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Abstract

Cancer therapy is challenged by the diversity of molecular implementations of oncogenic 

processes and by the resulting variation in therapeutic responses. Projects such as The Cancer 

Genome Atlas (TCGA) provide molecular tumor maps in unprecedented detail. The interpretation 

of these maps remains a major challenge. Here we distilled thousands of genetic and epigenetic 

features altered in cancers to ~500 selected functional events (SFEs). Using this simplified 

description, we derived a hierarchical classification of 3,299 TCGA tumors from 12 cancer types. 

The top classes are dominated by either mutations (M class) or copy number changes (C class). 

This distinction is clearest at the extremes of genomic instability, indicating the presence of 

different oncogenic processes. The full hierarchy shows functional event patterns characteristic of 

multiple cross-tissue groups of tumors, termed oncogenic signature classes. Targetable functional 

events in a tumor class are suggestive of class-specific combination therapy. These results may 

assist in the definition of clinical trials to match actionable oncogenic signatures with personalized 

therapies.

In the past decade, advances in high-throughput techniques have allowed a systematic and 

comprehensive exploration of the genetic and epigenetic basis of cancer. Genomic studies of 

multiple tumor types have begun to reshape the understanding of cancer genomes and their 

complexity1,2. The TCGA project was started in 2006 with the goal of collecting and 

profiling over 10,000 tumor samples from at least 20 tumor types. Half of these studies have 

been completed so far (Table 1). The globally coordinated International Cancer Genome 
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Consortium (ICGC), of which TCGA is a member, will add thousands more samples and 

additional tumor types3. This vast collection of samples, profiled on multiple technical 

platforms, is yielding data for an increasingly complete atlas of molecular alterations in 

human cancer.

So far, analyses of genomic alterations in multiple tumor types have led to two fundamental 

observations: (i) tumors originating in the same organ or tissue vary substantially in genomic 

alterations4, and (ii) similar patterns of genomic alteration are observed in tumors from 

different tissues of origin5. These phenomena of intracancer heterogeneity and cross-cancer 

similarity represent both a clinical challenge and an opportunity to design new therapeutic 

protocols based on the genomic traits of tumors6,7.

The wealth of genomic data available today provides an unprecedented opportunity to 

systematically analyze differences and similarities between tumors on the basis of their 

genetic and epigenetic traits. The complex landscapes of somatic modifications observed in 

tumors are typically the result of a relatively small number of functional oncogenic 

alterations (sometimes called driver events), which are outnumbered by non-functional 

alterations (passenger events) that do not substantially contribute to oncogenesis and 

progression8. The low signal to noise ratio (ratio of the number of functional to non-

functional events) presents a major challenge for data mining or data analysis.

Here we developed a novel algorithmic approach that uses a reduced set of candidate 

functional events to hierarchically stratify more than 3,000 tumors from 12 tumor types. Our 

approach integrates multiple alteration types and is independent of tumor tissue of origin. 

The analysis identifies a striking inverse relationship, averaged over the 12 tumor types, 

between the number of recurrent copy number alterations and the number of somatic 

mutations. This trend subdivides tumors into two major classes, one primarily with somatic 

mutations and the other primarily with copy number alterations. Specific patterns of selected 

events—oncogenic signatures—characterize about 30 largely tissue-independent subclasses 

of tumors. These signatures are associated with distinct oncogenic pathways and can be used 

to nominate therapeutically actionable targets across tumor types and the fraction of patients 

that may benefit from target-specific agents.

RESULTS

In this study, we integrated genomic data from 12 cancer types from TCGA4,5,9–13 with 

3,299 tumor samples (Table 1 and Supplementary Table 1). Breast, colorectal and 

endometrioid tumors were separated into the molecular subtypes defined in their respective 

TCGA studies4,5,11.

First, we reduced the thousands of genomic and epigenetic changes observed in these tumors 

to a selected list of candidate functional alterations (Fig. 1 and Supplementary Table 2). We 

integrated copy number alterations, somatic mutations from whole-exome sequencing and 

gene DNA methylation events identified in each cancer study. Recurrent regions of copy 

number change (Fig. 1a) were determined using the algorithm GISTIC14, and recurrently 

mutated genes (Fig. 1b) were identified using the algorithms MuSiC15 and MutSig16. A 
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selected panel of genes with previous evidence of epigenetic silencing in cancer17 was 

inspected for DNA hypermethylation in our data set (Fig. 1c). To filter out events that were 

likely non-functional, genes with copy number alteration and DNA hypermethylation were 

required to have concordant changes in mRNA expression levels when compared to wild-

type cases. In total, we selected 479 candidate functional alterations, including 116 copy 

number gains, 151 copy number losses, 199 recurrently mutated genes and 13 epigenetically 

silenced genes. Selected alterations were associated with tumor samples in a binary fashion, 

such that an alteration either occurred or did not occur in a given tumor (alteration event). 

