
Article

Relative efficiency of joint-model and
full-conditional-specification multiple
imputation when conditional models are
compatible: The general location model

Shaun R Seaman1 and Rachael A Hughes2

Abstract

Estimating the parameters of a regression model of interest is complicated by missing data on the variables in that model.

Multiple imputation is commonly used to handle these missing data. Joint model multiple imputation and full-conditional

specification multiple imputation are known to yield imputed data with the same asymptotic distribution when the

conditional models of full-conditional specification are compatible with that joint model. We show that this asymptotic

equivalence of imputation distributions does not imply that joint model multiple imputation and full-conditional

specification multiple imputation will also yield asymptotically equally efficient inference about the parameters of the

model of interest, nor that they will be equally robust to misspecification of the joint model. When the conditional

models used by full-conditional specification multiple imputation are linear, logistic and multinomial regressions, these are

compatible with a restricted general location joint model. We show that multiple imputation using the restricted general

location joint model can be substantially more asymptotically efficient than full-conditional specification multiple

imputation, but this typically requires very strong associations between variables. When associations are weaker, the

efficiency gain is small. Moreover, full-conditional specification multiple imputation is shown to be potentially much more

robust than joint model multiple imputation using the restricted general location model to mispecification of that model

when there is substantial missingness in the outcome variable.
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1 Introduction

Estimating the parameters of a regression model of interest (the ‘analysis model’) is often complicated in practice
by missing data on the variables in that model. Multiple imputation (MI) is a popular method for dealing with this
problem.1 Values for the missing variables are randomly sampled conditional on the observed variables from
distributions thought approximately to describe the association between these variables. The result is an imputed
dataset, in which there are no missing data. This imputation is done multiple (say,M) times and the analysis model
is fitted separately to each of the resulting M imputed datasets to produce M estimates of the parameters b of this
model. Finally, these M estimates are averaged to give an overall estimate of b, known as the ‘Rubin’s Rules
(point) estimate’.

MI methods differ in how they randomly sample values for the missing variables. The two most commonly used
methods are joint model MI and full-conditional specification (FCS) MI (also known as MI by chained
equations).2,3 The former involves specifying a joint model for the partially observed variables given the fully
observed variables and sampling missing values from their posterior predictive distribution given the observed
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data. The latter involves specifying a conditional model for each of the partially observed variables given all the
other variables and cycling through these models. In special cases, the two approaches are equivalent.4 For
example, when all the conditional models in FCS MI are linear regressions with main effects and no
interactions, FCS MI corresponds to joint model MI using a multivariate normal joint model. Likewise, when
all the variables are categorical and the conditional models are saturated logistic regressions, FCS MI is equivalent
to joint model MI using a saturated log linear joint model. In general, however, FCS MI is not equivalent to joint
model MI.

Liu et al.5 (see also Zhu and Raghunathan6) showed that, even when FCS MI does not correspond to joint
model MI, the distributions from which the two methods sample the missing values (the ‘imputation distributions’)
are asymptotically the same when the conditional models used by FCS MI are compatible with a joint model.
Compatibility is defined in Section 2. Although this is an important result, the ultimate purpose of MI is to enable
the estimation of b, and it is unclear what the consequence of asymptotic equivalence of imputation distributions is
for the relative efficiency (RE) of the Rubin’s Rules estimator from FCS MI compared to that from joint model
MI. This RE (i.e. the ratio of repeating-sampling variances of the two estimators of b) and, in particular, the
asymptotic RE (the ratio as the sample size and M tend to infinity) is the focus of the current article.

When, as is commonly the situation, the partially observed variables consist of both continuous and categorical
variables, the conditional models usually employed for them in FCS MI are linear regressions and multinomial
logistic regressions, respectively. These are natural choices and are the default options in many statistical packages,
e.g. mice and mi in R, and ice and mi in STATA. It can be shown that this set of conditional models is compatible
with a restricted general location (RGL) joint model. Thus, Liu et al.’s (2014) result implies that FCS MI and joint
model MI using the RGL model produce imputations that are asymptotically from the same distribution. Schafer7

described how to carry out joint model MI using this RGL model and provided software. So, joint model MI using
the RGL model and FCS MI using conditional models compatible with this model are both options for the
practicing statistician.

In the current article, we focus on the situation where the aim is to estimate the parameters of the analysis model
and MI is used to handle missing data in the variables of that model. We elucidate the relation between joint model
MI and FCS MI using compatible conditional models. We focus on the important case where joint model MI uses
the RGL model and the (compatible) analysis model is a linear or logistic regression with parameters b. Our goals
are (i) to demonstrate that when the RGL model is correctly specified, asymptotic equivalence of imputation
distributions does not imply equally asymptotically efficient estimators of b; (ii) to investigate the magnitude of this
difference and how it depends on the strength of associations between outcome and covariates in the analysis
model and (iii) to demonstrate that when the joint distribution of the covariates implied by the RGL model is
misspecified, FCS MI can be less biased than joint model MI. These goals will be realised using asymptotic
calculations and simulation studies.

