
Research Article
Framework for Parallel Preprocessing of Microarray
Data Using Hadoop

Amirhossein Sahlabadi ,1 Ravie ChandrenMuniyandi ,1

Mahdi Sahlabadi ,1 and Hossein Golshanbafghy 2

1Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
2Faculty of Creative Multimedia, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia

Correspondence should be addressed to Ravie Chandren Muniyandi; ravie@ukm.edu.my,
Mahdi Sahlabadi; sahlabadi2002@gmail.com, and Hossein Golshanbafghy; h.golshan@gmail.com

Received 9 September 2017; Revised 29 January 2018; Accepted 13 February 2018; Published 29 March 2018

Academic Editor: Florentino Fdez-Riverola

Copyright © 2018 Amirhossein Sahlabadi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Nowadays, microarray technology has become one of the popular ways to study gene expression and diagnosis of disease.
National Center for Biology Information (NCBI) hosts public databases containing large volumes of biological data required to be
preprocessed, since they carry high levels of noise and bias. Robust Multiarray Average (RMA) is one of the standard and popular
methods that is utilized to preprocess the data and remove the noises. Most of the preprocessing algorithms are time-consuming
and not able to handle a large number of datasets with thousands of experiments. Parallel processing can be used to address the
above-mentioned issues. Hadoop is a well-known and ideal distributed file system framework that provides a parallel environment
to run the experiment. In this research, for the first time, the capability of Hadoop and statistical power of R have been leveraged
to parallelize the available preprocessing algorithm called RMA to efficiently process microarray data. The experiment has been
run on cluster containing 5 nodes, while each node has 16 cores and 16GB memory. It compares efficiency and the performance
of parallelized RMA using Hadoop with parallelized RMA using affyPara package as well as sequential RMA.The result shows the
speed-up rate of the proposed approach outperforms the sequential approach and affyPara approach.

1. Introduction

Thousands of genes are expressed through microarray. The
abundance of produced messenger RNA (mRNA) for the
expressed genes can be studied using microarray-based
methods where it allows large-scale analyses of gene expres-
sion simultaneously [1].

Microarray technology enables physicians to compare the
expression and regulation of thousands of genes simultane-
ously and recognize the disease and the ill gene [2].

Microarray data contains noises. It has been distinguished
by a high dimensionality. The first step of microarray exper-
iments is significant as it prepares clean data for downward
analysis.The preprocessing procedure for the rawmicroarray
data consists of background correction, normalization, and
summarization. Afterward, high level analyses such as gene

selection, classification, or clustering are executed to profile
gene expression patterns [3].

The main reason of microarray data classification is to
create a classifier to classify new data and predict the future
trend of data [4].

Microarray data preprocessing identifies noise data and
eliminates or reduces the impact of existing noises on the
machine learning algorithm.

Preprocessing consists of three steps: background cor-
rection, normalization, and summarization [5]. Well-known
algorithms of microarray data preprocessing are MAS4.0,
MAS5.0, RMA, and GCRMA. However, these algorithms are
all implemented in a conventional single thread program-
ming. Parallelizing of these algorithms can help to speed up
the performance of the preprocessing stage.

Hindawi
Advances in Bioinformatics
Volume 2018, Article ID 9391635, 9 pages
https://doi.org/10.1155/2018/9391635

http://orcid.org/0000-0001-5920-4671
http://orcid.org/0000-0002-8999-9548
http://orcid.org/0000-0003-4862-400X
http://orcid.org/0000-0002-9129-1688
https://doi.org/10.1155/2018/9391635


2 Advances in Bioinformatics

Parallel architectures (e.g., multicore systems, GPU, and
CELL processors) associated with current programming
models (e.g., ServiceOrientedArchitecture,MapReduce) can
transform single thread program to multithread program.
Hadoop is a distributed file system framework that uses the
MapReduce model in order to distribute the jobs across
different nodes and then collect the results from nodes and
merge them. However, Hadoop always suffers from lack of
powerful statistical tools or techniques [6].

As a result, the powerful statistical tool is needed to
integrate with Hadoop. In this research, R is chosen to
integrate with Hadoop. R is suite of software facilities for data
manipulation, calculation, and graphical display [7]. Integrat-
ing R with Hadoop facilitates programing MapReduce jobs
in R language by Hadoop’s streaming API. In this regard,
there is a framework called RHadoop, which consists of three
packages such as rmr2, rhdfs, and rhbase.These packages ease
managing, distribution, and analysis of data with Hadoop
[8].

