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Abstract: Breadfruit (Artocarpus altilis) is a traditional staple tree crop throughout the tropics.
The species is an evergreen tree 15–20 m; there are currently no size-controlling rootstocks within
the species. Through interspecific grafting, a dwarf phenotype was identified in breadfruit plants
growing on Marang (Artocarpus odoratissimus) rootstocks, which displayed ~60% reduction in plant
height with ~80% shorter internodes. To gain insight into the molecular mechanism underlying
rootstock-induced dwarfing, we investigated the involvement of gibberellin (GA) in reduction of stem
elongation. Expression of GA metabolism genes was analysed in the period from 18 to 24 months
after grafting. In comparison to self-graft and non-graft, scion stems on marang rootstocks displayed
decrease in expression of a GA biosynthetic gene, AaGA20ox3, and increase in expression of a GA
catabolic genes, AaGA2ox1, in the tested 6-month period. Increased accumulation of DELLA proteins
(GA-signalling repressors) was found in scion stems growing on marang rootstocks, together with an
increased expression of a DELLA gene, AaDELLA1. Exogenous GA treatment was able to restore the
stem elongation rate and the internode length of scions growing on marang rootstocks. The possibility
that GA deficiency forms a component of the mechanism underlying rootstock-induced breadfruit
dwarfing is discussed.

Keywords: breadfruit (Artocarpus altilis); dwarfing; gibberellin (GA); rootstock; stem elongation;
marang (Artocarpus odoratissimus)

1. Introduction

Trees with reduced stature allow high-density planting and facilitate tree management and
harvesting. In many species, tree dwarfing has been achieved through the widespread use of dwarfing
rootstocks. The mechanism underlying rootstock-induced dwarfing has been extensively studied
but remains poorly understood [1–4]. Breadfruit (Artocarpus altilis) is a traditional staple tree crop
throughout the tropics. The species is an evergreen tree from 15 to 20 m. Breadfruits comprise fertile
and sterile diploids and sterile triploids and has hundreds of cultivars [5], but there is currently no
size-controlling rootstock within the species. Through interspecific grafting, a dwarf phenotype was
recently identified in breadfruit plants growing on marang (Artocarpus odoratissimus) rootstocks [6].
Under the same genus of Artocarpus, marang is also a large tropical fruit tree to 25 m; no dwarf
phenotype has been identified [7]. Little is known about the intriguing interaction by which marang
greatly reduces the tree size of grafted scions when used as rootstocks.
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The molecular mechanism by which dwarfing is conferred may differ between species as well
as between annuals and perennials [4]. Several mechanisms have been proposed to explain how
rootstocks cause dwarfing in scions. These include reduction of water and solute transport across graft
union [3,8], anatomical change [2], and altered hormone signalling between scions and rootstocks [1,9].
There is considerable evidence to suggest that disruption in gibberellin (GA) metabolism plays a role in
rootstock-induced dwarfing [4]. Previously dwarfing apple interstocks were found to limit the supply
of [3H]GA4 to scion shoot tips as compared to non-dwarfing interstocks [10]. Dwarfing apple rootstocks
also reduce the supply of the root-produced GA precursor, GA19, to scions [9,11]. Application of GA to
scions on apple dwarfing rootstock restores the node number of both the primary axis and secondary
shoots [12]. In ungrafted apple rootstocks, the level of GAs is the lowest in the dwarfing rootstock
M.9 and the highest in the non-dwarfing rootstock MM111 [13]. Transcriptomic analysis revealed
downregulation of GA biosynthetic genes in scions of apple trees gowning on dwarfing rootstocks [14]
and upregulation of a GA catabolic gene together with decreased GA level in persimmon scion stems
grafted on dwarfing interstocks [15]. Furthermore, a dwarf plum hybrid with elevated transcript
levels of a major GA catabolic gene, GA2ox, exhibits shorter internodes and reduced stem elongation,
and when used as rootstocks, it reduces the level of bioactive GAs in scions and reduces scion vigor [16].