The structure of the article is as follows. In Section 2, we describe FCS and joint model MI in general and
discuss how they are related when the conditional models are compatible. This relation can be one of equivalence
in finite samples or asymptotic equivalence. The RGL model is introduced in Section 3. In Section 4, the
asymptotic RE of inference from FCS MI with compatible conditional models versus that from the
corresponding joint model MI is explored in depth for simple cases of the RGL model: one with a binary and
two continuous variables, and one with four binary variables. In addition, the RE of the two MI methods is
explored in a more complex situation using data simulated from a realistic data-generating mechanism based on
the Barry Caerphilly Growth Study (BCGS).8 In Section 5, we discuss and illustrate, using simulated data and data
from the National Childhood Development Study (NCDS),9 the relative robustness of FCS MI and joint model
MI to misspecification of the joint model for the covariates implied by the RGL model. Section 6 contains a
discussion.

2 Relation between FCS MI and joint model MI

Let X ¼ ðX1, . . . ,XKÞ
> denote a vector of K variables, let X�k ¼ ðX1, . . . , Xk�1, Xkþ1, . . . ,XKÞ

> and let Rk¼ 1 if Xk

is observed and Rk¼ 0 if Xk is missing. We use subscript i to index the individual in the dataset (i ¼ 1, . . . , n). So,
Xi ¼ ðXi1, . . . ,XiKÞ

>, Xi,�k and Rik denote the values of X, X�k and Rk for individual i. LetMk denote the set of
indices of the individuals for whom Rik¼ 0.

In joint model MI, a model f ðXjhÞ is specified for the joint distribution of X, with a non-informative prior pðhÞ
for the parameters h in this model. Let � denote the parameter space of h and assume that pðhÞ4 0 8 h 2 �.
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Missing values of X are imputed from their posterior predictive distribution implied by this model. One way to
draw from this distribution is to use the following Gibbs sampler algorithm.4 First, replace the missing values by
arbitrary starting values. A single iteration of the Gibbs sampler then consists of K steps, in the kth of which the
values of fXik : i 2 Mkg are updated. Let X�i,�k ¼ ðX

�
i1, . . . ,X�i,k�1,X

�
i,kþ1, . . . ,X�iKÞ

>, where X�ij equals its observed
value Xij if Rij¼ 1 and equals its most recently sampled value if Rij¼ 0. Let fkðXkjX�k, hÞ and f�kðX�kjhÞ denote the
conditional distributions of Xk given X�k and the marginal distribution of X�k, respectively, implied by joint
model f ðXjhÞ. The kth step consists of first sampling h from the distribution proportional to
pðhÞ

Qn
i¼1 fkðXikjX

�
i,�k, hÞ

Rik f�kðX
�
i,�kjhÞ and then, using this sampled value of h, sampling Xik from fkðXikjX

�
i,�k, hÞ

for each i 2 Mk. These K steps are iterated until the imputed variables converge in distribution.
In FCS MI, a set of K conditional models fgðXkjX�k,�kÞ : k ¼ 1, . . . ,Kg is specified for the distribution of each

Xk given the remaining variables. Also specified is a non-informative prior pð�kÞ (k ¼ 1, . . . ,K) for the parameters
�k in each of these models. Let(k denote the parameter space of �k and assume that pkð�kÞ4 0 8 �k 2 �k. As with
the Gibbs sampler, the missing values are first replaced by arbitrary starting values and a single iteration of the
FCS algorithm consists of K steps. The kth step involves first sampling �k from the distribution proportional to
pð�kÞ

Qn
i¼1 gkðXikjX

�
i,�k,�kÞ

Rik and then, using this sampled value of �k, sampling Xik from gkðXikjX
�
i,�k,�kÞ for each

i 2 Mk.
Hughes et al.4 noted that FCS MI and the Gibbs sampler algorithm (and hence joint model MI) are equivalent

when, for each k, the parameters h of the joint model can be partitioned (possibly after reparameterisation) into a
set of parameters that describe only the conditional distribution of Xk given X�k and a set of parameters that
describe only the marginal distribution of X�k, and pðhÞ implies that these two parameter sets are a priori
independent. More formally, for each k (k ¼ 1, . . . ,K), let �k ¼ �kðhÞ and ��k ¼ ��kðhÞ be functions of h such
that fkðXkjX�k, hÞ ¼ fkðXkjX�k,�kÞ and f�kðX�kjhÞ ¼ f�kðX�kj��kÞ. Then joint model MI is equivalent to FCS MI
with conditional models fkðXkjX�k,�kÞ (k ¼ 1, . . . ,K) if the prior distribution, pð�k,��kÞ, of ð�k,��kÞ implied by
pðhÞ can be factorised as pð�k,��kÞ ¼ pkð�kÞp�kð��kÞ for each k. This ability of the prior to be so factorised has
been called the ‘non-informative margins condition’.4

The non-informative margins condition cannot hold unless �k and ��k are distinct parameters, i.e. unless their
joint parameter space is the product of their individual parameter spaces. In Section 4.1, we look at two examples
where h cannot be partitioned into distinct parameters �k for the conditional distribution and ��k for the marginal
distribution. When h cannot be partitioned into distinct parameters, data on X�k indirectly provides information
on �k through the information it provides on ��k. This indirect information is used in the Gibbs sampler but not in
FCS MI.

