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Abstract
The aim of this study was to elucidate the underlying biochemical processes to identify

potential key molecules of meat quality traits drip loss, pH of meat 1 h post-mortem (pH1),

pH in meat 24 h post-mortem (pH24) and meat color. An untargeted metabolomics

approach detected the profiles of 393 annotated and 1,600 unknown metabolites in 97

Duroc × Pietrain pigs. Despite obvious differences regarding the statistical approaches, the

four applied methods, namely correlation analysis, principal component analysis, weighted

network analysis (WNA) and random forest regression (RFR), revealed mainly concordant

results. Our findings lead to the conclusion that meat quality traits pH1, pH24 and color are

strongly influenced by processes of post-mortem energy metabolism like glycolysis and

pentose phosphate pathway, whereas drip loss is significantly associated with metabolites

of lipid metabolism. In case of drip loss, RFR was the most suitable method to identify reli-

able biomarkers and to predict the phenotype based on metabolites. On the other hand,

WNA provides the best parameters to investigate the metabolite interactions and to clarify

the complex molecular background of meat quality traits. In summary, it was possible to

attain findings on the interaction of meat quality traits and their underlying biochemical pro-

cesses. The detected key metabolites might be better indicators of meat quality especially

of drip loss than the measured phenotype itself and potentially might be used as bio

indicators.

Introduction
Sensory and technological quality characteristics of meat products are essential for acceptance
of consumers and manufacturing industries. The variability of meat quality is high and the reg-
ulation of muscle properties influencing meat quality traits is still unclear [1]. One important
commercially interesting meat quality parameter is the ability of meat to retain water also
known as water-holding capacity (WHC). In order to characterize WHC in pork, drip loss is
measured. High drip loss leads to significant reduction of meat quality resulting in monetary
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losses and reduced acceptance of consumers and meat-processing companies. Regularly drip
loss inMusculus longissimus dorsi (LD) is around 1 to 5% [2]. Drip loss is affected significantly
by the structure of the muscle and the muscle cell itself and by unfavorable slaughtering condi-
tions. Drip loss in particular is influenced negatively by too short rest periods and stress before
slaughter that is associated with the rate and extent of muscular pH decline [3]. Furthermore,
meat quality attributes are controlled by genetic effects as well, although the heritability for
some traits is low. Genetic studies revealed several quantitative trait loci and candidate genes.
However, the underlying mechanisms leading to the variation in all meat quality traits need to
be better understood [4–6].

Some studies suggest that the levels of metabolites are helpful in order to understand the
complex biological mechanisms of the underlying meat quality traits [7]. In this regard, meta-
bolomics is a useful technique to identify candidate biomarkers that influence and indicate
complex traits [8], improve preventive health care and enable early recognition of diseases [9].
In animal breeding biomarkers might be used for prediction of economical attractive pheno-
types. For example Te Pas et al. [10] and Rohart et al. [11] investigated the suitability of metab-
olite profiles in prediction of meat quality traits in pigs. Furthermore, investigating metabolites
as new phenotypes might allow uncovering the biochemical processes leading to aberrant meat
quality. In general, metabolites are closer to the target phenotype compared to the level of the
transcriptome or genome. In a current study, Muroya et al. [12] used this characteristic of
metabolites to reveal metabolic pathways in different porcine muscle types.

In order to identify reliable metabolite biomarkers and metabolic pathways, eligible
approaches of metabolite quantification and annotation are needed. A promising procedure is
the untargeted metabolite profiling using mass spectrometry and subsequent data base query.
In this situation, caused by the possibility of quantitative high‐throughput analysis of biological
samples, the number of measured metabolites is usually much larger than the number of avail-
able biological samples. This case is also known as the “large p, small n” problem or rather
overfitting [13]. Several methods have been described that are able to handle data sets with a
large number of variables [14, 15].

Therefore, the main objective of this study was to analyze the relationships between muscle
metabolite profiles and meat quality traits through an untargeted metabolomic approach in
order to predict their potential as biomarker and to investigate the underlying molecular struc-
tures and processes of meat quality. In regard to the “large p, small n” problem, four different
statistical methods, namely correlation analysis, principal component analysis (PCA), random
forest regression (RFR) and weighted network analysis (WNA), were applied. Whereas correla-
tion analysis and PCA are appropriate and commonly used methods to investigate the relation-
ship between different variables, RFR and WNA hold several advantages in the analysis of
highly multivariate, complex data. The construction of biological networks based on metabo-
lites allows the identification of molecular interactions because they do not only quantify the
correlations between pairs of metabolites, but also the extent to which these molecules are con-
nected with other expressed metabolites.

Material and Methods

Animals, tissue collection, phenotyping
This study is based on 97 performance-tested F2 animals of a reciprocal crossbreed
Duroc × Pietrain (Du × Pi). The animals were selected within F2 family and based on their
extreme high or low values of drip loss. The animals were kept and performance tested under
standardized conditions at the Frankenforst experimental farm of the University of Bonn from
2002 until 2007. Data recording and sample collection were conducted strictly in line with the
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German law on animal welfare. The entire experiment, including applied standard operating
procedures, was approved by the veterinary and food inspection, Siegburg, Germany (No.
39600305-547/15). All animals were slaughtered at an average of 180.5 days and average car-
cass weight of 86.5 kg. The phenotypes were recorded in a commercial slaughterhouse accord-
ing to the rules of German performance stations [16]. Further information can be found in Liu
et al. [4].

In brief, sample collection was performed thoroughly after exsanguination. About 10 min-
utes post-mortem (p.m.) tissue samples were rapidly dissected, snap-frozen in liquid nitrogen
and stored at– 80°C. For further examination we choose the meat quality traits drip loss, meat
color, pH in meat 1 h p.m. (pH1) and pH in meat 24 h p.m. (pH24) in LD. Drip loss was mea-
sured using the bag method of Honikel and Kim [17]. The samples from LD between 13th/
14th rib were collected 24 h p.m., weighed, and wrapped in a plastic bag. After storage for 48 h
at 4°C, the samples were reweighed and drip loss were calculated as a percentage of weight loss
based on the initial weight of a sample. Muscle color was measured at 24 h p.m. by Opto-Star
(Matthaeus, Klausa, Germany). Opto-Star measures the light reflection of the meat and gives it
as meat color value. High light reflectance factor stands for pale meat; low reflectance describes
dark red meat color. The traits pH1 and pH24 were measured 1 and 24 h p.m. in LD. To
describe the relationship between meat quality traits we performed a phenotypic correlation
analysis.

Metabolite profiling
The samples metabolite spectra in LD were measured by Metabolomic Discoveries GmbH
(Potsdam, Germany; www.metabolomicdiscoveries.com) via gas chromatography—mass spec-
trometry (GC-MS) and liquid chromatography—quadrupole time of flight—mass spectrome-
try (LC-QTOF/MS).

For metabolite extraction frozen muscle tissue was mechanically disrupted in a ball mill in
liquid nitrogen. 40 mg of homogenate was mixed with 500 μl 80% (v/v) methanol and incu-
bated for 15 minutes in a thermo shaker (1000 rpm) at 70°C. Cellular debris was removed by
centrifugation. 10 μl of the extract were dried and subsequently used for the analysis on
GC-MS. For LC-MS 1 μl was injected. Derivatisation and analyses of metabolites by a GC-MS
7890A mass spectrometer (Agilent, Santa Clara, USA) were carried out as described [18]. The
LC separation was performed using hydrophilic interaction chromatography with a ZIC-HI-
LIC 3.5 μm, 200 A column (Merck Sequant, Umeå Sweden), operated by an Agilent 1290
UPLC system (Agilent, Santa Clara, USA). The LC mobile phase was a linear gradient from
90% to 70% acetonitrile over 15 min, followed by linear gradient from 70% to 10% acetonitrile
over 1 min, 3 min washed with 10% acetonitrile and 3 min reequilibration with 90% acetoni-
trile. The flow rate was 400 μl/min. Hyphenated mass spectrometry was performed using a
6540 QTOF/MS Detector (Agilent, Santa Clara, USA). The measured metabolite concentration
was normalized to the internal standard.