GAs are a family of diterpenoid plant hormone involved in a wide range of plant growth and
development [17]. In higher plants, the flux of active GAs is regulated by the balance between the rates
of biosynthesis and deactivation [18]. Biosynthesis of GAs starts from geranylgeranyl diphosphate,
a C20 precursor [18]. GA20-oxidase (GA20ox) is a multifunctional enzyme that converts GA12 or GA53

to GA9 or GA20 through three sequential oxidations, therefore representing one of the key enzymes
controlling GA biosynthetic flux [18]. Suppression of GA20ox genes reduces endogenous active GA
content and produces dwarfism in many species [17,19,20]. On the other hand, the main route for
GA deactivation is through 2β-hydroxylation catalysed by 2-oxyglutarate dependent GA2-oxidases
(GA2ox), leading to formation of biologically inactive GAs [17]. Overexpression of GA2ox genes therefore
enhances GA deactivation and produces dwarf phenotype [16,21]. In parallel with the direct regulation
of endogenous GA concentration mediated by GA biosynthetic and catabolic genes, GA signalling is
regulated by the negative regulators, DELLA proteins [22]. DELLA proteins are characterized by a
highly conserved N-terminal DELLA domain essential for GA-induced proteolysis [23]. Binding of GA
molecule to its receptor, GA-INSENSITIVE DWARF1 (GID1) results in rapid degradation of DELLA
proteins via the ubiquitin-proteasome pathway, as a result, it releases the DELLA repression of GA
responses [23,24]. Mutants with over-accumulated DELLA display dwarf phenotype [23,25]. In plants,
GA20-oxidase and GA2-oxidase are encoded by gene families [17], and DELLAs in dicot species are
encoded by small gene families of various sizes [23]. While the overlap expression pattern suggests
functional redundancy, the tissue-specific expression patterns among family members of GA2-orxidase
genes in both poplar [26] and Arabidopsis [27] reflect specialised and functional divergence in their
relative contribution to GA metabolism and signalling in a subset of organs.

Three predicted functional GA20-oxidases genes were isolated in breadfruit (Artocarpus altilis
cv. Cannonball), with two genes, AaGA20ox1 and AaGA20ox3, predominantly expressed in green
vegetative organs [28]. A cohort of four GA2-oxidase genes, AaGA2ox1–AaGA2ox4, was also cloned in
the same cultivar, with three highly expressed in vegetative organs [29]. There are two DELLA genes,
AaDELLA1 and AaDELLA2, isolated in “Mason” breadfruit species [30]. However, the lack of dwarf
varieties and the scarcity of dwarfing rootstocks for breadfruits has limited our understanding of how
vegetative growth is controlled by rootstocks in the species and any potential role of these genes in
conferring breadfruit dwarfism.

Our current work focused on the involvement of GA in the scion stem elongation of breadfruits
growing on marang rootstocks in relation to dwarf phenotype. We investigated GA response and
the expression of GA biosynthetic and catabolic genes together with DELLA protein abundance
and transcript levels in breadfruit scion stems in the period from 18 to 24 months after grafting.
Our evidence suggests that GA deficiency may form a component in breadfruit dwarfing mechanism
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induced by marang rootstocks. The current work provided insight into the molecular mechanism
modulating dwarfing in breadfruit through interspecific rootstocks.

2. Results

2.1. Effect of Rootstocks on Stem Elongation of Breadfruit Scions

Plants 20 months old after grafting were used for stem elongation analysis. The measurement
was started from the emergence of an internode until the cessation of extension in the same segment.
Significantly shorter internodes were observed in breadfruit plants growing on marang rootstocks,
with 79.8% reduction in final internode length compared to those on self-grafts (Figure 1a). As a result,
breadfruit plants on marang rootstocks displayed short stature with height reduction by 52.0% at
12 months and by 59.6% at 24 months after grafting (Figure 1b,c). There was no significant difference
in both internode length and final plant height between the self-grafts and the non-graft (Figure 1).
The results were consistent with previous growth observation in the 18-month period after grafting [6].Plants 2020, 9, x 4 of 14 

 

 

Figure 1. Effect of rootstocks on stem elongation of breadfruit scions: (a) Internode elongation in 
breadfruit scions. Internodes were examined on grafted plants of 20 month olds (after grafting) with 
measurement initiated from the emergence of the internode under the terminal buds (week 0). (b) 
Height of scion stem growing on different rootstocks. (c) Representatives of breadfruit plants growing 
on different rootstocks at 24 months after grafting. BM, breadfruit plants on marang rootstocks. All 
values represent mean ± SE from five biological replicates (* p < 0.05). 