An important theoretical result about the asymptotic relation between FCS and joint model MI was provided
by Liu et al.5 This result can apply even when the non-informative margins condition is not satisfied. They defined
the set of conditional models fgðXkjX�k,�kÞ : k ¼ 1, . . . ,Kg to be compatible with a joint model f ðXjhÞ if (i) for each
h 2 � and for each k ¼ 1, . . . ,K, there exists a value of �k 2 �k such that gkðXkjX�k,�kÞ ¼ fkðXkjX�k, hÞ, and (ii)
for each k ¼ 1, . . . ,K and for each value of �k 2 �k, there exists at least one value of h 2 � such that
gkðXkjX�k,�kÞ ¼ fkðXkjX�k, hÞ.

Theorem 1 of Liu et al.5 says that if (i) the set of conditional models is compatible with a joint model, (ii) this
joint model is correctly specified and (iii) the data are missing at random (MAR), then the total variation distance
between the distribution of the imputed data obtained from FCS MI and the distribution of the imputed data
obtained from joint model MI tends to zero in probability as the sample size tends to infinity. More informally, we
can say that the distribution of the imputed data is asymptotically the same whether one imputes by FCS MI or by
joint model MI using the corresponding joint model. Liu et al.5 say that ‘iterative imputation [i.e. FCS MI] and
joint Bayesian imputation [i.e. joint model MI] are asymptotically the same’ (p. 161).

Three comments are worth making. First, asymptotic equivalence of the imputation distributions of FCS MI
and joint model MI does not mean that the two resulting Rubin’s Rules estimators of b have the same asymptotic
efficiency, as we illustrate in Section 4. Second, when the joint model is misspecified, FCS MI and joint model MI
may use different imputation distributions for the missing data, even asymptotically, as we illustrate in Section 5.
Third, suppose that X can be partitioned as X ¼ ðZ>,X>AÞ

>, where Z is fully observed. Then, conditional models
for the elements of Z are not used in the FCS MI algorithm and need not be specified. Likewise, joint model MI
requires only a model f ðXAjZ, hÞ for the conditional distribution of XA given Z; the marginal distribution of Z is
not used and no model for it need be specified. So, if the conditional models for XA are compatible with f ðXAjZ, hÞ,
and if f ðXAjZ, hÞ is correctly specified and the data are MAR, then FCSMI and joint model MI impute missing XA

from the same distribution asymptotically.
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3 The RGL model

Let Y and W be categorical and continuous variables, respectively. A categorical variable with m> 2 levels is
coded as m � 1 indicator variables. The RGL model combines a log linear model with a conditional normal model:

PðY ¼ yÞ ¼
expðh>y yþ y>hyyyÞP

y0
expðh>y y

0 þ y0>hyyy0Þ
ð1Þ

WjY � Nðhw0 þ hwyY, hvÞ ð2Þ

where hy and hw0 are parameter vectors and hyy, hwy and hv are parameter matrices. Matrix hyy is strictly upper
triangular and hv is positive definite. Note that the term h>y yþ y>hyyy in equation (1) means that the log linear
model includes main effects for Y and all pairwise interactions between pairs of elements of Y. The mix library7 in
R can be used to fit this model and to perform joint model MI based on it.

This RGL model implies that the conditional distribution of any element of W given Y and the remaining
elements of W is normal with main effects only. It can also be shown that the RGL model implies that the
conditional distribution of any categorical variable in Y given W and the remaining categorical variables has
the form of a multinomial logistic regression with main effects only. If this categorical variable is binary, the
multinomial logistic regression is just ordinary (binary) logistic regression. Expressions for the log odds ratios
(LORs) in this logistic regression in terms of hy, hyy, hw0, hwy and hv are given in Appendix 1. Therefore, if these
linear and logistic regressions are used as the conditional models in FCS MI, they are compatible with the RGL
joint model. It follows from Theorem 1 of Liu et al.5 that if the RGL model is correctly specified and the data are
MAR, then FCS MI and joint model MI asymptotically impute from the same distribution.

As mentioned at the end of Section 2, if some elements Z of Y and/or W are fully observed, conditional models
are not required for them in FCS MI and they can be conditioned on in joint model MI. Using Y and W now to
denote the categorical and continuous variables not included in Z, the resulting joint model is

PðY ¼ yjZ ¼ zÞ ¼
expðh>y yþ y>hyyyþ y>hyzzÞP

y0
expðh>y y

0 þ y0>hyyy0 þ y0>hyzzÞ
ð3Þ

WjY,Z � Nðhw0 þ hwyYþ hwzZ, hvÞ ð4Þ

where hyz and hyy are strictly upper triangular. We call this the ‘RGL model conditional on Z0 and write it as
‘CRGL(Z)’. This CRGL(Z) model imposes no constraints on the marginal distribution of Z. Like the RGL model,
the CRGL(Z) model implies that the conditional distribution of any categorical variable in Y given W, Z and
the remaining categorical variables has the form of a multinomial logistic regression. Expressions for the LORs in
this logistic regression are given in Appendix 1. Again, if linear and logistic regressions with main effects only are
used as the conditional models in FCS MI, they are compatible with the CRGL(Z) joint model. So, it follows that
if the CRGL(Z) model is correctly specified and the data are MAR, then FCS MI and joint model MI using the
CRGL(Z) model asymptotically impute from the same distribution. Moreover, since the RGL model implies the
CRGL(Z) model, it follows that if the RGL model is correctly specified and the data are MAR, then FCS MI,
joint model MI using the CRGL(Z) and joint model MI using the RGL model all asymptotically impute from the
same distribution.