The resulting set of SFEs provides a concise description of tumors, with immediate 

biological and clinical interpretations.

Second, we developed a novel algorithmic approach based on the concept of network 

modularity18 to identify tumor subclasses in our data set that are characterized by specific 

combinations (signatures) of SFEs. Our approach provides a hierarchical stratification that 

allows the exploration of tumor subclasses at different levels of granularity.

The cancer genome hyperbola

At the top of this hierarchical classification, we identified two main tumor classes of similar 

size, each characterized by distinct sets of SFEs (Fig. 2a). Unexpectedly, although the 

distinction between copy number alterations and mutations was not used as a feature in our 

classification, these characteristic events were predominantly somatic mutations in one class 

and copy number alterations in the other (Fig. 2b). To reflect this trend, we named these two 

classes the M class (primarily with mutations) and the C class (primarily with copy number 

alterations), respectively. Notably, TP53 mutations were an exception to this trend, as they 

were strongly enriched in the C class (q = 3 × 10−176), consistent with early mutations in 

TP53 causing copy number genomic instability (Supplementary Fig. 1). This division into 

two main tumor classes indicates that recurrent copy number alterations and mutations are 

predominant in different subsets of tumors.

Closer inspection of the distribution of selected functional events showed a striking inverse 

relationship between copy number alterations and somatic mutations at the extremes of 

genomic instability, particularly in highly altered tumors (Fig. 2c). Such tumors had either a 

large number of somatic mutations or a large number of copy number alterations, never 

both. We refer to this trend as the cancer genome hyperbola.

Tumors in the C class and M class were positioned along the two axes of this hyperbola 

(Supplementary Fig. 2). Whereas individual tumor types (defined by tissue of origin) had 

varying proportions of copy number alterations and mutations (Supplementary Fig. 3), none 

had high numbers of both.

We verified this approximately inverse relationship by adding 907 tumor samples from 6 

additional tumor types to the pan-cancer set of 3,299 samples (Supplementary Fig. 4). In this 

larger data set, we also identified two major classes, one primarily dominated by mutations 

and the other primarily dominated by copy number alterations (Supplementary Fig. 4), with 

a remarkably similar set of characteristic functional events (Supplementary Fig. 4).
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Starting from this first major subdivision, we applied the network modularity algorithm 

recursively to the C class and M class tumors and to their subclasses. The result was 

hierarchical division into several levels of subclasses characterized by distinct patterns of 

functional alteration at each level of granularity (Fig. 3, Supplementary Fig. 5 and 

Supplementary Table 3). We found that sample assignment to each subclass was robust in 

that it varied little upon systematic subsampling (Supplementary Fig. 6).

This classification highlights distinct mechanisms of oncogenesis as determinants of tumor 

subclasses, unexpected similarities between tumors originating in different tissues and new 

insights into alterations shared by multiple tumor types. Additionally, it provides a 

framework to explore therapeutic protocols on the basis of the genetic and epigenetic traits 

of tumors.

The M class

The M class of tumors included almost all the samples in kidney clear-cell carcinoma 

(KIRC), glioblastoma multiformae (GBM), acute myeloid leukemia (LAML), colorectal 

carcinoma (COADREAD) and uterine carcinoma (UCEC), with the exception of the serous-

like subtype of UCEC. We identified 17 subclasses (M1–M17).

The first partition of the M class contained two main subclasses of mixed tumor type, which 

were characterized by distinct mutational events (Fig. 3a, Supplementary Fig. 5 and 

Supplementary Table 4). These subclasses had alterations in distinct oncogenic pathways, 

with alterations of phosphatidylinositol 3-kinase (PI3K)-AKT signaling characterizing the 

first main subclass (M1–M8) and with APC, TP53 and KRAS mutations most prominent in 

the second subclass (M9–M14).

Within the M class, we discovered recurrently mutated amino acids (hotspots) in the 

chromatin modifiers ARID1A and CTCF (Supplementary Fig. 7). ARID1A (Supplementary 

Fig. 7) is a member of the chromatin-remodeling complex SWI/SNF19 and, although 

truncating mutations in this gene have been reported in several tumor types20, no recurrent 

hotspot had previously been identified.