  

Figure 1. Effect of rootstocks on stem elongation of breadfruit scions: (a) Internode elongation in
breadfruit scions. Internodes were examined on grafted plants of 20 month olds (after grafting) with
measurement initiated from the emergence of the internode under the terminal buds (week 0). (b) Height
of scion stem growing on different rootstocks. (c) Representatives of breadfruit plants growing on
different rootstocks at 24 months after grafting. BM, breadfruit plants on marang rootstocks. All values
represent mean ± SE from five biological replicates (* p < 0.05).

2.2. Effect of Rootstocks on the Expression of GA Metabolic Genes

Six GA20-oxidase genes, AaGA20ox1–AaGA20ox6, were previously isolated in breadfruits,
with three, AaGA20ox1–AaGA20ox3, predicted to encode functional GA20-oxidase and the other
three, AaGA20ox4–AaGA20ox6, predicted to be unprocessed pseudogenes [28]. The expression of
the three AaGA20oxs, AaGA20ox1–AaGA20ox3, were measured in scion stems, but only two genes,
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AaGA20ox1 and AaGA20ox3, showed expression in the current experiment condition. Similarly, of the
four GA2ox genes previously identified in breadfruit [29], only two genes, AaGA2ox1 and AaGA2ox2,
were detected in scion stem tissues under the current growth condition. All the detectable genes were
analysed monthly in the period from 18 to 24 months after grafting. It was shown that the overall
expression levels of AaGA20ox3 were over 1000 times higher than those of AaGA20ox1 and that the
expression levels of AaGA2ox1 were over 10 times higher than those of AaGA2ox2 for all samples
(Figure 2a–c). Over the six month period, scion stems on marang rootstocks showed no significant
change in transcript levels of AaGA20ox1 but showed decreased transcript levels of AaGA20ox1 at
serval time points, including 20, 21, 23, and 24 months after grafting when compared to those on
self-grafts and non-grafts (Figure 2a,b). There was no significance difference between the self-graft and
non-graft in the expression of these two genes (Figure 2a,b). For GA2-oxidase genes, higher levels of
expression were detected every month from 18 to 24 months except for the 19-month time point for
AaGA2ox1, but no significant change for AaGA2ox2 compared to those on self-grafts and non-graft was
observed (Figure 2c,d). For both AaGA2ox1 and AaGA2ox2, the expression levels of the self-graft and
non-graft were not significantly different (Figure 2c,d).Plants 2020, 9, x 5 of 14 

 

 
Figure 2. Effect of rootstocks on the expression of gibberellin (GA) biosynthetic genes, AaGA20ox1 and 
AaGA20ox3, and GA catabolic genes, AaGA2ox1 and AaGA2ox2, in breadfruit scion stems: Expression level 
of each transcript was normalized to the expression of the actin gene. BM, breadfruit plants growing on 
marang rootstocks. All values represent mean ± SE from five separate RNA extractions (* p < 0.05). (a) 
AaGA20ox1; (b) AaGA20ox3; (c) AaGA2ox1 and (d) AaGA2ox2. 

2.3. Effect of Rootstocks on DELLA Protein Abundance and Transcript Levels 
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breadfruit [30]. To confirm that the two genes or potentially more DELLA genes were present in 
stems of “Gold Noli” breadfruit, DELLA genes were first cloned from “Gold Noli” breadfruit by 
degenerate PCR using primers corresponding to two conserved regions of all known DELLAs, 
MDELLA(V/A) and AHFTANQA [23]. An expected fragment of 700 bp was amplified, and 40 
degenerate PCR clones were sequenced. Only two distinct groups of cDNA clones were identified 
with one aligned to AaDELLA1 and the other aligned to AaDELLA2. Both alignments had 100% 
similarity to the previous AaDELLAs. Full lengths of the two DELLA genes were then isolated using 
primers corresponding to the 5’ and 3’ end of the AaDELLA1 and AaDELLA2 genes. Sequencing of 
the resulting full-length cDNA clones confirmed that “Mason” breadfruit had two DELLA genes, one 
identical to AaDELLA1 and the other identical to AaDELLA2 at the nucleic acid level. 

