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Perinatal exposure to smoking has been associated with childhood asthma, one of the
most common pediatric conditions affecting millions of children globally. Of great interest,
this disease phenotype appears heritable as it can persist across multiple generations
even in the absence of persistent exposure to smoking in subsequent generations.
Although the molecular mechanisms underlying childhood asthma induced by perinatal
exposure to smoking or nicotine remain elusive, an epigenetic mechanism has been
proposed, which is supported by the data from our earlier analyses on germline DNA
methylation (5mC) and histone marks (H3 and H4 acetylation). To further investigate the
potential epigenetic inheritance of childhood asthma induced by perinatal nicotine
exposure, we profiled both large and small RNAs in the sperm of F1 male rats. Our
data revealed that perinatal exposure to nicotine leads to alterations in the profiles of
sperm-borne RNAs, including mRNAs and small RNAs, and that rosiglitazone, a PPARg
agonist, can attenuate the effect of nicotine and reverse the sperm-borne RNA profiles of
F1 male rats to close to placebo control levels.

Keywords: asthma, nicotine, smoking, lung, epigenetic inheritance, small RNA, large noncoding RNA
INTRODUCTION

Asthma is one of the most common childhood diseases with an increasing prevalence over the past
decades (1, 2). Among a multitude of potential causes, perinatal exposure to smoking has been
associated with childhood asthma and a lifelong decrease in pulmonary functions in both humans
and animal models (3, 4). In general, exposure to smoke constituents in utero and/or during early
postnatal development has been regarded as the primary cause as it is well-established that the
chemicals released from smoking, especially nicotine, adversely affect the developing lung,
rendering increased susceptibility to childhood asthma (5–9). Interestingly, we and others have
shown that childhood asthma induced by perinatal exposure to nicotine can be transmitted across
multiple generations even in the absence of the same exposure (10–14). This finding is of great
interest and significance because it suggests that perinatal exposure to smoking/nicotine not only
causes asthma in the immediate offspring but also results in changes in their germline, leading to the
transgenerational inheritance of childhood asthma.

Given that the childhood asthma induced by perinatal exposure to nicotine arises in one
generation and the distribution of this disease phenotype in subsequent generations never follows
Mendel’s Law (11–14), it is highly unlikely that the asthma phenotype results from genetic
n.org May 2022 | Volume 13 | Article 8938631
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muta t ions caused by n ico t ine exposure . Ins t ead ,
transgenerational inheritance of the phenotype is most
probably mediated by an epigenetic mechanism. Both inter-
and trans-generational epigenetic inheritance of disease
phenotypes induced by exposure to environmental chemicals,
over-or under-nutrition (e.g., high-fat diet (HFD) or starvation),
or traumatic stress has been convincingly demonstrated at least
in animal models (15–17). However, the underlying molecular
mechanisms remain elusive. Since mammals reproduce sexually,
the epigenetic codes that induce the acquired traits must lie in the
gametes, sperm, and eggs. Indeed, epimutations, including
changes in sperm DNA methylome (e.g., 5mC), histone
modifications, and small RNA profiles, have been associated
with various acquired traits in both human and animal models
(18, 19). However, the causative relationship between specific
epimutations (e.g., altered DNA methylation or histone marks)
and specific phenotypes has not been established. Interestingly,
several studies have shown that sperm total or small RNAs from
male mice with an epigenetic phenotype (e.g., metabolic
disorders induced by HFD and the whitetail tips caused by Kit
paramutation), seem capable of inducing a similar phenotype in
offspring derived from zygotes injected with either total or small
RNAs isolated from the sperm, suggesting that sperm RNAs may
function as the epigenetic codes responsible for the paternal
transmission of certain acquired traits (19–21). Our previous
studies have shown that the sperm 5mC profiles and histone
marks are altered in the male rats with perinatal exposure to
nicotine (11, 22). Given that both DNA methylation and histone
marks in sperm are largely established during testicular
development and spermatogenesis (23, 24), it is plausible to
hypothesize that both large and small sperm-borne RNAs may
also be altered in the male rats of our perinatal nicotine
rat models.