In this research, new approach has been proposed to
use RHadoop framework to preprocessmicroarray cancerous
breast data using RMA algorithm. It will increase the pre-
processing speed of microarray data while amount of data
increases. As a result, the time required for preprocessing
decreases considerably. To the best of our knowledge, it is the
first time that RHadoop is applied in bioinformatics.

ADNAmicroarray is a solid surface (i.e., glass)withmany
DNA spots attached to it. Each spot contains a short sequence
of DNA (gene) of interest named probes. Set of probes, which
have the same nucleotide sequences, are called probe set that
helps to detect the expression of particular gene. Typically,
there are two different kinds of probe: Perfect Match (PM)
and Mismatch (MM). Each probe is part of the member of
probe set with the same nucleotide sequences [9]. Each PM
probe is paired with a MM probe.The PM probe represents a
part of gene sequence. MM probe and PM probe have similar
sequences except MM probe’s central position (13th base of
25 probe bases) that is substituted by another base (A→ T or
G→ C). The main purpose of MM probe in the microarray
is to measure the nonspecific hybridization and background
noise [10].

1.1. Problem. Accurate and early diagnosis of disease is vital.
For this reason, using microarray technology to recognize
the disease is widespread. Preprocessing of microarray data
is the most significant step in analyzing of data as any error
in this step would lead to wrong result in the whole system.
Thus, it is necessary to have a solid plan andmethod to refine
data and make them applicable for further processes. Most of
the preprocessing methods are time-consuming. Moreover,
traditional sequential microarray quality assessment and
preprocessing tools are not able to handle large amount of
dataset. Therefore, there is a need of marvelous technologies
and techniques to preprocess huge amount of microarray
data. One of these techniques is MapReduce programing
model that takes advantage of data locality designed to
address data intensive problems [11].

2. Background Study

2.1. Preprocessing. Preprocessing is the most important stage
in terms of feeding clean data to the downstream anal-
ysis such as gene selection, clustering, and classification.
Preprocessing removes systematic errors between arrays.
Fundamentally, preprocessing aims to find the differentially
expressed genes among arrays and within an array. Naturally,
each gene must perform the same in an equal situation.
However, there are many environmental factors (amount of
sample, room temperature, hands germs, and so on) that
cause the same gene expressions differentially. Preprocessing
ensures that similar genes among various arrays and within
an array are expressed equally even if some environmental
factors caused them to be expressed unequally [13]. Those
genes that are still expressed differentially after preprocessing
are called “genes are gone bad.” Figure 1 is the procedure of
preprocessing microarray data.

There are several well-known algorithms for preprocess-
ing of microarray data, MAS.04, MAS.05, RMA, GCRMA,
fRMA, and UPC.

MAS.04 and MAS.05 are merely applicable for a single
chip. They normalize arrays individually without ability to
process multiple arrays at the same time. Besides, both
algorithms depend on MM binding which is of low level
of intensity and do not clear out all the noises [14]. RMA
was introduced to resolve existing problems in the above-
mentionedmethods. It assumes that the PM intensity is noise
background. RMA uses quintile normalization. It results in
equal distributions for the probe intensities of every microar-
ray and thus makes their values comparable [10]. Scientists
believe that gcRMA’s background adjustment introduces
more noise than RMA into typical noisy chips produced
in the lab [15]. UPC is another famous method proposed
after fRMA to remove the dependency on the platforms
for conducting experiments. Even though UPC is platform
independent, it only determines the probability of the gene
expression which is not reliable enough in comparison with
other methods’ exact value. As a result, RMA still keeps its
superiority over other methods. In addition, it is the most
common algorithm that has been used during the past decade
due to the accuracy and precision of this algorithm.

Below is the description of RMA in detail as it is leveraged
in the experiment.

2.1.1. RobustMultiarray Average (RMA). TheRMAalgorithm
was proposed in 2003 [16] and yet it is the most common and
standard algorithm that exists for preprocessing of the data.
It no longer depends on mismatch for eliminating the noise
and it can process many arrays at the same time with high
accuracy and precision. It assumes that the PM intensity is
noise background bg plus biological signal 𝑠.