CTCF encodes a chromatin-binding factor that acts as both a repressor and an activator of 

multiple genes, including known oncogenes and tumor suppressor genes (MYC, PLK, PIM1, 

CDKN2A and IGF2)21. CTCF achieves sequence-selective DNA binding by using different 

combinations of 11 zinc-finger domains (ZF1–ZF11)22. Mutations in CTCF were 

characteristic of subclass M5, which included several endometrioid tumors with 

microsatellite instability (MSI) and a small fraction of luminal A breast cancers 

(Supplementary Fig. 7). Mutations of CTCF affecting Arg448 have previously been 

reported22,23 and occurred in multiple endometrioid tumors in subclass M5. Here we also 

identified seven mutations affecting residues upstream of ZF5 (Arg377 and Pro378), four 

mutations affecting ZF2 (His312 and Asn314), one of which targets one of the zinc-binding 

histidine residues (His312), and seven mutations affecting ZF1 (Gly261, Arg283 and 

His284), three of which affected the zinc-binding histidine residue His284 (Supplementary 

Fig. 7). Mutations observed in luminal A breast tumors specifically targeted ZF1, implying 

selective inactivation. We identified three splice-site mutations just upstream of exon 4, 
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which encodes ZF1 and ZF2. One of these mutations caused an in-frame exon-skipping 

event (Supplementary Figs. 7 and 8). Even though the functional role of impaired CTCF 

activity in tumorigenesis is still unexplored, these mutations indicate that there is selection 

for specific zinc-finger loss and altered DNA-binding specificity that is not tumor type 

specific but broadly defines a subset of breast and endometrioid tumors.

Although most recurrent patterns of alteration characterize tissue-independent tumor 

subsets, subclasses M15–M17 were characterized by tumor type–specific mutational events 

(Supplementary Fig. 4); for example, EGFR amplification in GBM (M15), NPM1 mutation 

in LAML (M16) and VHL mutation in KIRC (M17). Our approach is therefore sensitive for 

reclassification both within and between tumor types.

The C class

The second major class was characterized primarily by TP53 mutations and multiple 

recurrent chromosomal gains and losses and is therefore called the C class. This class 

included almost all serous ovarian (OV) and breast (BRCA) carcinoma samples, as well as a 

large fraction of lung (LUSC) and head and neck (HNSC) squamous cell carcinomas and 

endometrioid tumors of the serous subtype (UCEC-serous).

Overall hierarchical subdivision of the C class led to a first major partition into two groups, 

primarily determined by the absence (subclasses C1–C6) or presence (subclasses C7–C14) 

of gains and losses on chromosome 8 (Fig. 3, Supplementary Fig. 4 and Supplementary 

Table 5).

Subclasses C3 and C4, which included a large fraction of LUSC and HNSC tumors, 

provided an interesting example of cross-cancer similarity, in which genomic alterations are 

shared by subsets of tumors of different origin. Subclass C3 was characterized by mutation 

of TP53 (92%), amplification of 3q26 (64%) and deletion of CDKN2A (32%); in contrast, 

subclass C4 had recurrent focal amplification of 11q13 (82%) where CCND1 is located. 

Some of these genomic differences actually converged on the same pathway, as loss of 

CDKN2A (C3) and gain of CCND1 (C4) both impair Rb-mediated cell cycle control.

Amplification of the 3q26 locus spans multiple genes, including PIK3CA and TERC. To 

identify candidate functional targets of this copy number alteration, we analyzed the mRNA 

levels of all genes in the 3q26 peak in amplified and diploid samples across all tumor types. 

Combined differential expression analysis identified ZNF639 as the most upregulated gene 

in the region (Supplementary Fig. 9). The zinc-finger protein ZNF639, also known as 

ZASC1 (zinc-finger protein amplified in squamous cancer 1), has previously been associated 

with the pathogenesis of oral and esophageal squamous cell carcinomas24,25. PIK3CA was 

also found to be upregulated when amplified, whereas no correlation between mRNA levels 

and copy number was found for TERC.