Here, we report that indeed, both mRNA and small RNA
transcriptomes were altered in the sperm of F1 male offspring of
F0 dams with the perinatal treatment of nicotine. Consistent with
our earlier reports (25, 26), we also found that a PPARg agonist
could attenuate the effects of perinatal exposure to nicotine on
sperm RNA profiles in the F1 male offspring.
MATERIALS AND METHODS

The Perinatal Nicotine Exposure
Rat Model
The perinatal nicotine exposure rat model used in this study was
established as described previously (12, 22, 27, 28). Briefly, time
of mating-matched, first-time pregnant, pair-fed adult (2 months
of age) Sprague Dawley rat dams (F0) with bodyweight between
200-250 g received either placebo (saline, n = 3), nicotine (1 mg/
kg, subcutaneously, n = 3), or nicotine (1 mg/kg, subcutaneously)
plus rosiglitazone (RGZ) (3 mg/kg, intraperitoneally, n = 3) in
100 mL volumes once daily from embryonic day 6 (E6) of
gestation to postnatal day 21 (PND21). The dose of nicotine
used (1 mg/kg/day) is within the range of nicotine exposure in
moderately heavy smokers (29–31). At this dose, the pulmonary
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structural, molecular, and functional changes that we observed in
the rat model used are similar to those demonstrated in
numerous other perinatal nicotine and smoke exposure models
(12, 27, 32–35). Animals were maintained in a 12h-light and
12h-dark cycle, pair-fed according to the previous day’s food
consumption by the nicotine-treated group and were allowed
free access to water. Following spontaneous delivery at term, the
F1 pups were allowed to breastfeed ad libitum. At PND21, pups
were weaned and maintained in separate cages. At PND60, males
[n = 3 (from 3 separate litters) for each group] were euthanized
by pentobarbital overdose injected intraperitoneally, followed by
epididymis collections as quickly as possible. The epididymides
were kept in ice-cold F12 culture medium until sperm isolation
within 1-2 hours of the collection, as outlined below. All animal
procedures were performed following the National Institutes of
Health guidelines for the care and use of laboratory animals and
approved by the Institutional Animal Care and Use Committee
at The Lundquist Institute for Biomedical Innovation at Harbor-
UCLA Medical Center.

Collection and Purification of Sperm Cells
At culling, each epididymis was isolated by cutting the vas
deferens and muscle connections with the testis. After
trimming the surrounding connective tissue, the two
epididymides from each animal were placed in a tissue culture
plate containing 3 mL of HTF culture medium (Sigma,
EmbryoMax® Human Tubal Fluid (HTF) (1X), Cat No. MR-
070-D) on ice. The spermatozoa were released into the culture
media by making 6-8 small cuts to each epididymis with a sharp
blade, and the plates were placed in a culture incubator at 37°C
for 30 minutes. Following incubation, the medium containing
spermatozoa was filtered through a cell strainer (Genesee
Scientific, 70 mm Advanced Cell Strainers, Cat No. 25-376) to
a 50 mL conical tube, and the filtrate was divided into four 1.5
mL micro-centrifuge tubes. The tubes were centrifuged at
1000×g for 5 minutes, supernatants discarded, and 1 mL lysis
buffer (0.05% SDS and 0.005% Triton X-100 in distilled water)
added to each tube to gently suspend the pellet. The tubes were
kept on ice for 5 minutes to lyse and remove the somatic cell
contamination. After confirming the purity of isolated sperms
microscopically, the samples were centrifuged at 3000×g for 5
minutes. The supernatants were discarded, and each pellet gently
suspended in 1 mL ice-cold PBS. The suspensions from two tubes
were pooled and centrifuged at 3000×g for 5 minutes. The
supernatants were discarded, and pellets stored at -80°C until
RNA isolation and establishment of cDNA library.

Total RNA Extraction
Sperm samples were pooled (n = 3 mice/biological replicate) and
subjected to RNA extraction for RNA-seq, as described below.
RNA was extracted from cells according to the manufacturer’s
instructions using the mirVana miRNA Isolation Kit
(ThermoFisher, Cat No. AM1560). The Qubit RNA High
Sensitivity Assay Kit (Invitrogen, Cat No. Q32855) was used to
quantify the extracted RNA and measured on the Qubit 2.0
Fluorometer (Invitrogen).
May 2022 | Volume 13 | Article 893863

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wang et al. Nicotine Affects Sperm RNA Profiles
Large RNA Libraries Construction
Large RNA libraries were constructed using KAPA Stranded
RNA-seq Kit with RiboErase (Roche, Cat No. KK8484)
according to the manufacturer’s instructions, as described
previously (36), and sequenced using HiSeq 2500 system for
paired-end 50 bp sequencing.