GC-MS and LC-QTOF/MS are used for untargeted metabolite profiling and facilitate the
identification and robust quantification (accurate molar mass) of a few hundred metabolites in
a single tissue sample. Chromatography followed by mass spectrometry has a relatively broad
coverage of compound classes, including organic and amino acids, sugars, sugar alcohols,
phosphorylated intermediates and lipophilic compounds. With the combination of both meth-
ods it is possible to detect metabolites in a range of 50–1700 Dalton, with a precision of
1–2 ppm and a solution of mass/Δmass = 40.000 (Report METABOLOMIC DISCOVERIES
GmbH). For details on the methods see Lisec et al. [18]. Metabolites were identified and anno-
tated in comparison to Metabolomic Discoveries' databases, which resort to Human
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Metabolome Database (HMDB, www.hmdb.ca), METLIN (www.metlin.scripps.edu/) Lipid
Maps (www.lipidmaps.org/). Annotation of metabolites was based on mass assignment, reten-
tion behavior and structure information. Not annotated metabolites are characterized by their
accurate mass and retention time. The data set of the meat quality parameters and all quanti-
fied metabolites is presented in S1 Table.

Statistical analysis
Processing/correction of phenotype and metabolite data. Individual phenotypes of meat

quality traits and metabolite expression levels were corrected for systematic effects using a
fixed, generalized linear model of R software (www.r-project.org). The linear model contained
besides population average μ and random residuum e, the effect ‘season’ (S, 3-month classes)
and ‘slaughter weight’ (SW) as a linear covariable.

Yij ¼ mþ bðSWijÞ þ Si þ eij ð1Þ

All further statistical analysis methods were carried out using the calculated residuals of
metabolite expression intensities and meat quality characteristics.

Association between metabolite profiles and meat quality traits. To investigate associa-
tions between metabolite profiles and meat quality traits we applied four different statistical
approaches: 1) Correlation analysis, 2) PCA, 3) WNA, 4) RFR. These methods have different
properties in order to handle the specific statistical problems (‘large p, small n’, high
dimensionality and distinct correlation between variables) of the metabolomics data set. All
statistical methods of analysis were performed with R (http://www.r-project.org).

Correlation analysis. In a first step simple Pearson correlation coefficients were estimated
to investigate the relationship between paired samples of metabolites and meat quality traits.
Significant correlations (p� 0.05) were considered for further biological interpretations.

Principal Component Analysis (PCA). The PCA procedure is an unsupervised method
which condenses the large number of metabolites into a set of representative, uncorrelated
principle components (PCs) by means of their variance covariance structure [19]. Only PCs
which explain more than 1.5% of the entire metabolite expression variance were considered for
further analysis. The relevance of each metabolite within each PC was quantified by their corre-
sponding loadings.

Weighted Network Analysis (WNA). Similar to the PCA, the WNA procedure [15] tries
to reduce the dimensionality of the metabolic information. Simple network statistics were used
to generate a limited number of biological interpretable modules. Pearson correlation matrix
(adjacency matrix) of all bivariate metabolite comparisons is used to calculate the distances
between the metabolites, corresponding to the differential metabolite expression. By raising the
absolute value of the Pearson correlation to a power β� 1 (soft thresholding), the weighted
network construction emphasizes large correlations at the expense of low correlations [20].
The distances between metabolites are integrated into a topological overlap matrix (TOM)
which is used to cluster the variable expression profiles hierarchically. The results are visualized
by a dendrogram with hierarchically arranged branches and connected nodes. The branch
position of each metabolite indicates the actual connectivity (topology) in the network. The
metabolite located at the end of the branch is the most connected nodes (‘hubs’), which play an
important role in influencing the co-regulation patterns of other nodes in the network. More-
over these hubs may act as linking nodes for communication and interaction between different
networks [21].

For further evaluation the branches were clustered into separate co-regulated modules,
which are visualized by different colors in the corresponding dendrogram. The mathematical
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delimitation of each module was obtained through semi-automated, adaptive pruning of the
hierarchical clustering dendrogram. Based on the distance matrix of all metabolites (dissimilar-
ity of TOM) and the hierarchical clustering dendrogram the function produces a vector of
numerical labels giving assignment of objects to modules [15].

In a next step the metabolite expression profiles for each module are decomposed via a sin-
gular value decomposition to form module eigenvalues (MEs). This procedure is closely linked
to a PCA within a module, where the MEs resemble the first PC. The importance of each
metabolite for its module (Module membership, MM) is quantified by the correlation between
MEs and metabolite expression profiles. Moreover the significance of each module specific
metabolite (Metabolite significance, MS) for the response traits is expressed by the Pearson cor-
relation coefficient. The MS values correspond to the Pearson correlation coefficients between
metabolites and meat quality traits.

Another method to classify metabolites as key indicators of a metabolic network is the con-
cept of maximum adjacency ratio (MAR). MAR is a function of connectivity that is calculated
across all metabolites. Thereby, MAR describes the relativeness of the entire metabolite net-
work. In coexpression networks, MAR is a useful parameter since it allows to determine
whether a node forms moderate relationships with a lot of features (MARi < 0.5) or very strong
relationships with relative few features (MARi > 0.5) [22]. From the viewpoint of network
analysis MAR differs fromMM because is not a module based parameter, but is able to indicate
strong linked-up metabolites, that are involved in many metabolic pathways [23, 24].

The WNA procedure used in our study is implemented in the package ‘Weighted Gene Co-
expression Network Analysis’ (WGCNA) in R [15]. As an optional feature ofWGCNA, the user
is allowed to assess the minimum number of metabolites contained in each module. To con-
struct an interpretable number of modules, we used the standard thresholding parameter (β)
and a minimum of 30 metabolites per module in our analysis [24]. The mathematical delimita-
tion of each module was obtained through pruning of the hierarchical clustering dendrogram
implemented in the function ‘cutreedynamic’ ofWGCNA.

Random Forest Regression (RFR). RFR is a supervised learning tool that estimates the
associations between metabolites and response variables (meat quality traits) using tree-based
methods with integrated permutation tests [25]. As it has been shown by Strobl et al. [26] and
Nicodemus et al. [27], the random forest algorithm is believed to successfully identify relevant
predictor metabolites even in high dimensional settings involving complex interaction struc-
tures and highly correlated variables. The bootstrapping algorithm implemented in RFR
involves two layers of random sampling: response values and metabolite profiles. The RFR pro-
cedure is described in detail in Breiman [14] (cf. Text A in S1 File).

Because of important pitfalls of the traditional RFR algorithm by Breiman [14] implemented
in R package randomForest [23], in this study the RFR routine was calculated based on an alter-
native class of decision trees developed by Hothorn et al. [24] and Strobl et al. [25]. In the
enhanced RFR procedure [26], tree construction and variable importance (VI) estimation is
addressed through the principle of non-parametric conditional hypothesis testing (cf. Text B in
S1 File).