The second major set of subclasses, C7–C14, had the highest degree of copy number 

alteration and was strongly characterized by recurrent gains and losses on chromosome 8, 

including amplification of 8q24 where the MYC oncogene is located. Amplification of MYC 

and somatic mutations in TP53 were the most frequent events in this subclass.
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Cell cycle regulation and the DNA damage response were additional pathways affected by 

copy number alterations in subclasses C7–C14. The G1/S checkpoint was compromised by 

CCNE1 amplification in subclasses C7 and C11 and was bypassed by E2F3 amplification in 

subclass C13. Subclass C13 also appeared to have defective cell cycle arrest in response to 

DNA damage owing to inactivation of BRCA1 and BRCA2, which is recurrent in basal 

breast and ovarian tumors4,10. Finally, subclass C14 had recurrent amplification and 

overexpression of the regulator of mitosis AURKA (encoding Aurora kinase A). Notably, 

these alterations were not specific for a single tumor type but rather characterized distinct 

subsets of tumors across multiple cancer types.

In summary, we found inactivation of TP53, MYC-driven proliferation and dysregulated cell 

cycle checkpoints as the hallmarks of the C class of tumors, which is dominated by recurrent 

copy number changes (Supplementary Table 6).

From oncogenesis to therapy

Specific combinations of functional events observed in particular sets of tumors, even when 

they were derived from different tissues, point to distinct mechanisms of oncogenesis. 

However, the clinical impact of these signatures depends on the ability to selectively block 

the oncogenic action of these molecular alterations.

To explore the relationship between functional alterations and therapeutic interventions in 

more detail, we first assessed the distribution of potentially actionable alterations in different 

tissue-specific tumor types, focusing on a subset of the ~500 SFEs with well-characterized 

roles in pathways (Fig. 4). As is well known, such alterations are typically not exclusive to 

one tumor type, nor are they, with few exceptions, present in 100% of samples in a 

particular tumor type.

Instead, a substantial number of targetable alterations were present in different tumor types. 

Examples included hotspot mutations and copy number amplifications of PIK3CA (Fig. 4 

and Supplementary Fig. 10), directly targetable by specific inhibitors26, and of CCND1 (Fig. 

4 and Supplementary Fig. 10), indirectly targetable by selective inhibition of its regulating 

protein kinases CDK4 and CDK6 (refs. 27,28) (Supplementary Table 7). The observed 

cross-cancer distribution of targetable alterations presents an opportunity to design tumor 

treatment strategies tailored to subsets of tumors characterized by particular sets of 

functional events.

The systematic identification of genomic subclasses presented here is intended as a step 

toward this goal across a larger number of tumor types than was previously possible. With 

more than 3,000 tumors analyzed, genomic subclasses were found to be characterized not 

only by single oncogenic events but also by specific combinations of events (Fig. 5 and 

Supplementary Fig. 11). Such concurrent alterations may be targetable by combination 

therapies (Fig. 5). For example, subsets of lung and head and neck squamous cell 

carcinomas may benefit from concurrent blockade of the cell cycle and PI3K-AKT signaling 

(Fig. 5, subclasses C3 and C4), whereas inhibition of PARP and Aurora kinase A may be 

beneficial for subsets of BRCA1- or BRCA2-mutant ovarian and basal breast tumors (Fig. 5, 

subclasses C13 and C14).
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A systematic stratification of tumors on the basis of therapeutically actionable alterations 

may therefore serve as a point of departure for designing ‘basket’ trials in which actionable 

oncogenic signatures are matched with targeted combination therapy for patients with 

diverse tumor types. The further accumulation of cancer genomics data sets as well as 

cancer genomics profiling in ongoing clinical trials, for example, as promoted in Stand Up 

to Cancer (see URLs) projects, will serve to increase the accuracy of matching patients with 

therapies.

DISCUSSION

The wealth of genomic data generated in the past decade from analyses of thousands of 

tumor samples has highlighted dramatic heterogeneity between and within single tumor 

types. Understanding of this diversity and especially of its impact on cancer treatment is still 

limited.

Here we propose a tissue-independent classification of tumors on the basis of genetic and 

epigenetic alterations. Our approach relies on two key steps: reducing the complexity of 

thousands of molecular alterations to a few hundred plausibly functional events and 

stratifying tumors on the basis of distinct patterns of these selected genomic features. We 

implemented these approaches in a new method combining biological knowledge with 

algorithmic invention and derived a hierarchical classification of thousands of tumors from 

12 tumor types in terms of oncogenic signatures. The resulting classification identified 

unexpected relationships between copy number alterations and somatic mutations at the top 

level of the hierarchy (i.e., the M and C classes). More granular patterns of alteration at 

lower levels of the hierarchy, i.e., subclasses of the M and C classes, are characteristic of 

oncogenic signature subclasses and may provide insight into the mechanisms of oncogenesis 

and therapeutically actionable alterations.