Large RNA-Seq Data Analysis
The following workflow was used in bioinformatic analyses of
the RNA-seq data: QC check (fastQC) ➔ alignment (Hisat2) ➔
featureCounts (subread) ➔ Differential gene expression analysis
(DESeq2) ➔ Pathway Enrichment, GO analysis (Bioconductor
clusterProfiler). To ensure the quality of RNA-seq data, fastq files
were subjected to fastQC (37) to check their quality and changes
after adaptor and quality trim. MultiQC (38) was then utilized to
analyze and integrate the QC reports (Figure S1). HISAT2 was
used to perform alignment (39). Each sample yielded a bam file
after being aligned to the genome. Feature counts from each bam
file that map to the genomic features in the provided annotation
file was realized by subread function (40). DESeq2 was used to
analyze the gene differential expression (41). Markers/genes with
the sum of reading count across all cases and controls at 10 or
greater were kept for further analyses. To interpret the
expression data, a universal enrichment tool named
“clusterProfiler” was applied to infer gene set enrichment (42).

Annotation of lncRNAs From Large
RNA-Seq Data
LncRNAinformationwasfirstobtainedwithgenesymbolsbymerging two
Ensembl releases (release-105 Rattus_norvegicus.mRatBN7.2.ncRNA.fa.gz
and release-104 Rattus_norvegicus.Rnor_6.0.104.gtf.gz). The gene symbols
were then used in differential expression analyses as keywords to search in
Ensemble toobtain the lncRNAinformation that canbe annotated. Finally,
those two are combined to obtain all the lncRNA gene symbols. The
extracted padj of these lncRNAs weremuch larger than 0.05.

Small RNA Libraries Construction
Small RNA libraries were constructed using NEBNext® Small
RNA Library Prep Set for Illumina® (Multiplex Compatible)
(NEB, Cat No. E7330L) according to the manufacturer’s
instructions, as described previously (43), and sequenced using
HiSeq 2500 system for single-end 50 bp sequencing.

Small RNA-Seq Data Analysis
Cutadapt (44) was used to remove adaptors and trim low quality
reads (q > 20). The fastq files after QC filter were used to run the
AASRA pipeline using default parameters (45). Eight small
species, incuding miRNA, tRNA, piRNA, rRNA, snRNA,
snoRNA, Mt_rRNA and Mt_tRNA, were annotated. The
subsequent analyses using Featurecounts and DESeq2 were
performed the same as large RNA-Seq. TargetScan was used to
identify potential miRNA targets, the candidate target genes were
used for gene ontology (GO) enrichment analyses
using “clusterProfiler”.
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qPCR Analysis
cDNAs for large and small RNA were prepared as previously
described (43). Briefly, large RNAs were reverse transcribed to
cDNAs using SuperScriptTM II Reverse Transcriptase (Thermo
Fisher Scientific, Cat No. 18064014). Then qPCR analyses for
large RNA were conducted using Fast SYBR® Green Master Mix
(Thermo Fisher Scientific, Cat No. 4385616). Gapdh was used for
large RNA expression normalization. Small RNAs were poly(A)
tailed using E. coli Poly(A) Polymerase (NEB, Cat No. M0276L)
followed by reverse transcription with LD_CDS primer using
SuperScript™ II Reverse Transcriptase. qPCR analyses for small
RNA were then performed using TaqMan™ Gene Expression
Master Mix (Thermo Fisher Scientific, Cat No. 4369016) with
Illu lib quant probe. U6 was used for small RNA expression
normalization. The primer sequences used in this study for
qPCR are listed in Datasets S1.

Statistical Analysis
All data were subjected to statistical analysis using the SPSS
program (IBM, SPSS, New York, NY, USA) and shown as mean
± standard error of the mean (SEM). And statistical differences
between two groups were assessed by two samples t-test. Symbols *,
** and *** represent p < 0.05, p < 0.01 and p < 0.001, respectively.