Note that, unlike the RGL model, the CRGL(Z) model cannot be fitted using the R mix library,7 unless Z
includes only categorical variables.

Higher order interactions can be added to the log linear models of expressions (1) and (3). The conditional
models of FCS MI then require additional interaction terms to remain compatible with this more general RGL or
CRGL model. However, we focus on the log linear model with just main effects and pairwise interactions
(expressions (1) and (3)) and study the impact of the absence of higher-order terms on the RE of FCS MI and
joint model MI for inference about b.

4 Asymptotic RE of RGL versus FCS MI

4.1 Information in the marginal distribution

In Section 2, we noted that when the marginal distribution of X�k contains information about the parameters �k of
the conditional distribution of Xk given X�k, joint model MI uses this information but FCS MI does not. In the
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RGL model, when Xk is an element of the vector of continuous variables W, h can be partitioned into a priori
independent parameters �k and ��k. So, the marginal distribution of X�k provides no information about �k.

4

However, when Xk is one of the categorical variables in Y, two assumptions of the RGL model make the marginal
distribution of X�k informative.4

First, expressions (1) and (2) imply that the marginal distribution of W is a mixture of normal distributions.
There is no way to parameterise this marginal distribution more parsimoniously than by using all of
h ¼ ðhy, hyy, hw0, hwy, hvÞ. Therefore, ��k ¼ h.

Second, suppose for simplicity that there are no continuous variablesW, so that the RGL reduces to a log linear
model, and that all the categorical variables Y1, . . ., YL are binary. The inclusion of only main effects and pairwise
interactions in the log linear model of equation (1) means there are LðLþ 1Þ=2 parameters. The conditional
probability that any one variable, say Y1, equals one given the others is the logistic regression form
PðY1 ¼ 1jY2, . . . ,YLÞ ¼ expitð�1 þ

PL
j¼2 �1jYjÞ, where �10, �12, . . . , �1L are parameters. That leaves LðL� 1Þ=2

parameters to describe the marginal distribution of ðY2, . . . ,YLÞ. When L � 4, LðL� 1Þ=25 2L�1 � 1, the
number of parameters needed for a saturated model for ðY2, . . . ,YLÞ. This raises the possibility that
the marginal distribution of ðY2, . . . ,YLÞ may depend on �1, �12, . . . , �1L, and indeed this is so (see online
Appendix). Thus, the marginal distribution contains information about the conditional distribution. This
argument extends easily to the general case where L � 4, categorical variables have more than two categories,
and/or there are continuous variables W.

In the remainder of this section, we study how much this information in the margins affects the asymptotic RE
of the Rubin’s Rules estimator of b using FCS MI compared to the estimator using joint model MI.

4.2 One binary and two continuous variables

Suppose that data are generated by the RGL model used by Hughes et al.4

Y � Bernoullið pÞ

W1jY � Normalð10þ �1Y, 9Þ

W2jY,W1 � Normalð9þ 8=9þW1=9þ �2Y, 8þ 8=9Þ

where p¼ 0.1 or 0.3, and �1 and �2 each equal 1, 2, 3 or 4, and W1 and W2 are fully observed (Hughes et al.4

considered only p¼ 0.3 and �1 ¼ �2 ¼ 1 or �1 ¼ �2 ¼ 3). This special case of the RGL model with only one
binary variable is called the linear discriminant analysis (LDA) model.10 Using the formula in Appendix 1, it
follows that PðY ¼ 1jW1,W2Þ ¼ expitð�0 þ �1W1 þ �2W2Þ, where b ¼ ð�0,�1,�2Þ

>
¼ ðlogitð0:3Þ�

10�1=9� 89�2=80� �
2
1=18� 9�22=160, �1=9� �2=80, 9�2=80Þ. Since the standard deviations of W1 and W2 are

both approximately 3, the LORs �1 and �2 are very large when �1 and/or �2 equals 3 or 4 (e.g. 0.39 and 0.45
when �1 ¼ �2 ¼ 4). Nevertheless, we include these scenarios in order to investigate what happens in situations of
strong associations. More likely scenarios are �1 ¼ �2 ¼ 1 and �1 ¼ �2 ¼ 2; ð�1,�2Þ is then either (0.099, 0.113) or
(0.197, 0.225).

If Y is fully observed, b can be estimated by logistic regression or by LDA. The former makes no assumption
about the marginal distribution of ðW1,W2Þ

>, whereas LDA assumes that it is a mixture of two normal
distributions. LDA is known to be more efficient (in finite samples and asymptotically) than logistic regression
when the LDA model is correctly specified, especially when �1 and �2 are large or when p is close to 0 or 1.10,11

When Y is partially observed, b can be estimated by using RGL MI or FCS MI and then analysing the imputed
data using logistic regression or LDA. Like LDA, RGL MI assumes normality of ðW1,W2Þ

> given Y. Like logistic
regression, FCS MI does not assume this. Therefore, if RGL MI and logistic regression analysis are used, the
imputer is assuming more than the analyst.12 If FCS MI and LDA are used, the analyst is assuming more than the
imputer. Otherwise, analyst and imputer are making the same assumptions.