Perfect match intensity

PM𝑖𝑗𝑛 = bg𝑖𝑗𝑛 + 𝑠𝑖𝑗𝑛. (1)

Let 𝑖 ∈ 1, . . . , 𝐼, 𝐼 being the microarray wherein probe 𝑗 ∈
1, . . . , 𝐽 in probe set 𝑛 ∈ 1, . . . , 𝑁.The purpose of background



Advances in Bioinformatics 3

Normalization

Background correction 

Summarization

Gene expression 

Microarray .CEL files

Figure 1: Preprocessing steps [12].

correction is to obtain the value of 𝑠 as noisy PM is the only
available value; it can be found by using the formula below:

PM background signal

𝐵 (PM𝑖𝑗𝑛) = 𝐸 (𝑠𝑖𝑗𝑛 | PM𝑖𝑗𝑛) > 0

bg ∼ 𝑁(𝜇, 𝛿2) ,

𝑠 ∼ exp (O) .

(2)

Suppose that the distribution of the background noise
is normally distributed and also the distribution of the
signal is exponentially distributed. Those assumptions make
it possible to result in a formula for 𝐸(𝑠𝑖𝑗𝑛 | PM𝑖𝑗𝑛) [17].

PM signal formula

𝐸 (𝑠PM) = 𝑎 + 𝑏 0 (𝑎/𝑏) − 0 ((PM − 𝑎) /𝑏)
�(𝑎/𝑏) + �((PM − 𝑎) /𝑏) − 1

, (3)

where 𝑎 = PM − 𝜇 − 𝛿2O, 𝑏 = 𝛿, � (⋅) being the standard
normal distribution and 0(⋅) the standard normal density
function. After this equation, the background corrected value
is obtained.

After all data are background corrected; then they should
be normalized across microarrays to make them comparable.
RMA uses quintile normalization. It results in equal distribu-
tions for the probe intensities of every microarray and thus
makes their values comparable [10].

Eventually, all the probe intensities’ values belonging to
the specific probe must be summarized to only one single
value. The normalized and background corrected probe
intensity 𝑌 can be illustrated as the true gene expression 𝜃
plus an effect specific to the probe 0 and ameasurement error
[16, 18].

True gene expression

𝑌𝑖𝑗𝑛 = 𝜃𝑖𝑛 + 0𝑗𝑛 + ∈𝑖𝑗𝑛. (4)

The idea is to estimate the values of 𝜃𝑖𝑛, in which the
true gene expression values are. Median polish is applied to
estimate the gene expression. It helps to find the error (∈𝑖𝑗𝑛)
and then deduct it from𝑌 to find the gene expression.Median
polish is reliable method against outliers [10].

2.2. Parallel Preprocessing. During the last decade, the vol-
ume of the microarray data has been increased dramatically
as scientists obtain huge amount of data from the daily
routine experiment conducted in labs. In parallel processing,
a process is divided to several smaller parts and each part
is executed at different node separately and simultaneously.
Hence, it is much faster and efficient compared to single node
processing [19]. Parallel processing can lead to efficiently
storing, managing, and manipulating data. As the size of
the experimental data is expanding, it becomes cumbersome
to manage, store, and analyze the data. High performance
computing plays significant role in all the phases of life
sciences research pipeline tomanage the raw data and process
them accordingly.

An approach named master/slave was introduced to
handle this large volume of data [20]. Master node invokes
worker nodes and sends them copy of dataset attached with
list of probe sets. Thus each node performs normalization
and summarization using Affymetrix Power Tools (APT) and
returns the result to themaster node. Eventually, master node
compiles all results obtained from different nodes and writes
them in a single matrix. However, this architecture requires
developers to install APT on each worker node which is
time-consuming and tedious. Moreover, the resource and
task management is not sufficiently effective due to simple
load distribution strategy which assigns each node the same
number of jobs.

Micro-CS (Microarray .CEL file Summarizer) [21] is
the tool that automates the preprocessing pipeline. It is a
distributed tool that utilizes web services and automatically
processes normalization and summarization. Then it collects
all related and updated libraries. But this tool is executed
sequentially. So it has no considerable effect on the perfor-
mance of data preprocessing.