Availability of Data and Materials
The RNA-seq data have been deposited into the National Center
for Biotechnology Information Sequence Read Achieve database
(accession no. PRJNA813596).
RESULTS

mRNA Profiles in Sperm From the Male
Rats Born to Control, Nicotine-Treated,
and Nicotine Plus RGZ-Treated Dams
Adult female rats (F0 dams) received placebo (saline
subcutaneously as controls), nicotine (1 mg/kg, B.W.
subcutaneously), or nicotine (1 mg/kg, B.W. subcutaneously)
plus RGZ (3 mg/kg, B.W., intraperitoneally) between E6 and
PND21 (Figure 1). Cauda epididymal spermatozoa of F1 male
offspring (n = 3, from 3 separate litters in each group) were
collected at PND60 and used for large RNA deep sequencing
(RNA-seq), followed by bioinformatics analyses using the
pipeline as illustrated (Figure 2A).

The 3D principal component analyses (3D-PCAs) verified
that the differential transcriptomes of placebo control, nicotine-
treated (NIC) and nicotine plus RGZ-treated (NR) sperm
samples were indeed clustered separately (Figure 2B). A total
of 29 differentially expressed mRNAs (21 upregulated and 8
downregulated mRNAs) satisfied the criteria of padj (adjusted p-
value) less than 0.05, and fold change greater than 0.2 and less
than −0.2 (logFC ± 0.2) in NIC sperm samples compared to
placebo controls (Datasets S2). The MA plots (Figure 2C, left
panel) illustrate the differentially expressed genes (DEGs). In
contrast, no significantly dysregulated mRNAs (padj <= 0.05 and
May 2022 | Volume 13 | Article 893863
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|log2FC| ≥ 2) were detected in sperm of the control and NR
groups (Figure 2C, right panel and Datasets S3).

Many of the upregulated genes in nicotine-treated sperm are
known to be involved in asthma pathogenesis, including L-
Histidine decarboxylase (Hdc), Fc receptor-like 3 (Fcrl3),
Endothelin receptor type B (Ednrb), and Complement C4A
(C4a). Hdc encodes a unique enzyme in mammals which
catalyzes histamine formation from L-histidine and histamine
plays a critical role in the pathogenesis of bronchial asthma. In
particular, the level of Hdc mRNA is elevated in asthmatic
patients (46). Furthermore, Hdc allele Glu644 in homozygotes
increases the risk of rhinitis in the study population, supporting a
prominent role for genetic variants associated with histamine
homeostasis in developing allergic disease risk (47). In studying a
single nucleotide polymorphism (SNP) in Fcrl3 in asthma and/or
AR patients and healthy controls in a Chinese Han population,
novel SNP rs7528684 appears to be associated with asthma with
comorbid AR, and Fcrl3_3 (rs7528684) and Fcrl3_6 (rs3761959)
SNPs are protective against asthma inMexican male patients (48,
49). As the receptor for asthma related gene EDN1, the 30G>A
SNP in Ednrb is strongly associated with the degree of airway
obstruction, especially in patients with factors that induce airway
remodeling, such as asthma or smoking (50). And in the murine
model of asthma, Ednrb receptor antagonists is found to
effectively inhibit allergic reactions (51). When compared with
the children without asthma, an increasing serum level of C4
component of the complement system is observed in the
majority of the patients with intermittent atopic asthma,
representing a biomarker for diagnosis of intermittent atopic
Frontiers in Endocrinology | www.frontiersin.org 4
asthma (52). In addition, the level of C4a increases in the plasma
of patients with aspirin-induced asthma, and significantly
correlated with FEV1 (53).