For fully observed Y, Table 1 shows the asymptotic RE of LDA compared to logistic regression when
ð�1, �2Þ ¼ ð1, 1Þ, (2, 2) or (3, 3). This was calculated using Monte Carlo integration to evaluate expected
information matrices. Results for other ð�1, �2Þ values are shown in Table 4 of the online Appendix. It is seen
that LDA can be more efficient than logistic regression, but that the difference is small unless �1 and �2 are large
and is greater when p¼ 0.1 than when p¼ 0.3. The largest asymptotic RE when �1 � 2 and �2 � 2 was 104%,
although it did rise to 142% when �1 ¼ �2 ¼ 4 and p¼ 0.1.

These complete-data results suggest RGL MI may often not be much more efficient than FCS MI when Y is
partially observed. To investigate this, we assumed that Y is missing with probability 0.5, either completely at
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random or at random with probability PðR ¼ 0jW1,W2Þ ¼ expitðc�W1=3Þ (c was chosen to give PðR ¼ 1Þ ¼ 0:5).
Using the formula in Theorem 1 of Robins and Wang,13 we calculated the asymptotic REs of RGLMI versus FCS
MI for the Rubin’s Rules estimators. This is the RE for an infinite sample size and M ¼ 1 imputations.
Monte Carlo integration was used to evaluate the expectations in the Robins and Wang formula.
We considered four analyses: logistic regression, LDA, linear regression of W2 on Y and W1, and estimation of
the marginal mean of Y.

Table 2 shows results for ð�1, �2Þ ¼ ð1, 1Þ, (2, 2) and (3, 3). Results for other ð�1, �2Þ values are in Table 5 in the
online Appendix. As expected, RGL MI is only slightly more efficient than FCS MI unless �1 and/or �2 are large,
and the efficiency gain is greater for p¼ 0.1 than for p¼ 0.3. Efficiency gains are much greater for the logistic
regression analysis than for the other three analyses but are still � 10% unless �1 4 2 or �2 4 2.

It is interesting that FCS MI is less efficient than RGL MI when the analysis is LDA. This shows that, for the
RGL model, asymptotic efficiency is lost by the imputer assuming less than the analyst. Meng12 gave a different
example of an imputer assuming less than an analyst and showed there was no loss of asymptotic efficiency in that
case. It is also interesting that RGL MI is more efficient than FCS MI when the analysis is logistic regression. This
is an example of the imputer assuming more than the analyst. Since FCS MI with an infinite number of
imputations followed by logistic regression analysis is asymptotically equivalent to logistic regression analysis
using only complete cases (because individuals with missing outcome provide no information in logistic regression
when all covariates are fully observed), the greater efficiency of RGL MI followed by logistic regression analysis is
an illustration of ‘super-efficiency’.12,14

Table 2. Percentage asymptotic REs of RGL MI versus FCS MI for four different analysis models.

Analysis and regression coefficient

�1 �2 E(Y) lr(0) lr(W1) lr(W2) ld(0) ld(W1) ld(W2) ln(0) ln(Y) ln(W1)

p¼ 0.1 and MCAR

1 1 99.9 100.4 100.3 100.4 100.0 100.1 100.1 100.0 100.1 100.0

2 2 99.9 106.6 104.5 105.1 101.8 101.3 101.5 100.1 101.5 100.3

3 3 100.1 123.9 117.3 119.1 105.8 104.5 105.0 100.9 104.5 101.5

p¼ 0.1 and MAR

1 1 99.8 100.5 100.1 100.3 100.0 99.8 100.0 100.0 100.0 100.0

2 2 102.2 110.1 108.4 106.3 103.7 103.7 102.1 100.5 102.0 101.0

3 3 107.6 138.2 134.1 125.4 111.8 113.6 108.1 103.8 107.2 105.8

p¼ 0.3 and MCAR

1 1 100.0 100.2 100.2 100.1 100.0 100.1 100.0 100.0 100.0 100.0

2 2 100.1 103.7 102.4 102.6 101.1 100.8 100.7 100.1 100.7 100.2

3 3 100.6 114.6 109.9 110.8 104.0 102.9 103.0 100.9 102.7 101.3

p¼ 0.3 and MAR

1 1 100.0 100.2 100.2 100.1 100.0 100.0 99.9 100.0 99.9 100.0

2 2 100.6 104.2 103.2 103.0 101.4 101.3 101.0 100.2 100.9 100.4

3 3 103.2 117.6 114.5 113.3 105.8 106.1 104.5 101.7 103.9 102.9

E(Y): marginal mean of Y; lr: logistic regression; ld: linear discriminant analysis; ln: linear regression; (V): the regression coefficient associated with

variable V (with (0) meaning the intercept); MAR: missing at random; MCAR: missing completely at random.

Table 1. Percentage asymptotic REs of LDA versus logistic regression analysis when using complete data.

Regression coefficient

p �1 �2 Intercept W1 W2

0.1 1 1 99.4 100.4 100.3

0.1 2 2 103.7 103.3 103.6

0.1 3 3 116.6 112.7 114.0

0.3 1 1 99.2 100.2 100.1

0.3 2 2 101.7 101.7 101.8

0.3 3 3 109.5 107.0 107.6
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Next, we investigated whether the asymptotic REs in Table 1 reflect the REs in finite samples. Table 6 in the
online Appendix shows, for two scenarios, the RE of LDA using complete data versus logistic regression using
complete data for a variety of sample sizes. The REs were estimated using 10,000 simulated datasets. Table 7 in
the online Appendix shows, for the same two scenarios (and using the same 10,000 simulated datasets), the
finite-sample RE of RGL MI versus FCS MI (using M¼ 50 imputations) for the four analyses of Table 2. The
finite-sample REs are similar to the asymptotic REs. Note that, as expected, the Rubin’s Rules point estimators
were approximately unbiased for all methods (data not shown).