4 Advances in Bioinformatics

Cloud computing can conduct data preprocessing in a
parallel way. It provides on-demand access to the shared pool
of computer resources (e.g., networking, storage, memory,
and processor). Cloud computing is a model that helps com-
panies to share resources and reduce the cost [22]. Bioinfor-
matics applications and tools can be deployed on cloud.There
are two available bioinformatics datasets in Amazon EC2
public repository. First one is Annotated Human Genome
Data provided by ENSEMBL and the other one is UniGene
provided by the National Center Biotechnology Information.
Dudley and Butte declare that computational power of cloud
computing can be used to analyze the bioinformatics data.
Recently, cloud-based platforms for biological applications
are being used in research works [23]. Nowadays, Galaxy
Cloud is a popular platform which is offered by Amazon
Cloud. It is named Platform as a Service (PaaS) and it
allows everyone to analyze data in large scales with their
computational resources. Cloud4SNP is offered as a Software
as a Service (SaaS) by Microsoft Azure as a private cloud. It
utilizes data parallelism and applies optimization techniques
through filtering of probes with similar Single-Nucleotide
Polymorphism (SNP) distributions [24]. However, cloud
computing presents several issues regarding the security and
privacy of data that are particularly important when analyz-
ing patients’ data [25], because patient personal data can be
leaked out in cloud computing. These issues induce cloud
computing inappropriate for microarray data preprocessing.

There is a new parallel platform based on amultithreaded
master/slave architecture proposed in 2016 called ParDMET-
Miner. The Master Thread (MT) is responsible for parti-
tioning and distributing the load to each slave thread and
collecting results from each node. Slave threads (ST) compute
locally the association rules [26]. In spite of the improvement
obtained in data preprocessing speed, the problem of high
number of candidates for possible polymorphism in 255
genes remains challenging.

Another proposed approach is combining GPU with
Hadoop to process the large amount of microarray data
in a parallel manner [11]. They have used java language to
implement their proposed solution. However, GPU core is
much slower than CPU core and they are not supported
by many modern operating systems (OS) as they do not
contain most of new features of current OS.They are suitable
for the video games and physics simulations that require
high graphics. Besides, even though java provides great
environment to develop different tools, it is not great for in-
depth mathematical and statistical analyzing. On the other
hand, R is a language that is mainly developed via statistical
and mathematical analyses.

This research proposed a new approach exploiting
RHadoop framework to preprocess microarray cancerous
breast data by RMA algorithm. It increases the preprocessing
performance of microarray data especially in big data. It is
the first time RHadoop is applied to preprocess microarray
cancerous breast data.

2.3. Hadoop. Hadoop is a framework built by Google to
process huge volume of data exposed to many changes

frequently. The key attribute of Hadoop is reliability and
redundancy. In case one of the nodes fails, it automatically
replicates the data to another machine to avoid missing data.
It is easy to write, test, and run the distributed application on
one machine where Hadoop scales are of the same code as
the other machines. Ultimately, it is economical as it runs on
commodity hardware without a need to buy any expensive
hardware. Hadoop consists of three main pieces as follows
[27]:

(i) MapReduce: it manages the processing part of
Hadoop

(ii) HadoopDistributed File System (HDFS): it is respon-
sible for managing and distributing files across the
nodes

(iii) YARN: it is a framework that assigns available
resources to the jobs and tasks.

2.4. Parallel Processing in R. R tool was primarily developed
to calculate and analyze data by aid of statistic and mathe-
matical equation. It is confined to processing and managing
limited size of data. On the other hand, Hadoop is one
of the famous and ideal distributed file system frameworks
which has high capability of processing large volumes of data
with high performance, while it is still immature in terms
of statistic and mathematical calculation. By R and Hadoop
integration, the shortcomings of both are defeated. Mean-
while, it is cost-effective compared to the other solutions (e.g.,
supercomputing hardware).

2.4.1. RHadoop. RHadoop is a framework that consists of set
of packages: rmr2, rhdfs, and rhbase.These packages facilitate
management and distribution of data with Hadoop through
R. Below is a brief explanation of RHadoop packages [28]:

(i) rmr2: this package translates R language to the lan-
guage which complies with MapReduce jobs

(ii) rhdfs: this package contains someAPIs tomanage and
control the data in HDFS. This package enables to
read from HDFS and store to R data frame. It also
writes data from R data frame into HDFS storage

(iii) rhbase: the primary purpose of this package is to
manage the database for Hbase stores, instead of
HDFS files. It provides an R language API as well.

3. Methodology

The proposed approach distributes the microarray data over
nodes by Hadoop HDFS. Then it runs the preprocessing
method in themodel ofMapReduce programing to propagate
the jobs and tasks across all nodes. Consequently, preprocess-
ing performance of microarray data increases.