The proposed stratification is a useful yet incomplete description of human tumors. The 

current set of results is based on molecular profiles from only 12 tumor types, which are 

represented by sample numbers varying from 97 to 488. Of these tumor types, only one 

(LAML) was not a solid cancer; therefore, alterations more frequently observed in 

hematological diseases are likely underrepresented. The selection of candidate functional 

events depends on the quantity and quality of the available data. The analysis will benefit 

from further refinement of criteria for the selection of likely functional events, especially for 

non-focal copy number changes. The available data are expected to triple in size over the 

next 2 years as a result of global efforts coordinated by the ICGC of which TCGA is a 

member. This increase in available data will allow refinement and expansion of the list of 

selected functional events to more comprehensively account for DNA methylation and other 

alteration types not fully covered in the TCGA data sets analyzed here, such as 

chromosomal translocations that create functionally altered fusion genes.

Despite the limitations intrinsic to the current data, this study provides a systematic 

approach for integrating large amounts of molecular data in a way that reduces its 

complexity (noise) and increases its biological and clinical interpretability (signal). The 

power of this strategy is likely to improve as it is applied to more complete data sets. We 
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believe that an understanding of tumor biology in terms of systematically derived signatures 

of functional alterations will provide an informative resource to explore in the laboratory 

and in the clinic, serving the development of personalized cancer therapies.

ONLINE METHODS

Data

GISTIC14 analysis of copy number data from Affymetrix SNP 6.0 arrays was obtained for 

the set of samples in each TCGA study (Table 1), as generated with the Firehose analysis 

pipeline. All GISTIC peaks from different studies were taken into account. Overlapping or 

proximal peaks were merged if the number of events called in our data set was concordant in 

over 80% of the cases. Whole-exome sequencing data for each study were obtained from the 

cBioPortal for Cancer Genomics29. Genes identified as recurrently mutated by either 

MuSiC15 or MutSig16 were used in this study. DNA methylation data from Illumina 

Infinium 27K and 450K arrays were obtained from the Firehose analysis pipeline. We 

looked for DNA hypermethylation events for a selected panel of genes with previous 

evidence of epigenetic silencing in cancer. For each of these genes, we selected the 

corresponding promoter probes and median centered their values. The combination of 

recurrently mutated genes determined by MuSiC and MutSig, GISTIC regions of recurrent 

copy number gain and loss, and epigenetically silenced genes represent the set of selected 

alterations used in this study.

To assign genomic alterations to tumor samples, we used the abstraction of binary event 

calls. A genomic event either occurred (1) or did not occur (0) in a given sample. Using this 

abstraction, somatic mutations of different types (missense, truncating, etc.) were treated 

equally (except for filtered missense mutations), and multiple mutations targeting the same 

gene in the same sample were treated as one event.

To determine copy number alteration events, we used the set of discrete copy number calls 

provided by GISTIC14: −2, homozygous deletion; −1, heterozygous loss; 0, diploid; 1, one 

copy gain; 2, high-level amplification or multiple-copy gain. We considered as altered only 

samples with either homozygous loss (−2) or high-level amplification (2) of genes located in 

regions with recurrent copy number alterations.

DNA methylation levels were measured in terms of β values ranging from 0 to 1, with 0 

corresponding to the minimal level of DNA methylation and 1 to the maximal level of DNA 

methylation. DNA hypermethylation events were assigned to samples with β values greater 

than 0.1 and were only used if candidate altered samples had concordant downregulation of 

mRNA levels when hypermethylated.

The final selected set of binary calls for genomic alterations provides a simple but effective 

description of the genetic landscape observed in single tumors in terms of a few hundred 

plausibly functional alterations instead of thousands of molecular changes. We refer to these 

called events derived from selected functional genomic alterations as SFEs.
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Filtered calls

The M class of tumors included several MSI and POLE-mutant cases, both of which have 

been associated with an unexpectedly high mutation rate5,11. These types of tumors, 

therefore, have a large number of mutations that are probably not functional. To limit the 

number of likely non-functional events, we restricted our set of mutations in this class to all 

truncating mutations and to only nonsynonymous, single-residue substitutions that occurred 

at specific residues (hotspots). Hotspot residues were defined as recurrently mutated amino 

acids (represented by at least three mutations) or amino acids directly adjacent to a 

recurrently mutated one.

Similarly, the C class had a large number of copy number events that frequently spanned 

large chromosomal regions. The non-focal nature and high numbers of these alterations in 

the C class are likely to generate false positive assignments. To reduce this effect in the C 

class, assignment of copy number events in the GISTIC peaks was conditional on 

concordant mRNA expression changes.