However, several genes are newly implicated in asthma,
including Rho GTPase activating protein 15 (Arhgap15),
Pleckstrin (Plek), and Transcription factor EC (Tfec). Arhgap15
has been called a ‘‘master negative regulator of neutrophil
functions’’, and validated as a differentially expressed novel
transcript in patients with asthma (54, 55). PLEK is a major
substrate for protein kinase C signaling, a pathway strongly
implicated in asthma pathogenesis was upregulated in severe
asthmatics and exhibited a moderate ability to distinguish
between severe and mild-moderate asthmatics (56).
Furthermore, earlier studies have revealed an IL-4/STAT-6/
Tfec/IL-4Ra positive feedback regulatory loop, in which Tfec
transcribes IL-4Ra expression to promote M2 programming in
macrophages, which was implicated in asthma pathogenesis (57).
In addition, several genes were involved in lung cancer and other
lung diseases, such as Ceacam1 (58, 59), Ereg (60, 61), Selp (62,
63), and Pik3r5 (64, 65). The most conspicuous genes among
downregulated ones are members of the keratins (KRTs) and
keratin-associated proteins (KRTAPs), including Krt34, Krtap3-
1, and Krtap7-1, which are important for epidermal development
and hair follicle morphogenesis (66, 67), respectively. qPCR
analyses of seven dysregulated genes, including C4a, C4b,
Sult1c2, Arhgap15, Ednrb, Ceacam1, and Pik3r5, further
validated the RNA-seq data (Figure 2D). In addition,
bioinformatic analyses showed no long non-coding RNAs
(lncRNAs) were significantly dysregulated (padj <= 0.05) in
sperm samples from the three groups (Figure S2, Datasets S4
and S5). To further understand the functions of these DEGs,
gene ontology (GO) term enrichment analyses were performed,
and the dysregulated genes appeared to be involved in integrin
activation and platelet activation (Figure 2E, Datasets S6).

Taken together, perinatal exposure of nicotine appears to
induce altered profiles of sperm mRNAs, but not those of
lncRNAs; however, administration of RGZ appeared to
attenuate the nicotine effects on the sperm mRNA profiles.

Profiles of Small Non-Coding RNAs
(sncRNAs) in Sperm From the Male Rats
Born to Control, Nicotine-Treated, and
Nicotine Plus RGZ-Treated Dams
To determine the effects of perinatal exposure to nicotine and
nicotine plus RGZ on the sperm sncRNAs profiles of F1 males,
sperm small RNAs were isolated and sncRNAs-seq was
performed followed by bioinformatics analyses using AASRA
(68) (Figure 3A). A total of eight sncRNA species, including
miRNAs, mitochondrial DNA-encoded rRNA (Mt_rRNA) and
tRNA (Mt_tRNA) fragments, piRNAs, rRNA fragments, tRNA
fragments, snoRNAs, and snRNAs, were annotated and their
normalized total counts were compared among the three groups
(Figure S3).

Principal component analyses verified that the differential
transcriptomes of the three groups were clustered separately
(Figure 3B). A total of 139 sncRNAs were identified to be
FIGURE 1 | The perinatal nicotine exposure rat model used in the present
study. Dams (F0) received either placebo (saline), nicotine (1 mg/kg,
subcutaneously), or nicotine (1 mg/kg, subcutaneously) plus rosiglitazone
(RGZ) (3 mg/kg, intraperitoneally) once daily from embryonic day 6 (E6) of
gestation to postnatal day 21 (PND21). The F1 pups were allowed to
breastfeed ad libitum. At PND21, the F1s were weaned and maintained in
separate cages. Pure sperm cells of F1 male rats were collected at PND60
and sperm RNA was extracted and used for RNA-seq analyses.
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significantly dysregulated (padj <= 0.05 and |log2FC| ≥ 0 between
sperm from NIC and control groups (Figure 3C, left panel and
Datasets S7). These dysregulated sncRNAs included 47 miRNAs,
83 piRNAs, 1 tRNA, and 8 other sncRNAs. In contrast, no
significantly dysregulated sncRNAs (padj <= 0.05) were detected
between sperm from NR and placebo control groups (Figure 3C,
right panel and Datasets S8). All of the dysregulated miRNAs and
the vast majority (79 out of 83) of the dysregulated piRNAs were
upregulated between NIC and control sperm (Figure 3D).
Interestingly, while miRNA and piRNA levels were upregulated,
other sncRNAs were mostly downregulated in nicotine-treated
sperm. To validate the sncRNAs-seq data, we performed qPCR
analyses on eight miRNAs (let-7a-1-3p, miR-101b-3p, 293-5p,
148-3p, 192-5p, 340-5p, 1b, and 598-3p) and five piRNAs (piR-
rno-62944, rno-62902, rna-62978, rno-62740, rno-62736) in
nicotine-treated and placebo control sperm. The results showed
Frontiers in Endocrinology | www.frontiersin.org 5
that levels of miRNAs and piRNAs were much higher in nicotine-
treated sperm compared to controls (Figure 3E). Together,
perinatal exposure to nicotine appears to alter the sncRNAs
profiles, and this effect can be abolished by RGZ.