Affy-library and RHadoop framework make Hadoop
HDFS accessible. The .CEL files along with .cdf files (chip
description file) which are uploaded from local machines
are placed into HDFS which is located on Hadoop server.
Then, Hadoop propagates the data across DataNodes in a
form of blocks automatically. Also the addresses of each



Advances in Bioinformatics 5

block beside other specification of blocks are stored in the
Namenode. The .cdf file contains the necessary information
about the .CEL files such as genotyping, sequencing, and
position information of the probes.

Yarn component is the resource manager in Hadoop
which automatically handles available resources and jobs.
It provides a resource to the application based on the
request. Resource manager controls resources according to
the reports received from Node Manager (NM) existing in
each DataNode.

In preprocessing, the mapper function calculates the
background corrected value and then normalizes the data for
each DataNode in parallel. Reducer function summarizes all
probe intensities’ values from particular probe in different
arrays to only one single value.Mapper and reducer functions
are developed and customized based on requirements stated
in Section 2.1.1.

Finally, the result is sent back to the Namenode. This
result is read from HDFS into computer file system.

Figure 2 is the diagram indicatingmain steps of proposed
method. It elaborates how components contribute to data and
jobs in each step. It pictures the whole framework.

3.1. RHadoop. RHadoop allows developing in R language
on Hadoop. Figure 3 describes how Hadoop components
are accessible via R language. RHadoop framework consists
of rhdfs, rhbase, and rmr2. The files in the HDFS can be
managed and stored by rhdfs [29]. rmr2 package converts
existing algorithm in R to MapReduce programing model.
So the algorithms run in parallel. Finally, rhbase enables the
developer to access the tables to manipulate the records such
as read, write, and modifying in Hbase [30].

3.2. RMA Implementation in the Proposed Framework.
Hadoop’s components such as YARN and HDFS ON start
working by start-all.sh command. Afterward, the data must
be uploaded from local machine to Hadoop server. Then,
Hadoop will propagate the data across different DataNodes
in the form of blocks automatically and the addresses of the
blocks, along with other specifications of blocks, are stored
in the Namenode. To upload the data in Hadoop via R,
RHadoop package must be installed in R and then loaded
to HDFS library. We need to set the environment variables
according to the Hadoop directories and configurations too.
Eventually, HDFS must be initialized to work as shown in
Figure 4.

After that, rmr2 library is loaded inR to applyMapReduce
model of Hadoop to our sequentially implemented RMA.
According to Figure 4, the mapper function is written to
calculate the background corrected value as well as normal-
ized value of the probs. Reducer function is implemented to
summarize the normalized values for the same probe to the
single value in different arrays.

Below is the code snippet for mapper and reducer
functions which are written in R language.

Mapper Function

map <- function() {

-hdfs.get(“hdfs://localhost:9000/affydata/”,
“/home/hduser/R/data/hdfstest”)
-data<-ReadAffy()
-bgdata<-bg.correct.rma(data)
-normdata<-normalize.AffyBatch.quantiles
(bgdata)

}

Reducer Function

reduce <- function(){

esetExp <- expresso (normdata, bg.correct =
FALSE, bgcorrect.method = NULL, normalize
= FALSE, normalize.method = NULL, pmcor-
rect.method = “pmonly”, summary.method =
“medianpolish”)
write.exprs(esetExp, file = “esetExp.txt”)

}

4. Evaluation

The dataset used in this experiment is breast cancer data
collected from National Center for Biotechnology Informa-
tion (NCBI). Microarray cancerous data is found in Gene
Expression Omnibus Database (GEO) [31]. This database
contains genes and microarray as well as various organism
datasets. The GEO accession number for this dataset is
GSE4922 which includes list of all GSM files from a single
experiment. The dataset used in this experiment starts with
GSM110625.CEL and ends with GSM111122.CEL. All tumor
samples are evaluated on GPL96 and GPL97. GPL stands
for GEO Platform which indicates specific type of platform.
GPL96 is a GeneChip of Affymetrix Human Genome U133A
Array [HU-133A] and GPL97 is a GeneChip of Affymetrix
Human Genome U133B Array [HU-133B]. Both GeneChips
are manufactured by Affymetrix [32].