Bipartite network modularity for recurrent genomic alterations

The SFEs naturally identify a network of relationships between samples and alterations. This 

network is a binary graph G = [(S,A), E], where nodes are either samples (S) or alterations 

(A) and edges (E) only connect samples to alterations. The problem of clustering tumors 

according to recurrent alterations can therefore be formulated as a graph clustering problem.

We addressed this problem using the notion of network modularity, originally introduced by 

Girvan and Newman30. Given a partition of a graph G into distinct modules—subsets of 

nodes—the modularity associated with this partition is given by

where i is a module, eii is the fraction of edges with both ends in i, eij is the fraction of edges 

with one end in i and the other in j and ri = Σjeij is the expected fraction given the degree of 

the nodes in i.

This concept can be translated from a simple graph to a bipartite network. Recall that we 

defined our graph as composed of two sets of nodes: a set of samples S and a set of 

alterations A. Edges in our graph were defined as E = ((s,a) | s ∈ S, a ∈ A). Given a partition 

of the set of samples S, its modularity is the difference between the number of alterations 

shared by samples in the same module and the expected value of alterations. We defined the 

degree of each alteration a as d(a), equal to the number of samples connected to alteration a. 

Given a module m, dm(a) is the degree of alteration a restricted to samples in module m. The 

eij term of the Girvan-Newman modularity can then be formulated as
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where Z is a normalization factor. As with the Girvan-Newman modularity, given a partition 

of the set of samples S, the modularity measure defined above tells us how good this 

partition is in grouping together samples characterized by similar SFEs.

Modularity optimization by greedy partitioning

We adopted a greedy search procedure18 to optimize the modularity measure defined for our 

network of samples-to-alterations associations. This procedure starts by assigning each node 

or sample to a separate module and iteratively joining the pair of modules that produces the 

greatest increase in modularity. The approach is therefore similar to standard hierarchical 

agglomerative clustering. Although each step requires all (m2) pairs of modules to be 

scanned, the efficiency of this approach is derived from its requirement to compute, for each 

joined candidate pair, only the increase in modularity ΔQ. Note that ΔQ is given by

where e and r are intended to represent the corresponding sums over the set of modules and t 

is the iteration step.

In our network, upon joining modules m1 and m2 to form module m, we define em and rm as

Therefore,

The algorithm stops when all nodes are grouped within the same module. The optimal 

partition is selected as the one with the highest modularity value among the ones generated 

through the optimization process. We used this optimization strategy to identify the optimal 

partition of our data set.

Hierarchical stratification of tumors by recursive modularity optimization

Community detection by network modularity optimization is limited by the size of 

modules31, and greedy partitioning tends to prefer incremental inclusions of single nodes in 

big modules rather than growing multiple modules simultaneously32. Moreover, the 

heterogeneous nature of our data set leads modularity optimization to be dominated by 

major differences between the main subclasses. The combination of these factors, although 

not affecting the optimal partition, limits the ability of this approach to capture the 

submodular structure of our data set at different levels of granularity. To address these 

issues, we recursively applied the greedy partition method. The algorithm proceeds as 

follows:

Step 0: Determine the optimal partition P0 of the whole data set.
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Step n: Determine the optimal partition  for each module m contained in the 

partition , where m* is the supermodule containing m.

At each step, the method subdivides a given module m by determining its optimal partition, 

i.e., the partition with maximal modularity. A module is no longer partitioned if (i) the 

modularity value of its optimal partition is below a limiting threshold Qmin and/or (ii) the 

module contains less than Smin samples. For this work, we set Qmin = 0.05 and Smin = 30. At 

each step, few small modules may be generated if the network contains isolated nodes or 

nodes with very few connections. In our data set, a minority of samples had few or no 

recurrent alterations. Small modules (with fewer than Smin samples), including samples with 

no or few uncharacteristic alterations, were ignored in the analysis. At each step, alterations 

were selected if they occurred in at least 1% of samples. The resulting set of partitions 

provides a hierarchical tree decomposition of the original data set, where the root is the 

whole set of samples and the leaves are modules that could no longer be partitioned.

In the analysis of oncogenic signature classes (OSCs) in Figure 3, we selected subclasses 

respecting conditions (i) and (ii) up to the third step of stratification. Exceptions included 

M1–M3 (fourth step), selected because of the marked and biologically relevant differences 

between these subclasses, and M15–M17 (second step), selected because each subclass was 

dominated by samples from a single tumor type.