4.3 Four binary variables

Now suppose that data are generated by the log linear model with L¼ 4 binary variables, P(Y1, Y2, Y3.Y4) /

exp
P4

j¼1 �jYj þ
P3

j¼1

P4
k¼2 �jkYjYk

� �
, where �j¼�0.5 for j¼ 2, 3, 4; �jk¼ 0.5 for (j, k) = (2, 3), (2, 4), (3, 4); (�12,

�13, �14)¼ (0.33, 0.67, 1.00), (0.67, 1.33, 2.00), (1, 2, 3) or (3, 3, 3); and �1 is chosen to make P(Y1¼ 1)¼ 0.3. The
parameters b = (�1, �12, �13, �14)

> can be estimated by fitting either this log linear model or the logistic regression model

P(Y1¼ 1 jY2, Y3, Y4)¼ expit �1 þ
P4

j¼2 �1jYj

� �
that it implies. We calculated the RE of these two methods when the

data were complete. We also calculated the RE of RGL MI versus FCS MI when Y1 was missing with probability 0.5
completely at random or at random and analysis was either by logistic regression or by fitting the log linear model.

Detailed results are given in the online Appendix. In summary, we found that analysing the complete data by
fitting the log linear model was hardly any more efficient than using logistic regression: all REs were less than
107%. Likewise, analysing RGLMI was not much more efficient than FCS MI: all REs were less than 116% when
analysis was by logistic regression and all were less than 108% when analysis was by fitting the log linear model.
These maximum REs required strong associations between variables, i.e. ð�12, �13, �14Þ ¼ ð3, 3, 3Þ. With more
moderate associations, REs did not exceed 105%. It appears therefore that the marginal distribution of
ðY2,Y3,Y4Þ contains little information about �1, �12, �13 and �14. We also considered data-generating
mechanisms with L¼ 6 variables or changed the parameters of interest to b ¼ ð�4, �14, �24, �34Þ

>, i.e. parameters
of the regression of Y4 on Y1, Y2 and Y3, so that the partially observed variable (Y1) was a covariate. In all cases,
REs were less than 108% (data not shown).

4.4 Simulation study based on BCGS

To investigate RE of RGLMI versus FCS MI in a realistic setting, we carried out a simulation study based on real
data from the BCGS. The BCGS is a follow-up study of a dietary intervention randomised controlled trial of
pregnant women and their offspring.8 Participants in the original trial were followed up until offspring were five
years old. When aged 25, these offspring were invited to participate in a follow-up study. There were 951 offspring
in the trial, of whom 712 participated in the follow-up study.

For the simulation study, we considered eight variables: sex, childhood weight (at age 5), adult overweight
(a binary indicator of BMI � 25), ex-smoker and height (all at age 25), father’s and mother’s weights and father’s
social class. We considered as our analysis of interest a logistic regression of adult overweight on the other
variables. Adult overweight and adult height were missing on (the same) 272 of the 951 offspring; ex-smoker
and father’s weight were missing on, respectively, 241 and 149 offspring. Sex was fully observed, and there were a
total of 12 missing values on the remaining three variables. Among the 679 offspring with observed outcome, there
were only 109 missing values, 98 of which were for father’s weight.

Simulated datasets were created as follows. First, we fitted the RGL model of equations (1) and (2) to the BCGS
data. Then, the fitted model was used to generate complete data on the eight variables for each of 951 hypothetical
individuals independently. Missingness was then imposed using missingness models whose parameters were
estimated from the BCGS data.

The simulation study was in two parts. In Part I, three of the continuous variables (father’s, mother’s and
childhood weights) were treated as auxiliary variables, i.e. they were included in the imputation model but not in
the analysis model; the other variables were included in both models. Using auxiliary variables in the imputation
model may increase efficiency and make the MAR assumption more plausible.15 With auxiliary variables, it may
be worth imputing a missing outcome even if the covariates in the analysis model are fully observed.

In Part II, there were no auxiliary variables: all eight variables were included in the analysis model. In the
absence of auxiliary variables, Von Hippel15 recommended including all individuals in the imputation step but
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then excluding those with imputed outcomes before fitting the analysis model to the imputed data, in order to
reduce bias caused by a possibly misspecified imputation model. This approach is valid when (i) the data are
MAR, (ii) the model for the conditional distribution of outcome given covariates implied by the imputation model
is the same as the analysis model and (iii) the analysis model is correctly specified. We therefore analysed imputed
data both before and after excluding imputed outcomes. As the proportion of missing covariate values among
offspring with observed outcome was small in the BCGS dataset, we increased this proportion for the simulation
(Part II only).

For both parts, we checked that the RGL model was not an obvious poor fit to the BCGS data by comparing
the LORs from a complete-case logistic regression of adult overweight on the other variables with the
corresponding LORs implied by the fitted RGL model. The estimates were similar, providing some reassurance.

We considered several simulation scenarios, by varying the strength of association between the auxiliary
variables and outcome (in Part I) and the amount of missingness in the covariates (in Part II). For each
scenario, we simulated 1000 datasets using R. RGL MI was performed using the mix library in R; FCS MI
used the ice package in STATA; M¼ 100 imputations were used. Full details are given in the online Appendix.

