Server (https://services.healthtech.
dtu.dk/service.php?NetOGlyc-4.0) and the NetNGlyc 1.0 Server (https://services.healthtech.
dtu.dk/service.php?NetNGlyc-1.0) (accessed on 6 May 2021). The phylogenetic tree was
constructed using the neighbor-joining method in MEGA X software with 1000 runs. The
three-dimensional structure of the mature CmdsRNase was constructed with SWISS-MODEL
homologous modeling (https://swissmodel.expasy.org) (accessed on 8 August 2021) and its
molecular graph was drawn using PyMOL 2.5 (Schrodinger, New York, NY, USA).

4.5. Gene Expression Analyses Using ddPCR

The mRNA expression levels of CmdsRNase were detected using a QX200 Droplet
Digital PCR system (ddPCR) (Bio-Rad, Hercules, CA, USA) at different developmental
stages and in various adult tissues. The disposable eight-channel DG8 cartridge was placed
in the cartridge holder, and 20 µL of PCR mixtures were transferred to the middle wells
of the cartridge. The lower wells were filled with 70 µL of droplet-generation oil. The
cartridge containing the PCR mixtures and oil was placed into a Droplet Generator (Bio-
Rad, Hercules, CA, USA) to generate individual droplets. Then, 40 µL of droplets were
transferred into wells of a 96-well PCR plate, which was heat-sealed at 180 ◦C for 5 s with
a permeable foil using a PX1 PCR Plate Sealer and loaded into a C1000 Touch Thermal
Cycler (Bio-Rad, Hercules, CA, USA). The PCR reaction system and conditions are listed
in Table 1. After PCR was complete, the sealed plate was placed into a Droplet Reader
(Bio-Rad, Hercules, CA, USA) to count the positive and negative droplets. The ddPCR
experiment was repeatedly performed three times for each sample. Data were analyzed
using QuantaSoft software (Bio-Rad, Hercules, CA, USA) and SPSS 22.0 (SPSS Inc., Chicago,
IL, USA).

Table 1. Reaction system and procedure of droplet digital PCR.

Component Volume per
Reaction, µL

Final
Concentration Cycling Step Temperature,

◦C Time Ramp
Rate Cycles

2× QX200 ddPCR
EvaGreen Supermix 10 1× Enzyme activation 95 5 min

2 ◦C/s

1

Forward primer (2 µM) 1 100 nM Denaturation 95 30 s 40
Reverse primer (2 µM) 1 100 nM Annealing and

extension 60 1 min

Diluted cDNA template 1 200 ng/µL Signal stabilization 4 5 min 1
DNase-free water 7 - 90 5 min 1

Total volume 20 - Hold 4 Infinite 1

Note: Use a heated lid set to 105 ◦C and set the sample volume to 40 µL.

4.6. Crude CmdsRNase Extraction and dsRNA Degrading Assay

C. medinalis larvae were torn using dissecting forceps and put into a 0.8 mL cen-
trifuge tube with four holes at its bottom. This small tube was then put into a 1.5 mL
tube containing 1 mM phenylthiourea and 1 mM phenylmethylsulfonyl fluoride (PMSF).
The double-tube device was centrifuged at 2500× g for 10 min at 4 ◦C and the collected
hemolymph was centrifuged at 12,000× g for 10 min at 4 ◦C to remove cells for obtaining
serum. Next, 0.1 M NaOH was added to the serum to adjust the pH to 8.8 (the isoelectric
point of CmdsRNase), and the precipitate was collected by centrifugation at 12,000× g
for 10 min at 4 ◦C and dissolved with 0.01 M phosphate-buffered saline (PBS) to obtain
crude CmdsRNase.

https://www.ncbi.nlm.nih.gov/orffinder
https://www.ncbi.nlm.nih.gov/orffinder
https://web.expasy.org/protparam
https://web.expasy.org/protparam
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
http://smart.embl-heidelberg.de
https://www.ncbi.nlm.nih.gov/cdd
https://services.healthtech.dtu.dk/service.php?NetOGlyc-4.0
https://services.healthtech.dtu.dk/service.php?NetOGlyc-4.0
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://swissmodel.expasy.org
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The concentration of the crude CmdsRNase zymoprotein was measured using a
BCA Protein Quantification Kit (Yesea, Shanghai, China) according to the manufacturer’s
instructions in a Multiskan GO (Thermo Fisher Scientific, Waltham, MA, USA). For an
in vitro incubation assay, 1 µL of dsCmCHS solution (containing 120 ng of dsRNA, 381 bp)
was mixed with 10 µg of the crude CmdsRNase in 1.5 mL centrifuge tubes and incubated
at 28 ◦C for 1, 10, 20, 4, and 60 min, respectively. Then, 120 ng of dsCmCHS was mixed
separately with 1, 5, 10, 15, and 20 µg of the crude CmdsRNase in 1.5 mL centrifuge tubes
and incubated at 28 ◦C for 5 min. After incubation, these samples were subjected to 1.5%
agarose gel electrophoresis to evaluate the integrity of residual dsRNA.