Essentially, the conditional RFR has the following advantages: the procedure uses the ‘con-
ditional inference forest’ (CIF) methodology as splitting criterion. At each splitting node, each
predictor is globally tested for its association with the trait of interest and a p-value is com-
puted. Hence, CIF splitting is based on an essentially unbiased splitting criterion that automati-
cally adjusts for different marginal distributions of the predictors and thus does not share the
pitfall of Breiman´s RFR. Moreover the resampling scheme in conditional RFR based on sub-
sampling instead of bootstrap sampling and Strobl et al. [25] recommend to systematically
using sampling without replacement to prevent biases in VI measurement. Finally the
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aggregation procedure in CIFs works by averaging the observation weights extracted from each
of the trees and not by averaging predictions directly (majority voting). As a result, even in case
of high correlated predictors or variables with wide scale of measurement, modifications of the
standard RFR procedure lead to less biased forest construction and VI calculation.

VI calculation based on the permutation principle of ‘mean decrease in accuracy’ (MDA).
The so called ‘MDA importance’ or ‘permutation importance’ is directly based on the predic-
tion accuracy rather than on the splitting criterion (see Gini importance [14]). The MDA
importance describes the difference between OOB error after random permutation of the rele-
vant predictor where the OOB error results from validation of the original tree. Substitution of
a considerable predictor is expected to decrease the OOB error. Therewith high MDA values
indicate metabolites with distinct effect on the observed trait. The MDA, that is given by a par-
ticular predictor is determined during the OOB error calculation phase whereas the resulting
VI value is conditional in the sense of beta coefficients in regression models, but represents the
effect of a predictor in both main effects (metabolite-trait-association) and interactions (metab-
olite-metabolite-interaction) [26].

The mean MDA of each predictor based on the aggregated forest can be used to rank the
predictors. In order to reduce the number of metabolites to a manageable size, a permutation
test of Hothorn et al. [25] was performed. We set the threshold of the permutation test to
p� 0.1 which rejects uninformative predictors and enables the selection of predictor variables
with significant importance. Hereby the risk of too many wrongly believed predictive predic-
tors is reduced [27].

The root mean square error (RMSE) of RFR is calculated as the square root of the difference
between the realized (yi) and the predicted observation (ŷOOB

i ) within the OOB data after per-
muting each predictor variable in the training dataset divided by the number of trees (n).

RMSEOOB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1 þ

Xn

n¼1
fyi � ŷOOB

i g2
q

ð2Þ

RMSE is calculated at each splitting step in the trees just as averaged over the whole forest.
The coefficient of determination (R2) of RFR is computed as

R2
OOB ¼ 1�

Pn
i¼1

ðyi � ŷOOB
i Þ2

Pn
i¼1

ðyi � �yiÞ2
ð3Þ

The enhanced RFR approach of Hothorn et al. [28] is implemented in the R package party
and its subroutines ‘cforest’ and ‘varimp’ by Strobl et al. [25] were used in this study. All needed
settings are realized by the activation of the specifications ‘controls = cforest_unbiased’ in the
tree building function ‘cforest’ and ‘conditional = TRUE’ in the VI calculating function ‘var-
imp’. Because party does not provide the OOB error estimation by default, the function ‘post-
Resample’ within R package caret was used to calculate RMSE and R2 based on the conditional
forest learned by ‘cforest’.

RFR calculation, in particular using function ‘varimp’ of party, is regarding CPU time and
RAM capacity particular in the situation of our large (1993) amount of independent variables
very time demanding. To reduce the CPU time of RFR, through a previous selection step, we
removed a portion of the apparently uninformative predictors.

Finally RFR was applied on a preselected set of 3 × 400 metabolites, which were most impor-
tant in the first three PCs according to their absolute loadings. After removing duplicates, 1084
metabolites remained in the final dataset. According to Strobl et al. [26] the number of decision
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trees (‘ntree’ parameter’) was set to 1084 and the number of candidate predictors at each split
(‘mtry’ parameter) was set to 361 (‘ntree’/3). The remaining parameters were set to default.

Prediction of response variable using aggregate metabolites profiles. Accuracies in pre-
diction of the meat quality response variables using metabolites profiles were calculated for
each applied method via multiple regression analysis. The statistical regression models com-
prised as independent variables either the first 10 PCs of PCA, 10 modules of WNA or 10
metabolites with highest VI values identified by RFR.

In addition, the results of all analysis were used in a joint analysis in order to identify impor-
tant biological interpretable networks of metabolites or interactions between promising metab-
olites and meat quality traits. In this context, the subjective selection of metabolites for the
joint analysis based on following conditions: a) metabolite is ranked within the top 30 variables
according to their importance indicators (absolute correlation coefficient, absolute loading of
PCA, MS of WNA and VI of RFR) in at least one of the applied statistical methods, b) metabo-
lite is annotated. These importance parameters were used to identify metabolites with high
meaning for the observed traits. Based on the selected metabolites (six metabolites for each
trait) correlation coefficients between metabolites and between metabolites and traits were cal-
culated to construct a network. The software package pajek [29] was used to visualize the com-
plex network of all pre-selected metabolites and meat quality traits via arrows and connection
lines.

Results

Meat quality traits and metabolomic profiling
The raw values of the performance data, given in Table 1, reflect the normal range of meat
quality in commercial crossbred pig population. With the exception of the correlation between
pH1 and pH24 measured in LD, all correlation coefficients between meat quality parameters
were significant different from 0 and had the expected sign (Table 1).

Untargeted metabolite profiling detected 1993 different metabolites in 97 meat samples.
Using Metabolomic Discoveries' databases, 393 metabolites were successfully assigned to a bio-
logical function along with a tagged name and description (first choice). In case of 128 anno-
tated metabolites, the Kyoto Encyclopedia of Genes and Genomes (KEGG)-IDs were also
available. A list of all annotated metabolites is presented in S2 Table. Non-annotated metabo-
lites were characterized by their available exact mass information. In a further step, we tried to
annotate the most important metabolites manually by using the METLIN database (second
choice). Based on the known accurate mass, neutral charge and a maximal tolerance of +/-
10 ppm a potential functional annotation was assumed for the unknown metabolites.

Table 1. Descriptive statistics and phenotypic correlations betweenmeat quality traits.

Mean S Min Max pH1 pH24 color

drip loss, % 1.90 1.39 0.40 5.30 -0.314** -0.350*** -0.371***

pH1 6.53 0.22 5.89 6.94 -0.024 0.272**

pH24 5.52 1.12 5.32 6.06 0.638***

color 72.5 7.25 56.00 92.00

S = standard deviation; Min = minimum; Max = maximum

*** (p � 0.001)

** (p � 0.01); drip loss measured in Musculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH1 measured in LD 45 minutes p.m.; pH24 measured in

LD 24 h p.m.; color = meat color measured in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.t001
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Correlation analysis
The correlation analysis revealed 77, 436, 155 and 235 metabolites significantly correlated with
drip loss, pH1, pH24 and color respectively (Table 2). The correlation coefficients ranged from
—0.46 to 0.44. As can be seen from the Venn-diagram in Fig 1 most of the relationships were
trait specific, whereas only 152 of the 903 significant correlated metabolites showed a signifi-
cant correlation with more than one meat quality trait. In case of trait meat color more than
half of the significant metabolites are also significant correlated with other meat quality trait.