To measure the DELLA protein abundance, a polyclonal anti-AaDELLA was raised which 
targeted the highly conserved region of AaDELLA1 and AaDELLA2 (see Materials and Methods). 
DELLA protein abundance was examined in scion stems growing on different rootstocks every 3 
months in the period of 18 to 24 months after grafting. Compared to the self-graft and non-graft at 
the corresponding times, levels of immunologically detectable DELLA were obviously higher in scion 
stems grafted on marang rootstocks, indicating an increase in the accumulation of DELLA proteins 
at all the tested time points (Figure 3). The transcript levels of AaDELLA1 and AaDELLA2 were further 

Figure 2. Effect of rootstocks on the expression of gibberellin (GA) biosynthetic genes, AaGA20ox1 and
AaGA20ox3, and GA catabolic genes, AaGA2ox1 and AaGA2ox2, in breadfruit scion stems: Expression
level of each transcript was normalized to the expression of the actin gene. BM, breadfruit plants
growing on marang rootstocks. All values represent mean ± SE from five separate RNA extractions
(* p < 0.05). (a) AaGA20ox1; (b) AaGA20ox3; (c) AaGA2ox1 and (d) AaGA2ox2.

2.3. Effect of Rootstocks on DELLA Protein Abundance and Transcript Levels

Two DELLA genes, AaDELLA1 and AaDELLA2, were previously cloned from “Mason”
breadfruit [30]. To confirm that the two genes or potentially more DELLA genes were present in stems
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of “Gold Noli” breadfruit, DELLA genes were first cloned from “Gold Noli” breadfruit by degenerate
PCR using primers corresponding to two conserved regions of all known DELLAs, MDELLA(V/A) and
AHFTANQA [23]. An expected fragment of 700 bp was amplified, and 40 degenerate PCR clones were
sequenced. Only two distinct groups of cDNA clones were identified with one aligned to AaDELLA1
and the other aligned to AaDELLA2. Both alignments had 100% similarity to the previous AaDELLAs.
Full lengths of the two DELLA genes were then isolated using primers corresponding to the 5’ and 3’
end of the AaDELLA1 and AaDELLA2 genes. Sequencing of the resulting full-length cDNA clones
confirmed that “Mason” breadfruit had two DELLA genes, one identical to AaDELLA1 and the other
identical to AaDELLA2 at the nucleic acid level.

To measure the DELLA protein abundance, a polyclonal anti-AaDELLA was raised which
targeted the highly conserved region of AaDELLA1 and AaDELLA2 (see Materials and Methods).
DELLA protein abundance was examined in scion stems growing on different rootstocks every
3 months in the period of 18 to 24 months after grafting. Compared to the self-graft and non-graft at
the corresponding times, levels of immunologically detectable DELLA were obviously higher in scion
stems grafted on marang rootstocks, indicating an increase in the accumulation of DELLA proteins at
all the tested time points (Figure 3). The transcript levels of AaDELLA1 and AaDELLA2 were further
analysed in scion stems growing on different rootstocks. When compared to those on the self-graft and
non-graft over the 6-month period, scion stems on marang rootstocks were found to have increases
in the expression of AaDELLA1 at three time points, including 18, 21, and 24 months, but to have
relatively stable expression of AaDELLA2 (Figure 4). The expression levels between the self-graft and
the non-graft were not significantly different for both genes (Figure 4).
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Figure 3. Analyses of DELLA protein abundance in breadfruit scion stems on different rootstocks:
Total proteins were extracted from scion stems at 18, 21, and 24 months after grafting. DELLA protein
abundance was determined by Western blotting with affinity-purified polyclonal anti-AaDELLA.
A representative immunoblot of DELLA protein with actin as a loading control is shown on top of the
histogram showing the ratio of the band intensity of the DELLA to that of the corresponding actin.
BM, breadfruit plants grafted on marang rootstocks. Vertical bars represent mean ± SE derived from
three biological replicates.
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Figure 4. Effect of rootstocks on the expression of DELLA genes, AaDELLA1 and AaDELLA2, in breadfruit
scion stems: Expression level of each transcript was normalized to the expression level of the actin
gene. BM, breadfruit plants growing on marang rootstocks. All values represent mean ± SE from five
separate RNA extractions (* p < 0.05). (a) AaDELLA1; (b) AaDELLA2.