4.7. RNA Interference

According to the ORFs of CmdsRNase and CmCHS (chitin synthase gene from C. med-
inalis), two online RNAi design tools, including siDirect (http://sidirect2.rnai.jp) and
DSIR (http://biodev.extra.cea.fr/DSIR/DSIR.html) (accessed on 6 May 2021), were used
to search for fragments targeting CmdsRNase and CmCHS mRNAs. The green fluorescent
protein gene (GFP) (GenBank: CAA58789) from Aequorea victoria was used as the inter-
nal control. The target fragments were amplified using CmdsRNase-iF/CmdsRNase-iR,
CmCHS-iF/CmCHS-iR, and GFP-iF/GFP-iR primers, respectively. After purification,
the PCR products were inserted into the pMD18-T vector (Takara Bio, Dalian, China)
for sequencing. Clones containing the correct sequences were cultured. Plasmids were
extracted and used as templates to separately amplify target fragments with CmdsRNase-
dsF/CmdsRNase-dsR, CmCHS-dsF/CmCHS-dsR, and GFP-dsF/GFP-dsR primers. After
the PCR product was purified, DNA at a high concentration (not less than 300 ng/µL)
was used for the template-synthesis of dsCmdsRNase, dsCmCHS, and dsGFP using a Tran-
scriptAid T7 High Yield Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA).
Briefly, the in vitro transcription system (20 µL) contained 2 µL of nuclease-free water, 4 µL
of 5 × reaction buffer, 8 µL of ATP/CTP/GTP/UTP mix, 4 µL of DNA template (with T7 at
both ends), and 2 µL of enzyme mix. After vortexing and briefly spinning, the tubes were
incubated at 37 ◦C for 6 h. The dsRNA was purified using a GeneJET RNA Purification
Kit (Thermo Fisher Scientific, Waltham, MA, USA) and then detected by agarose gel elec-
trophoresis and a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) to evaluate its integrity and quality. The primers used in this study are listed
in Table 2.

Table 2. Primers used for cloning and expression analysis of CmdsRNase from C. medinalis.

Primer Name Primer Sequence (5′→3′) Primer Usage

CmdsRNase-F ATGCATTCGCTGGTGCTTC
RT-PCRCmdsRNase-R TTAGGACAGAAGACCAACAAC

CmdsRNase-dF GACGCCAAGTGCCAGTTCCT

ddPCR
CmdsRNase-dR GTGCTTCAGCCGCCGTATAGT
CmCHS-dF TGGAATACCTTCGCCAGTCATC
CmCHS-dR CCAGGAACACCAGGAGGCATT
CmdsRNase-iF CGACAGGAATCGTCTTGAAG

dsRNA synthesis

CmdsRNase-iR AGGCTATACGAGCACGGAGGT
CmdsRNase-dsF taatacgactcactatagggCGACAGGAATCGTCTTGAAG
CmdsRNase-dsR taatacgactcactatagggAGGCTATACGAGCACGGAGGT
CmCHS-iF ACGAGGTTACACGAGAGG
CmCHS-iR CATCCAATGTTCCAATGTTCCT
CmCHS-dsF taatacgactcactatagggACGAGGTTACACGAGAGG
CmCHS-dsR taatacgactcactatagggCATCCAATGTTCCAATGTTCCT
GFP-iF GCCAACACTTGTCACTACTT
GFP-iR GGAGTATTTTGTTGATAATGGTCTG
GFP-dsF taatacgactcactatagggGCCAACACTTGTCACTACTT
GFP-dsR taatacgactcactatagggGGAGTATTTTGTTGATAATGGTCTG

Note: The lowercase letters in the primer sequences represent the sequence of the T7 promoter.

http://sidirect2.rnai.jp
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Twenty healthy third-instar larvae were selected for each RNAi experiment in each
group. One-point-five micrograms of dsCmCHS or the mixture of dsCmdsRNase and
dsCmCHS were injected into the eighth abdominal segment of each larva using a Nanoliter
2020 Injector (World Precision Instruments, Sarasota, FL, USA), then the larvae were moved
onto fresh rice leaves inside glass tubes and cultured in an artificial climate box. The
feeding, phenotype, and survival of the larvae were observed each day, and the leaves were
replaced with fresh ones every two days. Larvae injected with the same amount of dsGFP
were used as the control. These experiments were replicated 4 times for each group. Two
surviving larvae were collected from each group every day over four days to detect the
expression level of CmCHS by ddPCR.

4.8. Statistical Analyses

Data are expressed as the means± SD from at least three independent experiments. Sta-
tistical analyses were performed with one-way analysis of variance followed by Duncan’s
multiple range test using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Statistical significance
was set at p < 0.05.

5. Conclusions

In this study, a dsRNase in C. medinalis was cloned and characterized using PCR and
bioinformatics technologies. CmdsRNase can degrade dsRNA to reduce the efficiency
of RNAi in C. medinalis. Co-silencing of the target genes CmCHS and CmdsRNase can
significantly improve the RNAi effect on C. medinalis. This research provides a new strategy
for RNAi-mediated insect pest control and will be helpful in promoting green control of
lepidopteran pests by RNAi.
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