Principal component analysis (PCA)
PCA was used to condense expression profiles of all metabolites in a reasonable number of
PCs. As shown in Fig 2, the first three PCs already specified 46.9% of the observed variance.
These proportion increases with diminishing response of additional PCs from 60% using 6 PC
up to 70% using more than 10 PC.

In order to identify significant metabolites, we focused on the first 3 PC as it has been pro-
posed by DiLeo et al. [24]. In these PC the loadings of all metabolites were in a range of -0.1 to
+ 0.1. According to the criteria to rank loadings in PCs [24], in our study the metabolites do
not reach significant eigenvalues of> 0.2 or< - 0.1. Furthermore beneath the possibility to
rank the variables, a general biological characterisation of the first PCs is hardly possible.

Weighted network analysis (WNA)
WNA allowed the entire dataset of 1993 probe sets of metabolites to be utilized in the construc-
tion of the weighted co-expression network. The hierarchical clustering algorithm and the fol-
lowing pruning process resulted in 10 modules (Figure A in S1 File). The number of

Table 2. Results of the correlation analysis for traits andmetabolites.

trait No. positive correlated range No. negative correlated range

drip loss 72 0.20 to 0.25 5 - 0.21 to—0.24

pH1 212 0.20 to 0.44 224 - 0.20 to—0.46

pH24 99 0.20 to 0.41 56 - 0.20 to—0.32

color 162 0.20 to 0.35 73 - 0.20 to—0.37

Drip loss measured in Musculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH1 measured in LD 45 minutes p.m.; pH24 measured in LD 24 h p.m.;

color = meat color measured in LD 24 h p.m.; significance threshold p � 0.05.

doi:10.1371/journal.pone.0149758.t002

Fig 1. Venn-diagram of significant correlatedmetabolites. Drip loss measured inMusculus longissimus
dorsi (LD) 24 h post-mortem (p.m.); pH1 measured in LD 45 minutes p.m.; pH24 measured in LD 24 h p.m.;
color = meat color measured in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.g001
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metabolites per module ranged between 776 (module ‘blue’) and 31 (module ‘salmon’). Four
metabolites were not assigned to any module, and were labeled with color ‘gray’.

The relationships between meat quality traits and modules are given as correlation coeffi-
cients between traits and MEs (Fig 3). Drip loss was significant positively correlated with mod-
ules ‘purple’ and ‘greenyellow’. Meat color and pH1 showed a significant negative correlation
with the module ‘magenta’. MEs of module ‘black’ were significantly correlated to pH24 and
pH1, but these coefficients were controversial in sign (Table 3, Fig 3).

MAR values were calculated using metabolites of the entire data set. However, regarding the
MAR calculation of a specific metabolite, it can be expected that the metabolites which belong
to the same module provide the most valuable information due to their high intramodular

Fig 2. Cumulative proportion of explained variance by principal component one to 10. PC = principal
component.

doi:10.1371/journal.pone.0149758.g002

Fig 3. Correlation coefficients and corresponding p-values of module-trait relationship. Correlations of
traits drip loss, pH1, pH24 and meat color to modules are characterized by color range from red (‘1’—positive
correlation) to green (‘-1’—negative correlation). In parenthesis below correlation coefficients the p-value is
given. Drip loss is measured inMusculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH1 measured in
LD 45 minutes p.m.; pH24 measured in LD 24 h p.m.; meat color measured in LD 24 h p.m.; ME = module
eigenvalues.

doi:10.1371/journal.pone.0149758.g003
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connectivity. The majority of the metabolites had MAR values below 0.2 and only 88 metabo-
lites had MAR values above 0.3.

Of particular interest were metabolites with high MM, MAR and MS. We used both the ‘not
module based’ parameter MAR as well as the ‘module based’ parameters MS and MM to select
metabolites that are important from different perspectives. Within the significant modules the
metabolite qualifiers MM showed in many cases positive correlation coefficients to MS and
MAR estimators (Table 4). For example, in the significant module ‘magenta’ (for trait color)
the correlation coefficients MM: MS = 0.39 and MM: MAR = 0.60 indicated the high informa-
tion content of the MM qualifier not only for the module specific connectivity but also for the
response variable and the relativeness of the entire network (Fig 4). Likewise in module ‘black’
(for trait pH1) there were significant positive correlations between MM: MS and MM: MAR.
Particular in these modules it can be expected to find a reasonable number of potential key
metabolites for meat quality influencing pathways [30].

Regarding the relationship MS: MAR a clear tendency were observed only in the modules
‘black’ for trait pH24 and ‘magenta’ for color where the correlation coefficient exceeded a value
0.4. In all other modules this relationships were negative or close to 0. To demonstrate the rela-
tionship of MM, MS and MAR, the scatterplots in Fig 4 visualize the relations exemplarily for
modules ‘purple’ and ‘magenta’, that were significantly associated with drip loss and meat color.
The plots for the remaining module-trait associations can be found in Figure B in S1 File.

Random forest regression (RFR)
In contrast to the previous approaches, RFR is a supervised learning method characterizing the
relationship between trait and metabolites using decision trees. Due to computational

Table 3. Selection of significant modules for meat quality traits in weighted network analysis.

trait module cor. p-value number metabolites

drip loss ‚purple‘ + 0.21 p � 0.04 52

drip loss ‚green-yellow‘ + 0.21 p � 0.04 49

pH1 ‚magenta‘ - 0.27 p � 0.008 53

pH1 ‚black‘ - 0.32 p � 0.001 73

ph24 ‚black‘ + 0.28 p � 0.008 73

color ‚magenta‘ - 0.25 p � 0.01 53

cor. = Correlation; drip loss measured in Musculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH1 measured in LD 45 minutes p.m.; pH24

measured in LD 24 h p.m.; color = meat color measured in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.t003

Table 4. Correlation betweenmetabolite significance, module membership andmaximum adjacency ratio for modules of weighted network
analysis.

‘purple’, drip loss ‘greenyellow’, drip loss ‘black’, pH1 ‘black’, pH24 ‘magenta’, pH1 ‘magenta’, color

MM: MS 0.00 0.36** 0.55** -0.13 0.29* 0.39**

MM: MAR -0.18 0.81** 0.29** 0.29** 0.60** 0.60**

MAR: MS 0.18 0.25 -0.22* 0.50** -0.14 0.40

MS = metabolite significance; MM = module membership; MAR = maximum adjacency ratio

** (p � 0.01)

* (p � 0.05); drip loss measured in Musculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH1 measured in LD 45 minutes p.m.; pH24 measured in

LD 24 h p.m.; color = meat color measured in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.t004
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problems of 1993 available metabolites only the probably most important 1084 metabolites
were used in RFR. These metabolites were selected based on their absolute loading values in
PC1 to PC3 in PCA as described above. By this procedure the dataset was reduced from 1993
to 1084 metabolites. Regarding the different meat quality traits, diverse conditional RFR accu-
racy parameters (RMSE, R2 and coefficient of variation (CV)) of the prediction based on
metabolite profiles were estimated. R2 values ranged between 0.4 (pH24) and 0.55 (pH1). CV
values for pH1 (2.21%) and color (6.95%) were below 10%, whereas CV values for pH24
(17.57%) and particular drip loss (51.15%) indicated a weak accuracy of RFR for these traits
(Table 5).

Despite these partly unsatisfying accuracies, a considerable number (293 to 401) of metabo-
lites with significant impact on various meat quality traits (Table 5, Fig 5) were detected. Signif-
icance of VI values was tested via a permutation test with a threshold of p� 0.1. As shown in
Fig 6, there is a large number of metabolites identified for more than one trait. For example, 14
and 110 (34 + 29 + 26 + 21) metabolites had a significant impact on all or at least on three meat
quality traits.