2.4. Restoration of Stem Elongation by GA Treatment

To confirm that the rootstock-induced short stature is due to GA deficiency, breadfruit plants
growing on marang rootstocks were sprayed with GA3. For GA treatment, the plants were 18 months
old (after grafting) with a single stem, characterised by the main active stem elongation from the
terminal buds and minimal growth at the lower part of the stems. Following GA application, it was
shown that their stem elongation rate was significantly increased, with 7.5-fold higher in the second
month and 6.4-fold higher in the third month compared to those of the untreated plants on marang
rootstocks at the same time (Figure 5a). By the 3rd month after exogenous GA application, the stem
elongation rate was fully restored to normal with no significant difference to those on self-graft
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(Figure 5a). Furthermore, the internode length was increased by 2.2-fold after 3 months following GA
treatment (Figure 5) and was also restored to nearly normal compared to those on self-graft (Figure 5b).
There was no significant change in the number of internodes and the stem thickness within the four
months after GA3 treatment.
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Figure 5. Rescue of scion stem elongation by exogenous GA3 application in breadfruit plants on
marang rootstocks: Comparison of stem elongation rate (a) and internode length (b) in GA3-treated
and non-treated plants. Representatives of grafted plants displaying different scion stem internodes:
(c) Untreated breadfruit scions on breadfruit rootstock (self-graft), (d) untreated breadfruit scions on
marang rootstock, and (e) GA3-treated breadfruit scions on marang rootstock. The stem internode
length was the averaged measurement of the second internodes at the third month after GA3 treatment.
BM, breadfruit plants growing on marang rootstocks. All values represent mean ± SE from three
biological replicates, with ** significant difference (p < 0.05) from the rest of the samples (non-graft and
self-graft) and * significant difference from the non-graft only.
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3. Discussion

Breadfruit plants growing on marang rootstocks were characterised by dwarf stature with ~60%
reduction in total plant height and ~80% reduction in the length of internodes at the end of 24 months
after grafting (Figure 1), consistent with the previous observation in the first 18-month period [6].
The phenotypes resemble the typical signs of GA deficiency [21,31]. The expression of GA biosynthetic
genes and catabolic genes in scion stems growing on different rootstocks was compared over the period
from 18 to 24 months after grafting. Of the two GA20ox genes expressed in stems, the predominant
gene, AaGA20ox3, showed significantly reduced levels of expression several times during the six-month
period (Figure 2). These suggest that the capacity of GA biosynthesis in scions of marang rootstocks
may be affected by the reduced expression of the AaGA20ox3 gene during the period. Our results
are in agreement with another study, where downregulation of the GA biosynthetic genes was found
in scions gowning on dwarfing apple rootstocks of both M.9 and M.27 [14]. Suppression of GA20ox
expression has been shown to produce plants with dwarf stature as a result of reduced endogenous
GA contents in many species, inducing Arabidopsis, potato, tobacco, [17], apple trees [19], and citrus
trees [20]. These suggest that downregulation of AaGA20ox3 may contribute to the dwarf phenotype
of breadfruit plants grafted on marang rootstocks. Of the two GA catabolic genes, AaGA2ox1 and
AaGA2ox2, a more consistent increase in the transcript levels of the major gene, AaGA2ox1, in the
period suggests an upregulation of GA deactivation in scion stems on marang rootstocks in this period
(Figure 2). Upregulation of a GA2ox gene accompanying a decreased GA level was previously reported
in scions of persimmon trees grafted on dwarfing interstocks [15]. Overexpression of GA2ox enhances
GA deactivation and produces dwarf phenotype in many species [16,17,21]. These results suggest
that upregulation of the main GA catabolic gene, AaGA2ox1, may contribute to the rootstock-induced
dwarf phenotype in breadfruit plants over the period from 18 to 24 months after grafting.