Given that miRNAs are known to function as a post-
transcriptional regulator by targeting the 3’UTRs of mRNAs,
we further determined the potential targets of the 47 significantly
dysregulated miRNAs (Datasets S9 and S10) using TargetScan
(69). Those target genes included those previously implicated in
asthma pathogenesis, such as ADAM metallopeptidase domain
33 (Adam33), PHD finger protein 11 (Phf11),Dipeptidyl peptidase
like 10 (Dpp10), Interleukin 4 (Il4), Brain-derived neurotrophic
factor (Bdnf), Serine peptidase inhibitor, Kazal type 5 (Spink5),
Cd69 molecule (Cd69), etc. Following linkage studies, Adam33
(70), Phf11 (71) and Dpp10 (72) have been identified to be
associated with asthma and asthma-related phenotypes. Studies
A B

D E

C

FIGURE 2 | RNA-seq analyses of sperm mRNA profiles in placebo, nicotine-treated and nicotine plus RGZ-treated F1 male rats. (A) The workflow for large RNA-
seq data analyses, showing the major steps and bioinformatic tools used in the study. (B) Three-dimensional principal component analyses of the large RNA-seq
data from nicotine-treated, nicotine plus RGZ-treated, and placebo-treated sperm samples. (C) MA plots showing differentially expressed genes (upDEGs and
downDEGs) detected between nicotine-treated and placebo-treated sperm samples (left panel) and between nicotine plus RGZ-treated and placebo-treated sperm
samples (right panel). The Log2baseMean represent the Log2 mean value of DESeq2 normalized counts between nicotine-treated and placebo-treated sperm, or
between nicotine plus RGZ-treated and placebo-treated sperm. Log2 fold change (Log2FC) was calculated by the Log2 mRNA counts of nicotine-treated sperm/
placebo-treated sperm, or nicotine plus RGZ-treated sperm/placebo-treated sperm. Genes that pass a threshold of padj <= 0.05, log2FC > 2 and padj <= 0.05,
log2FC < -2 in differential expression analysis were designated by red (up-regulated) and blue (down-regulated) in nicotine-treated or nicotine plus RGZ-treated
sperm relative to placebo-treated control sperm cells. (D) qPCR validation of mRNA expression levels in placebo and nicotine-treated sperm. Gapdh was used as an
internal control. Data are presented as mean ± SEM (n = 3). **P < 0.01; *P < 0.05. (E) Circle plots showing the top 10 Gene Ontology (GO) terms of biological
process analyzed from 16 significantly dysregulated genes in sperm samples from rats injected with nicotine compared to those from rats injected with placebo.
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showed that IL4, a key effector Th2 cytokine in allergic asthma,
was essential for B cells autophagy induction in vivo and in vitro,
thereby further sustaining B cell survival and enhanced B cell
antigen presentation (73). BDNF may contribute to normal lung
function and immune response and may serve as a potential
peripheral biomarker for asthma, especially that is aspirin-
sensitive (74). Studies have shown that SPINK5 has biological
actions other than protease inhibition, which may be related to
the pathogenesis of asthma (75). CD69 was known as an early
activation marker antigen of lymphocytes, had a crucial role in
the pathogenesis of arthritis and allergic airway inflammation
and could be a possible therapeutic target for arthritis and
asthma in human patients (76). Furthermore, many of the
Frontiers in Endocrinology | www.frontiersin.org 6
target genes were known to be involved in other lung diseases,
including High mobility group AT-hook 2 (Hmga2) (77),
Ubiquitin-conjugating enzyme E2C (Ube2c) (78), Adrenoceptor
beta 3 (Adrb3) (79), Coronin 1C (Coro1c) (80), Sp1 transcription
factor (Sp1) (81), Ras homolog family member B (Rhob) (82),
Serum/glucocorticoid regulated kinase 1 (Sgk1) (83), BTG anti-
proliferation factor 2 (Btg2) (84), Homeobox D8 (Hoxd8) (85),
Bone morphogenetic protein 4 (Bmp4) (86), Protein regulator of
cytokinesis 1(Prc1) (87), etc.