Evaluation of applied statistical methods in prediction of meat quality
traits
In a final step, the potential of all applied statistical models to predict meat quality was quanti-
fied via a trait specific multiple regression analysis. Regarding the statistical procedures PCA,
WNA and RFR the first 10 PCs, all WNA modules or 10 highest RFR VI values were used as

Fig 4. Scatterplot of parameters metabolite significance, module membership andmaximum
adjacency ratio of the modules ‘purple’ (a) and ‘magenta’ (b) that are significantly correlated with
meat quality traits drip loss (a) andmeat color (b).MS =metabolite significance; MM =module
membership; MAR = maximum adjacency ratio; drip loss measured inMusculus longissimus dorsi (LD) 24 h
post-mortem (p.m.); color = meat color measured in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.g004

Metabolite-Profiles as Biomarker for Pork Quality Using Different Statistical Approaches

PLOS ONE | DOI:10.1371/journal.pone.0149758 February 26, 2016 11 / 24



independent variables. Table 6 shows the corresponding accuracy parameters of these analyses.
In general, prediction based on metabolite profiles was very challenging in case of drip loss and
worked best for pH1. Regarding the statistical methods in most analyses RFR showed the high-
est accuracy. Only for pH24, the first ten PCs and the modules of WNA resulted in higher R2

compared to RFR (Table 6).

Joint analysis of significant associated metabolites
With the exception of PCA, the applied methods revealed significant metabolites for the
observed meat quality traits. PCA resulted in weak loading values that prohibited the identifi-
cation of important metabolites. In contrast, using the results of the correlation analysis and
the methods WNA and RFR, it was possible to detect significant associated metabolites for
meat quality traits. Comparing these methods by summarizing the results presented in the

Table 5. Accuracy parameters and number of metabolites with significant variable importance (VI) andmaximal VI per trait according to random
forest regression.

trait RMSE R2 CV [%] Max. VI significant metabolites

drip loss 0.97 0.41 51.15 0.012 293

pH1 0.14 0.55 2.21 0.002 401

pH24 0.97 0.40 17.57 0.013 317

color 5.04 0.47 6.95 1.658 332

RMSE—root mean square error; R2
—coefficient of determination; CV—coefficient of variation; drip loss measured in Musculus longissimus dorsi (LD) 24

h post-mortem (p.m.); pH1 measured in LD 45 minutes p.m.; pH24 measured in LD 24 h p.m.; color = meat color measured in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.t005

Fig 5. Variable importance boxplot of important metabolites by random forest regression of Strobl
et al. (2009) [29]. Drip loss measured inMusculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH1
measured in LD 45 minutes p.m.; pH24 measured in LD 24 h p.m.; color = meat color measured in LD 24 h p.
m.

doi:10.1371/journal.pone.0149758.g005
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Tables 2, 3 and 5 the number of detected significant trait specific metabolites varied to a large
extent. For example the number of significant metabolites for drip loss ranged from 76 (corre-
lation analysis) to 293 (RFR). On the other hand, a considerable overlapping of significant
metabolites identified by different statistical methods was detected and is presented in Fig 7. In
general, it can be assumed that metabolites, whose importance is confirmed by different meth-
ods, can be used as reliable predictors for meat quality traits.

In order to get a more comprehensive overview about the complex biological architecture of
meat quality traits, the most important metabolites that were identified by the three methods
were used to set up a network via virtualization tool pajek. Importance of metabolites was char-
acterized by the parameters a) correlation to meat quality, b) MS in significant modules of
WNA and c) VI in RFR. According to these parameters the most important 30 metabolites per
method were preselected. The final joint network analysis comprised only metabolites which
were annotated and identified by at least two methods. Following this rule, 6 metabolites were
identified for pH1, drip loss and color, whereas 3 metabolites had an impact on pH24. For
pH24, this initial subset did not contain results from the RFR analysis, so that the list was
extended by three annotated metabolites which had the highest VI value (Table 7).

Based on the 24 selected metabolites in Table 7, a metabolomic network was created which
comprise the meat quality traits drip loss, pH1, pH24 and color (Fig 8). In the network the dot-
ted lines represent connections between traits and between metabolites whereas the arrows

Fig 6. Venn-diagram of significant metabolites by random forest regression of Strobl et al. (2009) [29].
Drip loss measured inMusculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH1 measured in LD 45
minutes p.m.; pH24 measured in LD 24 h p.m.; color = meat color measured in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.g006

Table 6. Predictive power of principal component analysis, weighted network analysis and random forest regression in drip loss, pH1, pH24 and
meat color based on a multiple regression model.

trait multiple correlation coefficients

10 principal components of PCA 10 modules of WNA 10 metabolites with highest
variable importance of RFR

RMSE R2 CV[%] RMSE R2 CV[%] RMSE R2 CV[%]

drip loss 1.13 0.07 59.75 1.10 0.18 57.94 1.10 0.32 58.13

pH1 0.43 0.35 6.53 0.44 0.30 6.69 0.43 0.37 6.64

pH24 0.32 0.27 5.73 0.32 0.27 5.78 0.34 0.12 6.13

color 2.54 0.23 3.50 2.56 0.21 3.53 2.51 0.37 3.46

PCA = principal component analysis; WNA = weighted network analysis; RFR = random forest regression; RMSE—root mean square error; R2
—

coefficient of determination; CV—coefficient of variation; drip loss measured in Musculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH1 measured

in LD 45 minutes p.m.; pH24 measured in LD 24 h p.m.; color = meat color measured in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.t006
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Fig 7. Venn-diagram of the entire significant metabolites for drip loss, pH1, pH24 and color identified
by correlation analysis, weighted network analysis and random forest regression and of the selection
of 30 metabolites with highest absolute correlation coefficients, metabolite significance and variable
importance values in brackets.Corr. = correlation analysis; WNA = weighted network analysis;
RFR = random forest regression; drip loss measured inMusculus longissimus dorsi (LD) 24 h post-mortem
(p.m.); pH1 measured in LD 45 minutes p.m.; pH24 measured in LD 24 h p.m.; color = meat color measured
in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.g007

Table 7. Selection of metabolites for joint analysis based on their ranking in top 30metabolites in correlation analysis, metabolite significance of
weighted network analysis and variable importance of random forest regression.

drip loss Cor MS VI pH1 Cor MS VI

2.3-Naphthalic acid 23. × 10. Histidine-alanine-tryptophan-tryptophan 5. 4. 2.

Glycero-3-phosphocholine 8. × 7. Cytidine 25. 8. 12.

Glycero-3-phosphoserine × 28. 23. Allopurinol-1 ribonucleoside × 9. 25.

Glycerophosholipid 22. 14. × Lactic acid 24. × 10.

Triacylglycerol 19. 12. × Lysine-serine-isoleucine 19. × 6.

3-Methyl-2-oxovaleric acid 21. 13. × Phosphocreatine 26. × 21.

pH24 Cor MS VI color Cor MS VI

α-Hydroxybutyrate 1. 1. × Octulose-1.8-bisphosphate 7. 1. ×

Heptadecanoyl carnitine 2. 2. × Fructose-6-phosphate 27. 9. ×

Stearoylcarnitine 3. 4. × Glucose-6-phosphate 23. 7. ×

Gle-cholesterol × × 2. Inosine-5-monophosphate 28. 10. ×

Methylglyoxal × × 9. Phosphoglycolic acid 11. 12. ×

Glucose × × 11. Nicotinamide adenine dinucleotide 4. × 2.