The combination of upregulation of a GA biosynthetic gene and downregulation of a GA catabolic
gene suggests a decrease in GA signals in scion stems growing on marang rootstocks. In support of this
hypothesis, an increase in the accumulation of DELLA proteins (GA-signalling repressors) was found in
scion stems on marang rootstocks (Figure 3). Various evidences have previously indicated that dwarfing
rootstocks reduce GA concentration in scions [9–11]; the change of DELLA protein abundance has
rarely been reported. This work provides insight into the functional significance of the GA deficiency in
relation to the repression of GA response. In plants, DELLA proteins are rapidly degraded in response
to GA via the ubiquitin proteasome pathway [23,24]; an increased DELLA protein abundance therefore
reflects an increased repression of GA response in scions grafted on marang rootstocks. DELLA proteins
act as negative regulators of plant growth [23]. Plants carrying over-accumulated DELLA display dwarf
phenotype [25,32,33]. DELLAs also interact with multiple transcription factors and key regulators of
other pathways through direct protein–protein interactions [22]. These include integrating GA with
brassinosteroid, ethylene, jasmonate, abscisic acid, and auxin signalling pathways [22,34–36]. Some of
these signal pathways have long been proposed to be implicated in rootstock-induced dwarfism of other
species [4]. In this context, the role of GA and its interaction with other growth regulators in regulating
the dwarf traits of breadfruit on marang rootstocks deserves further investigation. Collectively,
our results suggest that an increased repression of GA response contribute to the dwarf phenotype
in breadfruit plants growing on marang rootstocks. These may be due to reduced GA signals as a
result of the downregulation of GA biosynthesis and/or upregulation of GA deactivation. On the other
hand, the increase in DELLA protein levels was reflected by the increased transcript levels of a DELLA
gene, AaDELLA1, at all three occasions (Figure 4), suggesting that AaDELLA1 may be regulated at the
transcription level. While most previous work has demonstrated the posttranscriptional regulation of
DELLA protein [22,23], the transcriptional regulation of DELLA in response to various environmental
signals has also been reported [35,37]. Upregulation of a DELLA gene was found in scions growing on
persimmon dwarfing interstocks. In this context, it may be possible that transcriptional regulation of
the AaDELLA1 plays a coordinative role in regulating GA response, thus contributing to the mechanism
of rootstock-induced dwarfism in breadfruit plants.
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Stem elongation of scions on marang rootstocks was restored to near normal by exogenous GA
application as determined by both the stem elongation rate and stem internode length (Figure 5).
The results provide evidence that GA deficiency may play a role in rootstock-induced dwarfing
of breadfruit plants and support the association of scion GA metabolism genes and signalling
genes, including AaGA20ox3, AaGA2ox1, and AaDELLA1, with the development of dwarf phenotype
in breadfruit plants. The combined expression profiles of these genes therefore may represent
potential markers for breadfruit dwarfing. Breadfruit tree height can be controlled though the
use of the GA inhibitor paclobutrazol [29]. For woody species, this generally involves a long-term,
repeated application of the chemicals in order to achieve effective tree-size reduction. Our current
work may provide an opportunity to develop various size-controlling rootstocks through fast
screening of GA-related gene markers in scions, leading to environmentally sustainable solutions for
breadfruit dwarfing.

In the current study, we focused on stem elongation as a key phenotype in breadfruit plants
on marang rootstocks. However, the rootstock-induced dwarf traits in breadfruits involve other
morphological and biochemical components [6] which are not examined in the current experiment.
Future characterisation of the roles of GA and other hormones/factors in these dwarf traits is required
for the unravelling of the molecular mechanism underlying rootstock-induced breadfruit dwarfing.
GA is also produced in roots [18], although the majority of the studies have suggested that GA
precursors rather than active GA are involved in long-distance transport [38]. Previously, dwarfing
apple rootstocks were shown to limit the root-produced GA precursor, GA19, to scions [9–11]. While our
study suggests a reduction of GA response in scion stems as determined by the increase of DELLA
protein abundance, the nature of root-derived GAs and their contribution to the GA response in
scion stems need further investigation. On the other hand, phloem transport of DELLA mRNA from
rootstocks to scions has been reported [39]. The possibility of marang DELLA gene transfer to breadfruit
scions cannot be ruled out. The sequence of marang DELLA gene is not available, but it is possible that
the polyclonal anti-DELLA in the current study also binds marang-derived DELLAs, given that the
target region shares high homology to DELLA sequences of other species (NCBI BLAST search).