Validation of the modularity optimization method

We tested our approach on two well-characterized data sets frequently used as benchmarks 

for network modularity detection. The first network is known as the Southern Women Event 

Participation network33. It represents women’s attendance of social events in the Deep 

South, using data collected by Davis and colleagues in the 1930s to study social 

stratification. For this network, our approach was able to identify the two-module structure 

of the network (Supplementary Fig. 12) that coincides with the solution proposed by 

Guimera and colleagues34 and, except for one woman, with the subjective solution proposed 

by the ethnographers that conducted the study.

The second test network is derived from data on corporate interlocks in Scotland in the 

twentieth century35. The largest connected component of this network is composed of 131 

directors and 86 firms. Our approach identified a nine-module solution with modularity 

value Q = 0.65 (Supplementary Table 8). The same component was analyzed by Barber36 

using an approach based on the eigenspectrum of the adjacency matrix of the network. In 

this work, the best solution obtained with the standard approach had Q = 0.566. A solution 

with Q = 0.66 was found using a modified version of their method that performed a search 

to optimize the number of modules rather than letting this number emerge from the 

modularity optimization procedure.

Enrichment analysis of genomic alterations

Each node of the tree, except for the leaves, represents a partition of a set of samples into 

separate modules or clusters. At each step, we identified the determinants (particular SFEs) 

of the partition by testing for statistically significant enrichment of each SFE in each class. 
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For each SFE, we first tested for significant deviation from the expected distribution of its 

occurrences using a χ2 test. Second, we selected the cluster with the highest fraction of 

samples altered by the particular SFE and tested for statistical enrichment by Fisher’s exact 

test. All P values were corrected for the false discovery rate (q value). SFEs listed in Figure 

3 (middle) were selected as the most significantly enriched in each subclass at each 

branching of the tree decomposition (q < 0.001) or as the most frequent in each subclass.

Robustness of the subclasses

The robustness of the subclasses was assessed by removal of different percentages of 

samples and reclassification of the reduced data sets. During each run, hierarchical 

stratification obtained with the reduced data set was mapped to the original one by mapping 

each module from the reduced classification to the module from the original classification 

that maximizes the overlap (Jaccard) coefficient (J) associated with the two sets37. Given a 

module m1 and a module m2, the J coefficient of m1 and m2 is defined as

with J = 1 if the two sets are identical and J = 0 if they are completely disjoint. Each 

mapping was scored with the average J obtained by the mapped modules. For each 

classification derived from a reduced data set, we derived a corresponding randomized 

version with the same hierarchical structure but permuted class memberships. Robust 

solutions were those with high average J values, averaged over repeated removal runs.

Reduced data sets were generated randomly by removing 5%, 20% and 50% of the samples 

(15 instances for each reduction), with the set with 50% fewer samples only used to evaluate 

the robustness of the M and C classes. We evaluated the robustness of subclasses separately 

at different levels of the hierarchical stratification and, for each evaluation, by estimating the 

expected J value using the randomized classifications.

Testing for concordant mRNA and copy number changes

We tested genes located in regions of recurrent copy number gain and loss for concordant 

mRNA expression changes for each tumor type separately. For each region, we identified 

the sets of altered samples (+2 or −2) and diploid samples (0) and the corresponding 

distributions of mRNA levels for each gene in the region. mRNA levels were assayed by 

RNA sequencing. Given the non-normal distribution of RNA sequencing read counts, 

distributions of each gene in the two groups (altered and diploid) were compared using the 

Mann-Whitney test. Implementation of the Mann-Whitney test was provided in the Java 

Statistical Classes (JSC) library. Individual q values were then combined using Fisher’s 

method (product of the single-test q values), and genes within the same peak were scored 

using the corresponding combined q values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
From global profiles of genomic alterations to selected functional events. (a–c) Genomic 

alterations considered included copy number alterations (a), somatic mutations (b) and 

changes in DNA methylation (c). For the discovery of oncogenic signatures, we first 

reduced thousands of genomic alterations (heatmaps to the left) to a few hundred candidate 

functional events (heatmaps to the right). Copy number alterations (losses in blue, gains in 

red), somatic mutations (mutations in green) and DNA methylation status (high level of 

methylation in black) define the genetic and epigenetic landscapes of 3,299 samples from 12 

tumors types (arranged from left to right with groups of columns labeled by tumor type). 