Cor = correlation analysis; MS = metabolite significance; VI = variable importance; ×—Metabolite was not ranked in top 30 of the respective importance

values; drip loss measured in Musculus longissimus dorsi (LD) 24 h post-mortem (p.m.); pH1 measured in LD 45 minutes p.m.; pH24 measured in LD 24

h p.m.; color = meat color measured in LD 24 h p.m.; Gle = gallic acid-linoleic acid ester.

doi:10.1371/journal.pone.0149758.t007
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stand for directed effects of metabolites on the observed traits. Directed and undirected con-
nections are displayed in case of significance (p� 0.05) and absolute correlation� 0.5. Fig 8
indicates that the metabolites found by different statistical methods were highly interconnec-
ted. As a general tendency, different procedures identified similar or related chemical sub-
stances for a specific trait.

Discussion

Challenges in metabolomics and functional analysis
Based on an untargeted metabolomic approach the main objective of our study was to identify
key metabolites which play an important role in the complex biological architecture of meat
quality traits. Moreover, these metabolites can be used as informative predictive biomarkers of
meat quality of pigs. Similar objectives are pursued in a few studies reported in literature [9,
31]. Recently D'Alessandro et al. [31] successfully used metabolomics to compare highly phe-
notypically differentiated pig breeds. Rohart et al. [11] investigated the prediction power of
metabolomic profiles for commonly used production phenotypes in pig breeds and in a current
study Muroya et al. [12] tried to reveal characteristic metabolic pathways in different porcine
muscle types. These studies used up to 188 well known metabolites to characterise different tar-
gets traits. In contrast to these studies, our approach tried to cover the entire metabolom of
pigs expressed in meat samples.

Using a GC-MS technology, in our study 1993 different metabolites were identified. Wishart
et al. [32] showed that this method is the most efficient way for metabolite detection. However,
as it has been reported by Hollywood et al. [33] metabolomics approaches by GC-MS only dis-
closure about 10% of the metabolome. From this follows, that the set of metabolites found in
our study reflects only a small percentage of anticipated count of metabolites.

Besides this limitation, the corresponding annotation step provides only a fragmented pic-
ture because only a small amount of physiological or biochemical functions of metabolites are

Fig 8. Metabolomic network of traits drip loss, pH1, pH24 and color and 24 strongly associated
metabolites. dotted lines: undirected connections between metabolites and between traits; arrows: directed
relations between metabolites and traits; triangles—traits; ellipses–metabolites; light blue–drip loss; blue–
pH1; magenta–pH24; green–meat color; drip loss measured inMusculus longissimus dorsi (LD) 24 h post-
mortem (p.m.); pH1 measured in LD 45 minutes p.m.; pH24 measured in LD 24 h p.m.; color = meat color
measured in LD 24 h p.m.

doi:10.1371/journal.pone.0149758.g008
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stored in available public data bases. In our study only 393 out of 1993 metabolites were anno-
tated. According to Chagoyen and Pazos [34], reasons for these fragmentary information
might be the of lack of scientific fundamentals and principles of physiological and biochemical
processes of higher life forms. In addition, functional analysis of high dimensional omics data
is a big challenge in systems biology studies as it can be seen by the different, non-standardized
statistical methods which were used here and elsewhere to analyze metabolomics data (cf.
[24]).

Potential and abilities of statistical methods
In order to quantify the consequences of missing statistical standards in a first step of our anal-
ysis we evaluated different statistical methods with respect to their relevant theoretical statisti-
cal properties and their consequences regarding the final results. All applied methods tried to
solve the problem of the ‘large p, small n’ situation of the metabolomics dataset used in our
study.

The correlation analysis is a useful method to get a first overview. In the last decade, in
many scientific fields we registered an increasing number of available variables. New tech-
niques were proposed to address these challenging tasks involving many irrelevant and redun-
dant variables and often comparably few training examples. Selecting the most relevant
variables is a challenge for building a reliable predictor, particularly if the variables are redun-
dant. Conversely, a subset of useful variables may exclude many redundant, but relevant, vari-
ables. Correlation methods belong to the category of ranking criteria defined for individual
variables, independently of the context of others. This leads to the consequence that some vari-
ables may have a low rank because they are redundant and yet be highly relevant [35]. In our
study correlation analysis nevertheless induced concordant results with RFR andWNA. The
latter finding was not surprising because the module generating process in WNA, MS is calcu-
lated based on Pearson correlation coefficients as well as the simple correlation analysis. In
conclusion, correlation analysis is a comprehensible procedure to get a first idea of what vari-
ables might be potential bio indicators. However, because of the described weaknesses, beneath
correlation analysis, other methods based bootstrap or Bayesian procedures should be applied
to validate or disprove the first results.

The PCA approach tries to condense the information content of the independent variables
into a set of PC. This method is promising, in particular because bivariate correlation analysis
revealed significant relationships between metabolites and meat quality traits in a range of
maximal—0.20 to—0.46 and + 0.20 to + 0.44. However, using PCA only weak loading values
were estimated within the first PC and no significant metabolites were identified based on the
thresholds described by DiLeo et al. [24]. Consequently the analytic tool did not give compre-
hensive insight in interactions between metabolome and phenotypic traits.

WNA addresses the challenge of the ‘large p, small n’ situation by summarizing a network
of modules to reduce the complexity of a dataset, which is thereby analyzed with greater statis-
tical power [15]. The investigation and interpretation of trait–metabolite associations in WNA
is focused on the most highly-connected ‘hub’metabolites with high MM, MS and MAR within
the significant modules.

As described above, the parameter MS quantifies the importance of a metabolite for meat
quality traits. Therefore, MS is the most eligible parameter to select promising metabolite bio-
markers for a particular trait. In contrast, the parameters MM or MAR are indicators for the
connectivity of metabolites and are able to indicate potential key players in the regulatory net-
work regulating the trait of interest and between the metabolic pathways. MM quantifies the
importance of a metabolite for the specific module, whereas the parameter MAR provides
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information about the relatedness of each metabolite within the whole network. According to
Langfelder and Horvath [15] MAR values below 0.5 indicate components with many, weak
connections to the network neighbors instead of few strong associations. In our study only four
metabolites in the modules ‘black’ and ‘magenta’ showed MAR values above 0.4, which indi-
cated a more important role of these metabolites regarding the network connectivity. In these
modules the correlation MS: MAR also revealed a clear tendency of 0.5 (module ‘black’, pH24)
and 0.4 (module ‘magenta’, color), respectively (Table 4). In other significant modules the MS:
MAR correlations were negligible weak. This finding indicates that an intensively connected
metabolite does not necessarily provide important information for the expression of the
response variable.

Within significant modules, MM values of almost all metabolites were highly expressed in a
range between 0.5 to 1 (Fig 4, Figure B in S1 File). This result can be expected because of the
underlying cluster algorithm. In contrast, the MS values within all significant modules were
much lower and were almost equally distributed between 0 and 0.3 for drip loss, color and pH1
(in ‘magenta’) and 0 to 0.45 for pH1 (in ‘black’) and pH24 (Table 3). As visualized in Fig 6, in
module ‘purple’, glucosylceramide (d18:1/24:1(15Z)) and another unannotated metabolite
with low MM but high MAR values do not fit in our expectations derived from a positive corre-
lation between MM and MAR qualifiers. Theoretically, components with low MM but high
MAR probably have a high connectivity across the whole network. In this context, glucosylcer-
amide (d18:1/24:1(15Z)) is involved in many pathways for example in sphingolipid-, ceramide
glucosyl- and lipopolysaccharide metabolism so that this metabolite can be considered as a
nodal point between different modules or metabolic pathways. On the other hand, in module
‘magenta’ there are some metabolites with both high MM and MAR qualifiers, but MS values
close to 0 (Fig 4). These metabolites might be key players in the underlying biological pathways
of module ‘magenta’, but on the other side they do not play an important role for the expres-
sion of the response variable color by its own.