In conclusion, breadfruit scion stems growing on marang rootstocks displayed decreased
expression of a major GA biosynthetic gene, AaGA20ox3, at several times over the 6-month period from
18 to 24 months after grafting, and had persistently higher expression of a major GA catabolic gene,
AaGA2ox1. Increased DELLA protein abundance was shown in scion stems on marang rootstocks
together with an increase in the expression of a DELLA gene, AaDELLA1. Exogenous GA treatment
was able to restore the stem elongation rate and the internode length of scions growing on the
dwarfing rootstocks.

4. Materials and Methods

4.1. Plant Materials and Treatments

Breadfruit (Artocarpus altilis cv. Cannonball, also called “Noli Gold”) and marang
(Artocarpus odoratissimus) plants were obtained from a commercial nursery at Cairns, northern
Queensland. Breadfruit plants as rooted cuttings and marang plants as seedlings were grown under
glasshouse condition at 25 to 28 ◦C with natural daylight and daily water supply. Plants were grown
in pots containing vermiculite and soil mixture as described previously [29]. Breadfruit scions selected
from breadfruit plants 30 to 50 cm tall were grafted onto marang seedlings of similar sizes through
approach grafting [40]. As a control, the breadfruit scions were also grafted onto breadfruit rootstocks
of the same cultivar (self-graft). There were at least eight replicates for each grafting combination.
Each established grafted plant was transferred to an 85-Litre pot six months after grafting and continued
to grow under the same condition. The self-rooted breadfruit plants (non-graft) were grown alongside
under the same condition. Plants were monitored for total height and stem elongation within the
24 months after grafting. Plants on marang rootstocks 18 months after grafting were used for GA
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treatment. For GA experiment, both foliage and soil surface were sprayed with 500 mg L−1 GA3

(Sigma, Sydney, NSW, Australia, dissolved in 0.1% ethanol, 0.1% Triton X-100). The bioactive form GA3

was chosen according to the previous experiment, showing a fast positive response to the chemical in
stem growth of breadfruit trees [29]. Plants sprayed with the same concentration of ethanol and Triton
X-100 were used for control. The treatment was applied once a week for 3 weeks. Three replicates
were used for each treatment and control. Plants were monitored for stem elongation, and internode
length in the second internode was counted from the top, with the first internode being defined as the
one below the uppermost leaf.

4.2. Quantitative Real-Time PCR

Upon removal from plants, stem tissues (including epidermis, vascular tissues, and pith) in
the second internodes were immediately immersed in RNAlater (Life Technologies, VIC, Australia)
before stored at −80 ◦C. Total RNA was extracted by using RNeasy kit (Qiagen, VIC, Australia)
and reverse transcribed with SuperScript reverse transcriptase and oligo(dT) (Life Technologies,
VIC, Australia). Real-time PCR was performed on a Corbett Research Rotor-Gene 6000 cycler
with the QuantiFast SYBR Green PCR Kit (Qiagen, VIC, Australia) as previously described [29].
Thermocycling was initiated with a 5-min incubation at 95 ◦C, followed by 40 cycles (95 ◦C
for 10 s; 60 ◦C for 30 s). The specificity of amplification was confirmed by high-resolution melt
curve analysis at the end of each run. The efficiency of each primer set was evaluated by standard
curves using serial dilutions of plasmid DNA containing its amplified regions. Each reaction was
carried out in duplicate (technical repeat) with non-reverse-transcribed cDNA (RT−) as negative
controls (non-template control). Transcripts of AaGA20oxs and AaGA2oxs were amplified using
their gene-specific primers as previously described [28,29]. Gene-specific primers were 5′-GAA
AAA GATCAGAAGAAGAAGAATCATCATG-3′ and 5′-CCC AAA ACG GCC AGG AGCTCG-3′