This experiment has been carried out on a cluster contain-
ing 5 nodes and each node has 8 cores with 16 gigabyte RAM.
Operating system is Ubuntu version 16.04.

4.1. Result. The performance of the proposed approach has
been evaluated by measuring the time required to preprocess
the data. The specific number of files (10, 50, 100, 150, and
200) is selected and the time for preprocessing of each batch
of .CEL files is calculated. The time to preprocess 10 files is
about 50 seconds; when the number of files increases to 50,
the time reaches 87 seconds. It means the time’s growth is
not too much while the number of files increases remarkably.
Therefore, the slope is less than 1. Figure 5 illustrates the
speed of the parallel preprocessing of microarray data using
Hadoop.

5. Discussion

Figure 6 compares the parallel RMA approach with the
standard sequential RMA preprocessing method. The result



6 Advances in Bioinformatics

Namenode

Metadata

Hadoop framework

Upload data in 
Hadoop

Resource manager

Preprocessing of dataset

DataNode
Block of file 

Reducing process
Preprocessing of dataset

DataNode
Block of file Result n

Final result

Result 1

Microarray 
dataset
.CELL
format

Mapping process

Figure 2: Proposed algorithm.

shows that as the volume and number of the files increase,
parallel preprocessing takes less time in comparison with
sequential one.

We have also implemented the RMA using preProPara()
function in affyPara package and compared the performance
with the proposed solution. As it is shown in Figure 7, at first
the RMA in affyPara outperformed our solution; however
as the number of files increases, the RMA in the proposed
framework performs more efficiently. This is because of the
Hadoop YARN resource manager that leverages the efficient
resource management and job scheduling.

Speed-up rate (ratio of speed in throughput of the
proposed approach over the existing approach) has been
calculated to show the improvement achieved in speed of
the preprocessing of microarray data using our solution. It is
observed that as the number of the files increases, the speed
increases considerably.

Figure 8 shows that speed-up rate is almost 2 times more
than sequential method. Parallel RMA is outperforming
sequential RMA, especially when the number of files soars.
Although the proposed approach preprocesses data in less
time, the biological result is the same as sequential RMA.



Advances in Bioinformatics 7

R
client

HDFS

rhdfs (provide 
connection to HDFS)

Map

Map

Map

Reduce
HDFS

rhbase

HBase

MapReduce using rmr2

Figure 3: RHadoop architecture.

HDFS
Hdfs.init()

Preprocessing

Mapper Bg correction

Normalization

Reduce
Summarization

Hdfs.outfile<-file.path(affydata)Output

Download the result to the 
local machine

Figure 4: RMA implementation in Hadoop.

The speed-up rate has been calculated and plotted on the
graph to illustrate the performance of the proposed method
over sequential method. Additionally, the proposed approach
is also performing better compared to the affyPara package.
In addition, the speed-up rate reaches approximately 1.5 for
200 files. The speed-up rate will go up if the number of files
increases.

6. Conclusion

In this paper, the proposed approach exploits Hadoop
and R integration in order to preprocess the microarray
data by RMA algorithm in a parallel manner for the first
time in bioinformatics. According to the experiment, the
result shows performance improvement; as the volume of



8 Advances in Bioinformatics

10 25 50 75 100
0

25
50
75

100
125
150
175
200
225

Number of files

Ti
m

e (
se

co
nd

s)

Parallel

Figure 5: Parallel RMA.

10 25 50 75 100
0

25
50
75

100
125
150
175
200
225

Number of files

Ti
m

e (
se

co
nd

s)

Sequential
Parallel

Figure 6: Comparison between parallel RMA and sequential RMA.

10 50 100 150 200
Number of files

affyParallel
HadoopParallel

0
25
50
75

100
125
150
175
200
225

Ti
m

e (
se

co
nd

s)

Figure 7: affyPara versus HadoopParallel.