According to Muroya et al. [12] module construction and MM/MS/MAR calculation is rea-
sonable, because it can be expected that the biology of meat ageing process is regulated by a
number of key factors in several key metabolic pathways. Module construction has the advan-
tage that the function of a large amount of non-annotated metabolites can be inferred from
their better-annotated neighbors within the modules. This advantage is particular important in
the analysis of our data set, because only 20% of the metabolites were annotated.

In a PCA the meaning of metabolites is calculated purely by their statistical correlation
(covariance) to all other metabolites. This means, that the significance of metabolites with high
regulatory importance, but no directly connected to the trait of interest (weak loadings), is not
detected by a PCA. In contrast, in the framework of the WNA analysis metabolites which have
a central position within a regulatory network have a higher probability to be identified [24].
Varying the minimum number of metabolites within a module has an impact on the module
sizes and the total number of modules identified. This option allows the user to consider bio-
logical background knowledge. Choosing a lower number of variables per module allows the
user to investigate the underlying biological pathways more in detail. In conclusion, these attri-
butes of WNA provided evidence that the procedure was an appropriate method for analyzing
metabolomics data in a system biology approach.

As a final result, the WNA procedure leads to differentiable modules with similar expression
profiles within the modules. From a biological point of view the intra module similarity can be
interpreted as a distinct co-regulation of the module metabolites. Moreover, the indicators MM
and MAR enables to identify key players in regulatory network which is possibly linked to the
specific module, whereas metabolites strongly influencing specific traits are characterized by
high MS [15]. Nowadays weighted co-expression network analyses are applied in a wide
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scientific field in order to estimate the relationships, connectivity and dependency of different
variables in biological systems. In metabolomics approaches the combined abilities of WNA to
cluster and select variables are also very useful. For example, DiLeo et al. [24] and MacLennan
el al. [36] successfully used WNA to select metabolite biomarkers in tomatoes and transcripts
as biomarkers in mice.

In RFR, VI is usually used for selection of (a) causal variables highly related to the response
variable for explanatory and interpretation purposes and (b) of a small number of relevant pre-
dictor variables. It was shown in test runs using all independent variables (results not shown),
many of the metabolites had very little importance in the trees and therefore in prediction of
the trait of interest. Despite the expectation that the RFR procedure is able to handle high
dimensional data with redundant and unimportant variables, the analysis ran more robust and
in acceptable running time based on the reduced dataset with 1084 instead of 1993 metabolites.

To deal with the impurity’s bias for selecting split variables towards uncorrelated predictor
variables, VI values were calculated with an enhanced RFR procedure that guarantees unbiased
tree algorithms for reliable prediction and interpretability in both individual trees and forests.
In standard RFR, by Breiman [14], the VI based ranking of the predictors says nothing about
the significance of the top-ranked predictors and the procedure always outputs a ranking–even
if all predictors are uninformative in the prediction. In contrast, in Hothorn´s conditional RFR
[28], VI computation is based on an implemented permutation test which analyzed the signifi-
cance of the respective metabolite. This selection step leads to a reduced number of explanatory
variables in the model that avoids overfitting and ensures a smaller prediction error [11]. Gen-
erally, the VI parameter in RFR can be interpreted similar to MS values in WNA. In contrast to
WNA, which determines MM of each metabolite within a module, RFR does not estimate the
relative similarity among metabolites. This limitation of the RFR procedure makes it difficult
to assign metabolites to different functional pathways. Moreover, RFR approaches partially
produce ‘odd unexpected results’ in some specific cases [37]. Even in the enhanced conditional
RFR procedure, the risk of biased VI values in case of specific data structure or predictor type
cannot be overlooked completely. As well as the pretended advantage of RFR, the absence of a
specific underlying stochastic model, is also a challenge in the sense that it is difficult to under-
stand how the prediction within the variety of decision trees works exactly [37]. Nevertheless,
RFR has become a major analysis tool in many fields of bioinformatics due to its high flexibility
and in-build VI calculation. Also in prediction of various characteristics based on metabolo-
mics data, RFR has been used successfully [38].

Accuracy of prediction of meat quality traits by applied methods
To evaluate the prediction ability of meat quality traits by PCA, WNA and RFR a linear (multi-
ple) regression model was used. Suitability of the methods in prediction on basis of metabolite
profiles was different regarding the different traits (Table 6). Compared to drip loss, pH1 and
color prediction performed better using the 10 selected metabolites by RFR, whereas pH24 pre-
diction based on PCs or WNAmodules resulted in higher R2. According to the studies of
Rohart et al. [11], who also used RFR for phenotypic prediction based on metabolomic data,
prediction accuracy depends strongly on the observed trait. In our study, prediction worked
best for the trait pH1 and worst for drip loss, considering R2. This result might correspond to
the genetic foundation of these traits. It has been summarized by Ciobanu et al. [39] that the
lowest heritability estimates were found for drip loss whereas pH1, pH24 and color showed
higher values (h2 drip loss = 0.31, h2 pH1 = 0.41, h2 pH24 = 0.39, h2 color = 0.57). That means,
drip loss is stronger influenced by environmental effects which might complicate the prediction
accuracy by metabolite information.
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Joint analysis
A network of metabolites and meat quality traits is represented in Fig 8. Trait pH1 was the
most cross-linked trait in our study and several metabolites like 2,3-naphthalic acid and glu-
cose were significantly associated with all respected traits. Moreover glucose, selected due to
high importance for trait meat color, was connected to eight other metabolites, amongst others
to inosine-5-monophosphate (IMP), lactic acid and 2,3-naphtalic acid. Besides its influence on
meat color, the metabolite IMP that is involved in purine metabolism and biosynthesis of alka-
loids derived from histidine and purine, also showed significant associations to drip loss, pH1
and pH24. Taking into account the significant phenotypic correlation among the four traits as
well (Table 1), all observations indicated that meat quality traits were highly interconnected
and influenced by similar biochemical processes.

Regarding the different statistical approaches it can be summarized that the applied procedures
all in all identified similar or related chemical substances as important for a specific meat quality
trait. For example in regard to of drip loss, correlation analysis, WNA and RFR revealed several
glycerophospholipids (GPL) and glycerolipids (GL) that are involved in lipid metabolism and
arise from degradation of membrane structures. Moreover, similar to the findings of Hidalgo et al.
[40], different acids, like 2,3-naphthalic acid and the α-keto acid 3-methyl-2-oxovaleric acid, that
are associated with lipid oxidation were identified by different methods as important for drip loss.
For example 2,3-naphthalic acid is part of the pathway ‘degradation of aromatic compounds’ that
directly leads to generation of pyruvic acid and other compounds that are involved in energy
metabolism like acetic acids. Most important metabolic processes in muscle and meat are ener-
getic processes like glycolysis/gluconeogenesis, citrate cycle and pentose phosphate pathway
(PPP), which verifiable are responsible for muscle physiology andmeat quality [41, 42].