for AaDELLA2 for AaDELLA1 and 5′-CAT CAG AAG AAGAAT CAT GAA AAG GGA AC-3′ and
5′-CAT GTC GGATGA CCT GAC CTT GTA G-3′ for AaDELLA2. Two housekeeping genes, actin and
elongation factor 1-α (AaEFα-1) were tested for stability across the time points according to a previous
protocol [41]. The actin gene was amplified using primers 5’-AATGGAACTGGAATGGTGAAG
GC-3’ and 5’-TGCCAGATCTTCTCCATGTCATCC-3’, and the AaEFα-1 was amplified using primer
5’-GAAGCTCTTCGTCAAGAGAA-3’ and 5’-GAAATCTCTTGAAGTAACCATC-3’. The specificity of
the primers was confirmed by amplicon sequencing. The actin gene, a more stable housekeeping gene
compared to the elongation factor 1-α gene, was chosen to normalize to the expression of transcript
abundance. The expression of each gene was an average of five biological replicates.

4.3. Cloning of DELLA cDNAs from “Gold Noli” Breadfruit

Total RNA was extracted from stem tissues of breadfruit plants by using RNeasy kit RNeasy
kit (Qiagen, VIC, Australia) and reverse transcribed with reverse transcriptase and oligo(dT)
(Life Technologies, VIC, Australia). The resulting cDNA was subjected to degenerate PCR using primers
5′-ATGGAYGARYTIYTIGCNG-3′ and 5′-GCNCAYTTYACNGCNAAYCARGCN-3′ as previously
described [30]. The PCR reactions were performed at 35 cycles with annealing temperature at 52 ◦C.
The PCR products were cloned into pGEMT vector (Promega, NSW, Australia) and sequenced.
Full-length cDNA clones of AaDELLA genes were amplified with Advantage DNA polymerase (Takara
Clontech, CA, USA). The thermocycling was initiated with a 2-min incubation at 92 ◦C, followed by 32 cycles
(92 ◦C for 30 s and 68 ◦C for 2 min) and a final extension of 7 min at 68 ◦C. The gene-specific primers were
5′-GAAAAAGATCAGAAGAAGAAGAATCATCATG-3′ and 5′-GACCCGACTTAGCGAGCCACAG-3′

for AaDELLA1 and were 5′-GTGTTTGAGGAAAAAGAGGGCCTGTG-3′ and 5′-GGGTCCGGCCCGA
CTCAGAG-3′ for AaDELLA2. These primers were designed from the sequence information of AaDELLA
genes isolated from the “Mason” breadfruit [30]. PCR products were cloned into pGEMT vector and
sequenced as above. The resulting sequences were analysed by Sequencher (version 5.4.1, Gene Codes
Corporation, Ann Arbor, MI, USA).
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4.4. Western Blotting

The highly conserved sequence of AaDELLA1 and AaDELLA2 [30] between residues 37 and
59 (KMWEEDDGGMDELLAVLGYKVR) was synthesized, and the resulting peptide was used to
raise antibodies in a rabbit (Mimotopes, Melbourne, Australia). Polyclonal anti-AaDELLA was
purified by affinity chromatography. The titres of the affinity-purified antibodies were determined
by enzyme-linked immunosorbent assay (ELISA). Proteins were extracted from the full stem
tissues in the second internodes of scions according to the method previously described [42],
and protein concentration was determined by a bicinchoninic acid protein assay (Sydney, NSW,
Australia). The protein extracts were resolved on 10% SDS-PAGE gels (20 µg protein per lane) and
electroblotted onto nitrocellulose membranes followed by immuno-detection [43]. Blots were probed
with pre-immune serum as negative controls. Colour development was performed using an alkaline
phosphatase-conjugated secondary antibody with Western blue (Promega, NSW, Australia). Each blot
was first probed with polyclonal anti-AaDELLA; then stripped with 0.2 N glycine, pH 2.5; and re-probed
with anti-actin (Sydney, NSW, Australia). The ratio of the band intensity of the DELLA to that of
the corresponding actin was analysed by Quantity One 1-D analysis software in the Gel Doc system
(BioRad, NSW, Australia).

4.5. Statistical Analyses

Significant differences were tested using analysis of variance (ANOVA) followed by Tukey’s
multiple comparison test at p < 0.05 (IBM SPSS Statistics version 24).
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