GO term enrichment analyses identified that the affected
target genes were mostly involved in the biological processes
including embryonic organ morphogenesis, regionalization,
epithelial tube morphogenesis, positive regulation of neuron
A

B

D

E

F

C

FIGURE 3 | RNA-seq analyses of small non-coding RNAs (sncRNAs) in placebo, nicotine-treated and nicotine plus RGZ-treated sperm samples. (A) The workflow
for small RNA-seq data analysis, including the major steps and bioinformatics tools used in the study. (B) Three-dimensional principal component analyses of the
small RNA-seq data from nicotine-treated, nicotine plus RGZ-treated, and placebo-treated sperm samples. (C) MA plots showing the differentially expressed
sncRNAs detected between nicotine-treated and placebo-treated sperm samples (left panel) and between nicotine plus RGZ-treated and placebo-treated sperm
samples (right panel). The Log2baseMean represent the Log2 mean value of DESeq2 normalized counts between nicotine-treated and placebo-treated sperm. Log2
fold change (Log2FC) was calculated by the Log2 sncRNA counts of nicotine-treated sperm/placebo-treated sperm. SncRNAs that pass a threshold of padj <=
0.05, log2FC > 0 and padj <= 0.05, log2FC < 0 in differential expression analysis were designated by red (up-regulated) and blue (down-regulated) in nicotine-
treated or nicotine plus RGZ-treated sperm relative to placebo-treated control sperm cells. (D) MA plots showing the number of significantly differentially expressed
sncRNAs (padj <= 0.05) between nicotine-treated and placebo-treated sperm samples. (E) qPCR validation of sncRNA expression levels in placebo and nicotine-treated
sperm. U6 was used as an internal control. Data are presented as mean ± SEM (n = 3). ***P < 0.001; **P < 0.01; *P < 0.05. (F) GO term enrichment analyses of potential
target genes of significantly dysregulated miRNAs in nicotine-treated sperm. Outputs (biological processes) are sorted and plotted against fold enrichment.
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differentiation, telencephalon development, protein localization
to the cell periphery, pattern specification process, axonogenesis,
regulation of membrane potential, and positive regulation of cell
projection organization (Figure 3F, Datasets S11).
DISCUSSION

Epidemiological studies have shown that grandma’s smoking
when pregnant with the mother increases the risk of asthma in
the grandchild independent of the mother’s smoking status,
suggesting a potential transgenerational effect of perinatal
smoking on the incidence of childhood asthma (88, 89).
However, considering many confounding factors, this notion
remains highly correlative. Given that it would take decades to
follow up on multiple generations on any transgenerational
effect, we and others have developed animal models to
demonstrate that childhood asthma induced by perinatal
exposure to nicotine in F0 dams can persist for at least three
generations in the absence of continuous perinatal exposure to
nicotine in F1-F3 (11, 12). Such intergenerational and
transgenerational transmission of the induced disease
phenotype must be mediated by the gametes (sperm and eggs)
given sexual reproduction. Indeed, our earlier data have shown
that both histone marks and DNA methylation (5mC) patterns
are altered in F1 sperm (10). Since the sperm DNA methylation
patterns are largely established during fetal testicular
development and further modified during spermatogenesis, the
DMRs in F1 male rat sperm must have arisen in pro-
spermatogonia and/or the subsequent spermatogenic cells
including spermatogonia, spermatocytes, or spermatids. Since
DNA methylation changes affect gene expression, it is possible
that the mRNAs that are produced in spermatogenic cells and
packed into the sperm nuclei might be altered as well. In
contrast, the vast majority of nuclear histones are replaced by
transition proteins and ultimately by protamine during the
elongation of round spermatids (20, 90). Consequently, only
trace amounts of histones (<1% in rodents and <5% in humans)
are retained in sperm (91). Therefore, altered histone levels and
chemical modifications must have occurred during late
spermiogenesis. Since both large and small RNAs are believed
to be packed into the condensing nuclei of spermatids upon
elongation during spermiogenesis, the altered histone profiles
may also indicate altered mRNA and small RNAs that are packed
into the nuclei of sperm. Indeed, our data clearly show that the
mRNA and small RNA profiles are indeed altered in the sperm of
F1 male rats born to dams with perinatal exposure to nicotine.