In hypoxic tissues after slaughtering anaerobe metabolic processes predominate and in glycol-
ysis glycogen is released via glucose to pyruvic acid. Under aerobic conditions pyruvic acid is
metabolized in citrate cycle and oxidative phosphorylation [42]. In case of stress before slaughter-
ing or a too short resting period before stupefaction in hypoxic tissues, the rate of oxidative pro-
cesses like glycolysis is increased and pyruvic acid do not flow into glycolysis but is transferred to
lactic acid [17]. Accumulation of lactic acid goes along with pH decrease to 5.6 [17]. The coinci-
dence of low pH1 and high temperature in muscle lead to partial denaturation of proteins and
reduction of intercellular space. Thereby, lipids are dissolved frommembranes, permeability of
membranes is increased and drip loss is the result [3]. Based on this background, the meaning of
e.g. 2,3-naphthalic acid, glucose and several GPLs, sterol lipids and fatty acids for meat quality
characteristics drip loss, pH1, pH24 and color is traceable. These metabolites are indicators for
complex metabolic processes and are characteristic of the specific occurrence of meat quality
traits. Selected metabolites potentially may be used as universal bio indicators for prediction of
special traits. Availability of such ‘multiple applicable’ biomarkers would reduce effort and cost of
phenotyping in breeding programs and commercial meat processing. Regarding the associations
between the metabolites, it was observed that some metabolites were significantly correlated with
many other components. This finding suggested that some strongly networked metabolites are
the key players of metabolic processes responsible for the large complex of meat quality traits in
pigs. Intense investigation of these important metabolites might lead to a deeper understanding
of the underlying biological pathways and the causal reasons of development of quality traits.

Key metabolites and apparently significant associated pathways related
to meat quality traits
The different applied methods resulted in several key metabolites mainly belonging to the family
of lipids (GPLs, sterol lipids, prenol lipids). In addition to lipids, the statistical analysis also
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detected other compounds like the naphthalene 2,3-Naphthalic acid and the α-keto acid
3-methyl-2-oxovaleric acid with strong association to drip loss. GPLs are the major lipids in mam-
malian cell membranes [43]. Preslaughter stress results in increased rate and extent of pH decline,
decomposition of membrane structures and cell swelling and shrinkage. In this way dissolved lip-
ids and lipid compounds run off the cells into the extramyofibrillar compartment. This process of
lipid decomposition also is accompanied by lipid oxidation that results in increasing concentra-
tion α-keto acids. Therefore the relation between drip loss and associated lipids and acids can be
explained and have been already described by Lambert et al. [43] and Poulsen et al. [44].

Examination of compounds with significant association to pH1 resulted in metabolites of
purine and pyrimidine metabolism (nucleotide metabolism), glycolysis and PPP. PH1 is a
major indicator for PSE (pale, soft, exudative) meat, which is characterized by low pH1. The
higher the rate of glycolysis, PPP and related metabolic processes like lactic acid—and nucleo-
tide metabolism, the lower is pH1 in meat. The onset of rigor mortis at low pH1 and high tem-
perature causes the denaturation of around 20% of the sarcoplasmic and myofibrillar proteins
[17]. This explains the significant meaning of polypeptides like histidine-alanine-tryptophan-
tryptophan and lysine-serine-isoleucine.

Trait pH24 was significant associated with metabolites of pyruvate metabolism, glycolysis,
PPP and purine metabolism. Moreover, pH24 was significant associated to metabolites result-
ing in the course of protein degradation (e.g. polypeptide glutamine-histidine-alanine) and
metabolites of lipid metabolism, like GPs, sterol lipids and fatty acid esters (e.g. stearoylcarni-
tine), and hydroxy acids like α-hydroxybutyrate (ketone body). The meat quality parameter
pH24 is an indicator for DFD (dark, firm, dry) meat, which characteristically leads to a pH ulti-
mate value> 6. High ultimate pH results in relative little protein degradation, high WHC,
dark meat and early spoilage of the meat. Meat spoilage follows from microbial reduction, nat-
ural autoxidation of lipids and autolytic enzymatic processes [17]. Toldra and Flores [45]
reported the significance of fatty acids and ketones and polypeptides (products of autolytic
enzymatic spoilage) for pH24 in meat. The degradation of free fatty acids to ketone bodies in
liver is one option to generate energy for muscle cells. With empty glycogen stores p.m. energy
is mainly supplied by mobilization of lipid stores and transformation of released fatty acids
into ketone bodies [17]. Because these anaerobic processes lead to reduced pH decline p.m. sev-
eral fatty acids and ketone bodies (e.g. α-hydroxybutyrate) might be good indicators for pH24.
Relevance of p.m. energy metabolisms like glycolysis, PPP and pyruvic acid metabolism, indi-
cated by metabolites like glucose and phosphoenolpyruvate, for meat quality traits in pigs also
has been described by Scheffler et al. [42].

Analysis of pork color resulted in different significant associated metabolites (phosphates,
pyruvic acid) of glycolysis, PPP and pyruvic acid metabolism. This means high rate of glycoly-
sis and activated PPP and pyruvate metabolism results in high meat color value (Opto value,
scattering effect), because glucose is metabolized to glycogen and finally to lactic acid. This
goes along with acidification and pale meat color and explains the determined significant
meaning of phosphates and downstream products of glycolysis like octulose-1,8-bisphosphate
and phosphoglycerate in our study. Muroya et al. [12] and D'Alessandro et al. [31] who investi-
gated characteristic metabolic pathways of meat quality in pigs could confirm these results.
They also indicated significant correlation coefficients between meat color indicators (L�, a�,
b�) and higher rate of glycolysis.

Conclusion
In this study untargeted metabolite profiling of muscle samples of 97 Duroc × Pietrain pigs was
used to identify underlying biochemical processes and potential key molecules affecting meat
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quality traits. Because of limited technical capabilities of GC-MS and a lack of basic knowledge
about biochemical processes of higher life forms only detection and annotation of a small per-
centage of metabolites influencing meat quality was possible. To get deeper insights in the
involved biological pathways we applied and evaluated different statistical methods, namely
correlation analysis, PCA, WNA and RFR. Although the methods based on different statistical
approaches and in spite of differences between the parameters and requirements of the particu-
lar methods to achieve statistical significance, they revealed similar results. Using the described
methods for analysis of the holistic metabolite profiling we were able to detect both: metabo-
lites with already known meaning for meat quality and metabolites whose influence on meat
quality traits not yet has been described. As expected, the applied methods revealed metabolites
as important, that are involved in p.m. glycogen degradation and energy consumption under
the exclusion of oxygen like glucose, GPLs and different phosphates. On the other hand the
meaning of several metabolites like e.g. the polypeptides histidine-alanine-tryptophan-trypto-
phan and lysine-serine-isoleucine for trait pH1 has not yet been described in literature.

The consistent results lead to the conclusion that meat quality traits pH1, pH24 and color
are strongly influenced by processes of p.m. energy metabolism like glycolysis, PPP, pyruvic
acid metabolism and associated processes. Drip loss in particular is significant associated with
different glycerophospho-, sterol- and prenol lipids and compounds involved in lipid metabo-
lism which are products of membrane degradation. In summary, it was possible to attain find-
ings on the interaction of meat quality traits and their underlying biochemical processes. The
detected key molecules will be used in further investigations in order to clarify the complex
molecular structures underlying drip loss. Furthermore, these selected metabolites might be
better indicators of meat quality especially of drip loss than the measured phenotype itself and
potentially might be used as bio indicators. For this purpose the validation of the candidate bio
indicators in another set of pigs is desirable.
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