To summarise the results, in Part I the maximum RE of RGL MI versus FCS MI was 104% (this was for LOR
of ex-smoker). In Part II, the covariate with the highest RE was ex-smoker; this RE was 105% when 33% of ex-
smoker values were missing and 111% when 54% of ex-smoker values were missing. When imputed outcomes
were excluded before fitting the analysis model, these maximum REs decreased to, respectively, 102% and 108%.
Full results are in the online Appendix.

5 Robustness of FCS and joint model MI

In Section 4, we demonstrated that RGLMI can be more efficient than FCSMI but that the gains seem to be small
unless associations between variables are very strong. In this section, we show that these efficiency gains can come
at the price of bias when the RGL model is misspecified. In Section 5.1, we modify the RGL model used in Section
4.2 so that W1 is not normally distributed given Y. It is now a CRGL(W1) model but not a RGL model. We show
that when W1 is fully observed and Y is partially observed, logistic regression gives unbiased estimation when
imputation is by FCS MI but not when RGL MI is used. In Section 5.2, we modify the log linear model of Section
4.3 by introducing a third-order interaction between Y2, Y3 and Y4. The log linear model with only main effects
and pairwise interactions is now misspecified. We show that this causes bias when RGL MI is used but not when
FCS MI is used, because FCS MI makes no assumption about the distribution of fully observed variables. In the
online Appendix, we present a realistic analysis of data from the NCDS,9 which illustrates that use of RGLMI can
lead to serious bias in a situation where FCS MI does not.

5.1 One binary and two continuous variables

We simulated data from the following modification of the RGL model of Section 4.2.

W1 � Gammað2, 2Þ ð5Þ

YjW1 � Bernoulliðexpitð�1:9þW1ÞÞ ð6Þ

W2jY,W1 � Normalð10þ �YþW1, 9Þ ð7Þ

Now, W1 is no longer normally distributed given Y. This is a CRGL(W1) model but not a RGL model. We
considered eight scenarios defined by the value of � (1 or 3), by which variables were partially observed (either just
Y or both Y andW2), and by whether data were missing completely at random (MCAR) or MAR. The probability
that each partially observed variable was observed was 0.5 if data were MCAR and expitð�1þW1Þ if MAR (this
gives a marginal probability of missingness of 0.5). In scenarios where both Y and W2 were missing, their
missingness was independent given W1. For each scenario, we generated 1000 datasets each of size n¼ 1000.

Missing data were imputed using either FCS MI or RGL MI, with M¼ 50 imputations. Four analyses were
carried out: estimating E(Y) by the sample mean of Y; estimating parameters �0, �1 and �2 of
PðY ¼ 1jW1,W2Þ ¼ expitð�0 þ �1W1 þ �2W2Þ using either logistic regression or LDA; and estimating the
parameters of the linear regression of W2 on Y and W1. Using the formula in Appendix 1,
ð�0,�1,�2Þ ¼ ð�3:067, 0:889, 0:111Þ when �¼ 1 and ð�5:733, 0:667, 0:333Þ when �¼ 3.

Since W1 is fully observed and the CRGL(W1) model is correctly specified, logistic regression analysis
of data imputed by FCS MI should yield asymptotically unbiased estimators, whereas imputing using
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RGL MI or analysing using LDA may yield asymptotically biased estimators, because the RGL model is
misspecified. Table 3 shows the means of the parameter estimates when �¼ 1. Results for �¼ 3 are given in
Table 8 of the online Appendix. It can be seen that LDA gives a biased estimate of the LOR of W1 whether
one uses complete data, FCS MI or RGL MI. Provided that the analysis is logistic regression or linear regression,
there is no bias when using complete data or FCS MI. For RGL MI, on the other hand, there is bias in the
coefficient of W1 in the logistic regression and linear regression analyses. These biases are small for linear
regression and are slightly greater for � ¼ 3 than for � ¼ 1.

For the scenarios where Y and W2 were both partially observed, we also applied logistic regression to the
datasets imputed by RGL MI after excluding the individuals whose Y value had been imputed. Similarly, we
applied linear regression to the imputed datasets after excluding the individuals whoseW2 value had been imputed.
This strategy of excluding imputed outcomes before analysing the data has been advocated by Von Hippel15 as a
way of reducing bias caused by a possibly misspecified imputation model. Table 9 in the online Appendix shows
the results. Most or all of the bias has been removed for logistic regression but none has been removed for linear
regression. Note that Von Hippel did not recommend this approach when MI is done using strong auxiliary
variables.

Finally, in scenarios where Y1 and W2 were both MCAR, we additionally imposed 10% missingness on W1.
Tables 3 and 8 show that although there is some bias for logistic regression analysis when FCS MI is used, this is
much less than when RGL MI is used.

5.2 Four binary variables

Consider again the data generating mechanism of Section 4.3 but now suppose that the log linear model contains
an additional third-order interaction:

logPðY1,Y2,Y3,Y4Þ / exp
X4
j¼1

�jYj þ
X3
j¼1

X4
k¼2

�jkYjYk � 2Y2Y3Y4

 !