10 25 50 75 100
0.0

0.5

1.0

1.5

Number of files

Ti
m

es

Figure 8: Speed-up rate for parallel preprocessing.

files increases, it requires less time to preprocess the data
compared to the sequential one. Besides, preprocessing of
hundreds of microarray datasets using sequential RMA is not
possible or, even in some cases, it takes days to accomplish

due to its heavy memory usage. The main memory limits are
caused by the structure of the AffyBatch class. The AffyBatch
will be created by importing .CEL files into the R software
and is a container for storing probe-level data. The number
of arrays which can be imported strongly depends on the
architecture of the computer system (e.g., 32-bit Linux system
with 4GB main memory can support 160 .CEL files). The
partition of data and distribution to several nodes solves the
main memory problems and accelerates the methods [33].
Therefore, the MapReduce implementation of RMA allows
processing any size of files conveniently with higher speed.
Theproposedmethod has the capability to be implemented in
high numbers of clusters with high computational power and
memory to handle huge amounts of bioinformatics of data.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] T. D. Pham, D. Beck, and H. Yan, “Spectral pattern comparison
methods for cancer classification based on microarray gene
expression data,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 53, no. 11, pp. 2425–2430, 2006.

[2] A. Lehmussola, O. Yli-Harja, and S. Hautaniemi, “DNA
microarray data preprocessing,” in Proceedings of the 1st Inter-
national Symposium on Control, Communications and Signal
Processing, pp. 751–754, 2004.

[3] Z. Chen, M. McGee, Q. Liu, and R. H. Scheuermann, “A distri-
bution free summarization method for Affymetrix GeneChip�
arrays,” Bioinformatics, vol. 23, no. 3, pp. 321–327, 2007.

[4] F. F. Millenaar, J. Okyere, S. T. May, M. van Zanten, L. A. C. J.
Voesenek, andA. J.M. Peeters, “How to decide? Differentmeth-
ods of calculating gene expression from short oligonucleotide
array data will give different results,” BMC Bioinformatics, vol.
7, article no. 137, 2006.

[5] A. C. Richard, P. A. Lyons, J. E. Peters et al., “Comparison of
gene expression microarray data with count-based RNA mea-
surements informs microarray interpretation,” BMC Genomics,
vol. 15, no. 1, article no. 649, 2014.

[6] Dirk deRoos, “HADOOP INTEGRATION WITH R,” 2014,
http://www.dummies.com/programming/big-data/hadoop/
hadoop-integration-with-r/.

[7] D. Bates, P. Dalgaard, R. Gentleman, and J. Chambers, “what is
R?” 2000, https://www.r-project.org/about.html.

[8] P. Zikopoulos, R. B. Melnyk, B. Brown, and R. C. Dirk deRoos,
“Hadoop for dummies,” 2014, http://www.dummies.com/pro-
gramming/big-data/hadoop/hadoop-integration-with-r/.

[9] DNA Microarray Technology, “National Human Genome
Research Institute, United States, Lab Report Janurary,” 2015.

[10] Q. De Clerck, “Analyzing and Benchmarking Genomic Pre-
processing and Batch Effect Removal Methods in Big Data
Infrastructure,” in Analyzing and Benchmarking Genomic Pre-
processing and Batch Effect Removal Methods in Big Data
Infrastructure, chapters 2, 3, pp. 1–110, Verije university, Brussel,
Belgiuim, 2014.

[11] S. Niu, G. Yang, N. Sarma et al., “Combining Hadoop and GPU
to preprocess large Affymetrix microarray data,” in Proceedings

http://www.dummies.com/programming/big-data/hadoop/hadoop-integration-with-r/
http://www.dummies.com/programming/big-data/hadoop/hadoop-integration-with-r/
https://www.r-project.org/about.html
http://www.dummies.com/programming/big-data/hadoop/hadoop-integration-with-r/
http://www.dummies.com/programming/big-data/hadoop/hadoop-integration-with-r/


Advances in Bioinformatics 9

of the 2nd IEEE International Conference on Big Data, IEEE Big
Data 2014, pp. 692–700, October 2014.

[12] J. M. Freudenberg, Comparison of background correction
and normalization procedures forhigh-density oligonucleotide
microarrays, Universität Leipzig, Germany: Interdisciplinary
Centre for Bioinformatics, 3rd edition, 2005.

[13] R. Fajriyah, Microarray Data Analysis: Background Correction
and Diferentially Expressed Genes, Technischen Universitat
Graz, Styria, Austria, 2015.

[14] Y. Abagyan and R. Zhou, “Algorithms for high-density oligonu-
cleotide array,” Curr Opin Drug Discov Devel, vol. 6, no. 3, pp.
339–345, 2003.

[15] Anon, Summarizing Oligonucleotide Expression Data, Virginia
commonwealth University, Virgini, 2010.