Sperm-borne mRNAs are delivered to the oocytes during
fertilization (92). It remains unclear whether these mRNAs are
functional and thus necessary for fertilization and early
embryonic development. Small RNAs have been detected in
sperm nuclei, and miRNAs and endo-siRNAs have been
shown to be essential for fertilization and early embryonic
development, most likely through functional as post-
transcriptional regulators (93, 94). Increasing lines of evidence
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also suggest that both sperm-borne large and small RNAs may
have a role in mediating epigenetic inheritance of acquired traits
(19). This notion is largely based on the observations that
injection of either total RNA or small RNAs isolated from
male mice with the specific acquired traits (e.g., metabolic
disorders induced by HFD, stress response conditioned to
specific odor, wound healing response conditioned to repeated
liver injury, etc.) into wildtype oocytes can produce offspring
displaying a similar phenotype. However, the exact molecular
actions of these sperm-borne RNAs remain elusive. In the
present study, we identified 29 differentially expressed mRNAs
in nicotine exposed F1 male rats compared to placebo control
male rats. These DEGs may represent the consequences of the
dysregulated epigenome, as reflected by numerous DMRs and
aberrant histone marks detected (11, 22), in spermatogenic cells
during spermatogenesis. An alternative function would be that
these sperm-borne mRNAs, once delivered into the cytoplasm of
the oocytes, can produce proteins that participate in early
embryonic development. Given that these F1 male rats all have
normal fertility, the changed levels of the proteins encoded by
these DEGs must be compatible with successful fertilization and
embryonic development. However, it remains unknown whether
these proteins can be involved in epigenetic regulations that can
lead to childhood asthma. Among the differentially expressed
small RNAs, miRNAs and piRNAs appear to be the dominant
small RNA species in the nicotine exposed F1 male rats. miRNAs
are known to function as a post-transcriptional regulator by
binding the 3’UTR of mRNAs to control mRNA stability and
translational efficiency (95). Sperm-borne piRNAs are largely
produced in spermatocytes and spermatids, and these piRNAs
are believed to control the timely degradation of mRNAs during
late spermiogenesis (96, 97). It remains unclear how miRNAs
and piRNAs function as carriers of epigenetic information in
sperm although both have been shown to be involved in the
transmission of acquired traits inter-or trans-generationally.
Several studies have shown that microinjection of sperm total
or small RNAs (total, miRNAs, tsRNAs) isolated from the male
mice with acquired traits can induce similar phenotypes in
offspring although the phenotypic penetrance varies (98–102).
It would be of great interest to see whether injection of the
dysregulated small RNAs in male F1 rats with perinatal exposure
to nicotine also transmits the asthma phenotype to the
subsequent progeny. Moreover, examination of the epigenome
of the F1 lung tissue in both nicotine-exposed and placebo
control males during fetal and postnatal development may
shed light on the effects of the dysregulated sperm small RNAs
in the future.

Rosiglitazone is a PPARg agonist that has shown a beneficial
effect in both mice and humans with asthma (103, 104). In
asthmatic mice and patients, PPARg activation appears to inhibit
airway inflammation and remodeling by downregulating
proinflammatory gene expression and inflammatory cell
functions (105). In our rat model of childhood asthma,
induced by perinatal nicotine exposure, RGZ administered in
conjunction with nicotine attenuates the development of asthma
(25, 26). More interestingly, the altered levels of 5mC and several
May 2022 | Volume 13 | Article 893863
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histone modifications including H3 acetylation and H4
acetylation also get reversed in the lung and gonad of F1 rats
(11, 22). These data suggest that RGZ has an epigenetic effect on
both the target tissue (i.e., lung) and germ cells, which can largely
restore the gene networks required for normal airway functions.
Consistent with these previous data, our RNA-seq analyses of
total RNA expression profiles in the sperm of F1 male rats also
show that RGZ can attenuate the adverse effects of perinatal
exposure to nicotine on the sperm RNA profiles. The effect may
directly affect the expression of certain mRNAs and small RNAs.
Alternatively, the altered transcriptomes may result from RGZ’s
effect on DNA methylation and/or histone modifications.
Nevertheless, the fact that a PPARg agonist attenuates the
effect of nicotine on sperm large and small RNA transcriptome
further supports the notion that PPARg agonists is a promising
class of drugs for treating childhood asthma.

In summary, we report here that perinatal exposure to
nicotine leads to alterations in the profiles of sperm-borne
RNAs, including mRNAs and small RNAs, and that
rosiglitazone can attenuate the effect of nicotine and reverse
the sperm-borne RNA profiles of F1 male rats to close to placebo
control levels.
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