Altered genes are arranged vertically and sorted by genomic locus, with chromosome 1 at 

the top of each rectangular panel and chromosome 22 at the bottom. Candidate functional 

alterations were selected (Online Methods) for each data type (pie charts show the 
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proportion selected). The most recurrent selected alterations (histograms) tend to involve 

well-known oncogenes and tumor suppressors. Tumor types abbreviated as in Table 1.
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Figure 2. 
The first partition of the pan-cancer data set identifies two main classes primarily 

characterized by either recurrent mutations (M class) or recurrent copy number alterations 

(C class). (a) Each class is composed of multiple tumor types in different proportions. (b) 

SFEs were tested for significant enrichment (more frequent than expected in a random 

distribution) in each class (events along the x axis, log-scaled q values on the y axis). Highly 

enriched events are primarily mutations in the M class and copy number alterations in the C 

class. Mut, mutation; meth, methylation change; amp, amplification; del, deletion. (c) The 

distribution of SFEs in tumors indicates that the number of copy number alterations in a 

sample (x axis) is approximately anticorrelated with the number of somatic mutations in a 

sample (y axis). The number of samples for a given (x,y) position range from 0 (white) to 

243 (dark blue). CNAs, copy number alterations. Tumor types abbreviated as in Table 1.
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Figure 3. 
Characteristic patterns of functional alterations and distinct oncogenic processes as 

determinants of oncogenic signature classes (OSCs). (a) The first partition of the tree-like 

stratification (starting with ‘all tumors’ on the left) identifies two main classes: the M class 

(green) and the C class (red). We identify 17 oncogenic signature subclasses for the M class 

(M1–M17) and 14 oncogenic signature subclasses for the C class (C1–C14) (one row per 

subclass). (b) Each subclass includes subsets of tumors from several cancer types (grayscale 

heatmap; gray intensity represents the fraction of samples in a particular tumor type 

(column) and a particular subclass (row)). (c) Tree classification is determined at each level 
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by sets of characteristic functional events (color intensity represents the fraction of samples 

in a subclass (row) affected by a particular functional event (column)). For functional copy 

number alterations, we indicate, if present, known oncogenes and tumor suppressors in 

parentheses, for example, 8q24 (MYC). (d,e) Subclass characteristic events reflect particular 

cellular processes (color intensity represents the fraction of samples in a subclass (row) 

affected by alterations to a particular process (column)) (d) and altered pathways involved in 

each of the processes (e). RTK, receptor tyrosine kinase; DSB, double-strand break. Tumor 

types abbreviated as in Table 1.
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Figure 4. 
Map of functional and actionable alterations across 12 tumor types. Genes (rows) encoding 

components of four major oncogenic pathways (RTK-RAS-RAF, PI3K-AKT-mTOR, cell 

cycle and p53–DNA repair; shown schematically in the pathway column) are affected by 

selected functional events (percent of samples altered and types of alteration are represented 

by colored squares) across tissue-specific tumor types (columns). Alterations to at least one 

of these pathways are observed in almost all samples of almost all tumor types (stacked 

green bar plots at bottom), except in KIRC and LAML. A sizable fraction of these 
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alterations are directly or indirectly therapeutically actionable given the current availability 

of anticancer drugs (the column with drug family information shows the targets of specific 

inhibitors). Tumor types abbreviated as in Table 1.
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Figure 5. 
Combination of therapeutically actionable alterations in oncogenic signature classes. In 

these examples of oncogenic signature subclasses, functional events distinctive for a tumor 

subclass nominate potential combination therapy when these alterations are either directly or 

indirectly targetable (Supplementary Table 7). Other combinations of targeted compounds 

apply to the full set of subclasses in Figure 3.
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Table 1

TCGA pan-cancer data set

Tumor type TCGA ID
Number of

cases Subtypes

Bladder urothelial carcinoma BLCA 97

Breast invasive carcinoma4 BRCA 488 Basal-like, Her2 enriched, luminal B, luminal A

Colon and rectum adenocarcinoma11 COADREADa 491 Microsatellite stable (MSS), microsatellite instability (MSI), 
ultramutators (ultra)

Glioblastoma multiformae9 GBM 218

Head and neck squamous cell carcinoma HNSC 302

Kidney renal clear-cell carcinoma KIRC 420

Acute myeloid leukemia13 LAML 184

Lung adenocarcinoma LUAD 229

Lung squamous cell carcinoma12 LUSC 182

Ovarian serous cystadenocarcinoma10 OV 446

Uterine corpus endometrioid carcinoma5 UCEC 242 Serous-like, endometrioid (low CNA), MSI, ultramutators (ultra)

a
Colon and rectum tumors were treated as a single sample set by the TCGA.
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