[16] R. A. Irizarry, B.M. Bolstad, F. Collin, L.M.Cope, B.Hobbs, and
T. P. Speed, “Summaries of Affymetrix GeneChip probe level
data,” Nucleic Acids Research, vol. 31, no. 4, article e15, 2003.

[17] B. Milo Bolstad, Low-level Analysis of High-density Oligonu-
cleotide Array Data: Background,Normalization and Summa-
rization, University of california, 2004.

[18] L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry,
“Affy—analysis of Affymetrix GeneChip data at the probe level,”
Bioinformatics, vol. 20, no. 3, pp. 307–315, 2004.

[19] M. Cannataro, Handbook of Research on Computational Grid
Technologies for Life Sciences, Biomedicine, and Healthcare, IGI
Global, Catanzaro, Italy, 1st edition, 2009.

[20] H. Pietro and M. G. Cannataro, “Parallel Pre-processing of
Affymetrix Microarray Data,” in in Euro-Par 2010 Parallel Pro-
cessingWorkshops: HeteroPar, HPCC, HiBB, CoreGrid, UCHPC,
HPCF, PROPER, CCPI, VHPC, R. G. Mario, Ed., pp. 225–232,
Springer, Ischia, Italy, 2010.

[21] M. Cannataro and P. H. Guzzi, “The role of parallelism,
web services and ontologies in bioinformatics and omics data
management and analysis,” EMBnet.journal, vol. 19, no. B, p. 59,
2013.

[22] A.Mohiuddin, A. S.M. Raju Chowdhury, A.Mustaq, andM.H.
Rafee, “An Advanced Survey on Cloud Computing and State-
of-the-art Research Issues,” International Journal of Computer
Science Issues (IJCSI), vol. 9, no. 1, pp. 201–207, 2012.

[23] J. T. Dudley andA. J. Butte, “In silico research in the era of cloud
computing,” Nature Biotechnology, vol. 28, no. 11, pp. 1181–1185,
2010.

[24] G. Agapito, M. Cannataro, P. H. Guzzi, F. Marozzo, D. Talia, and
P. Trunfio, “Cloud4SNP:Distributed analysis of SNPmicroarray
data on the cloud,” in Proceedings of the 2013 4th ACM Confer-
ence on Bioinformatics, Computational Biology and Biomedical
Informatics, ACM-BCB 2013, pp. 468–475, Wshington DC,
USA, September 2013.

[25] B. Calabrese and M. Cannataro, “Bioinformatics and microar-
ray data analysis on the cloud,” Methods in Molecular Biology,
vol. 1375, pp. 25–39, 2016.

[26] G. Agapito, P. H. Guzzi, and M. Cannataro, “Parallel processing
of genomics data,” Numerical Computations: Theory And Algo-
rithms (Numta–2016), 2016.

[27] M. Grossman, M. Breternitz, and V. Sarkar, “HadoopCL:
MapReduce on distributed heterogeneous platforms through
seamless integration of hadoop and OpenCL,” in Proceedings
of the 2013 IEEE 27th International Parallel and Distributed
Processing Symposium Workshops and PhD Forum, IPDPSW
2013, pp. 1918–1927, Washington, DC, USA, May 2013.

[28] Tom Preston-Werner Chris Wanstrath, 2008, https://github
.com/RevolutionAnalytics/RHadoop/wiki.

[29] D. deRoos, P. C. Zikopoulos, B. Roman, B. Brown, andC. Rafael,
Hadoop for Dummies, John Wiley & Sons, Hoboken, NJ, USA,
1st edition, 2014.

[30] D. Parveen Kumar, Big Data Analatics with R and Hadoop,
Department of Computer Science & Engineering Yogi Vemana
University, 2016.

[31] J. George, O. Senko, B. Mow et al., Genetic Reclassification of
Histologic Grade Delineates New Clinical Subtypes of Breast
Cancer, 2016, https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE4922.

[32] MOAC DTC, Reading the NCBI’s GEO microarray SOFT files
in R/BioConductor, Engineering and Physical Science Research
Council, England, science report, 2007.

[33] Ulrich MansmannMarkus Schmidberger, “Parallelized prepro-
cessing algorithms for high-density oligonucleotide arrays,” in
proceedings of the Parallel and Distributed Processing, 2008.,
IPDPS, 2008, April 2008.

https://github.com/RevolutionAnalytics/RHadoop/wiki
https://github.com/RevolutionAnalytics/RHadoop/wiki
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4922
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4922