The log linear model with only main effects and pairwise interactions is now misspecified. Table 10 in the online
Appendix shows, for four true values of b ¼ ð�12, �13, �14Þ

>, the mean estimates of b when the complete data or
imputed data are analysed by logistic regression or by fitting the log linear model. This shows that there is bias

Table 3. Mean estimates when RGL model is misspecified and �¼ 1.

Analysis and regression coefficient

E(Y) lr(0) lr(W1) lr(W2) ld(0) ld(W1) ld(W2) ln(0) ln(Y) ln(W1)

True 0.300 �3.067 0.889 0.111 �3.067 0.889 0.111 10.000 1.000 1.000

cdata 0.303 �3.091 0.890 0.113 �3.232 0.987 0.113 10.001 1.012 0.995

Y MCAR, and W1 and W2 fully observed

FCS 0.304 �3.101 0.895 0.114 �3.241 0.992 0.114 9.999 1.011 0.996

RGL 0.296 �3.276 1.009 0.114 �3.456 1.131 0.114 10.024 1.013 0.979

Both Y and W2 MCAR, and W1 fully observed

FCS 0.304 �3.105 0.900 0.113 �3.245 0.997 0.113 10.006 0.998 0.993

RGL 0.296 �3.287 1.014 0.114 �3.468 1.136 0.114 10.032 1.004 0.974

All of Y, W1 and W2 MCAR

FCS 0.304 �3.124 0.916 0.113 �3.255 1.004 0.113 10.003 0.996 0.996

RGL 0.296 �3.299 1.028 0.114 �3.466 1.140 0.114 10.028 1.001 0.978

Y MAR, and W1 and W2 fully observed

FCS 0.303 �3.102 0.891 0.114 �3.237 0.983 0.114 9.998 1.012 0.998

RGL 0.303 �3.271 1.047 0.114 �3.445 1.161 0.114 10.024 1.012 0.972

Both Y and W2 MAR, and W1 fully observed

FCS 0.304 �3.111 0.898 0.114 �3.247 0.989 0.114 10.005 1.004 0.993

RGL 0.303 �3.290 1.051 0.115 �3.465 1.166 0.115 10.027 1.010 0.971

Lr: logistic regression; ld: linear discriminant analysis; ln: linear regression; (V): the regression coefficient associated with variable V (with (0) meaning the

intercept); MCAR: missing completely at random; FCS: full-conditional specification; RGL: restricted general location; MAR: missing at random.
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when fitting the log linear model (even to the complete data) or when imputation is by RGL MI, and that there is
no bias when the complete data or data imputed by FCS MI are analysed by logistic regression. Note that, unlike
the normality assumption of the RGL model, which is an intrinsic feature of that model, higher-order interactions
can be allowed in the RGL model, but in practice, this might not be done.

6 Discussion

FCS and joint model MI yield imputed data with the same asymptotic distribution when the conditional models used
by FCS MI are compatible with the joint model. However, we have shown that this asymptotic equivalence in terms
of the imputation distribution does not imply that FCS and joint model MI yield equally asymptotically efficient
estimates of the parameters in the analysis model. Moreover, FCS MI can be more robust than joint model MI to
misspecification of the joint model. We focussed on the RGL model. The efficiency gain from using joint model MI
with this model (RGL MI) rather than the corresponding FCS MI appears to be small, except when the outcome is
categorical and has a large proportion of missingness and very strong associations exist between the outcome and
covariates. On the other hand, we have shown that if the RGL model is misspecified, RGL MI can be much more
biased than FCS MI in this same situation, even when covariate-outcome associations are weaker.

Robustness of RGLMI can be improved by including additional interactions in the model (this could have been
done in, e.g. the analysis of the NCDS data in the online Appendix) or by conditioning on fully observed variables
Z (the CRGL(Z) model). However, the R mix library cannot be used to fit the CRGL(Z) model or to carry out
joint model MI with this model, unless Z includes only categorical variables. Bayesian modelling software, such as
WinBUGS, could be used, but this requires more specialist programming skills. Robustness of RGL MI can also
be improved by excluding individuals with imputed outcomes from the analysis. This approach was advocated by
Von Hippel (2007),15 at least when there are no strong auxiliary variables. In the absence of auxiliary variables and
when data are MAR, excluding individuals with imputed outcomes causes no loss of efficiency when the analysis is
by linear regression or LDA, and causes no bias and is likely to cause little loss of efficiency when analysis is by
logistic regression (especially when those with missing outcomes also have missing values in covariates).
Conversely, Sullivan et al.16 show that excluding imputed outcomes can cause significant bias when auxiliary
variables are strongly associated with both the outcome and missingness in that outcome. They did not, however,
investigate situations where the imputation model is misspecified.

Although careful assessment of goodness of fit of an imputation model could detect poor fit of that model, we
suspect that this may often not be done in practice. For this reason, FCS MI may be safer than RGL MI when a
large proportion of outcomes are missing, unless imputed outcomes are excluded from the subsequent analysis.
Since, as Sullivan et al.16 noted, this exclusion can itself induce another bias, we suggest that a good approach may
be to use FCS MI imputing the outcome last and including imputed outcomes in the analysis. Our results indicate
that the efficiency loss from using FCS rather than joint model MI is unlikely to be significant in practice.

Several comparisons of joint model MI with FCS MI have been published (e.g. Lee and Carlin17 and Kropko
et al.18 and references therein). However, these have focussed on joint model MI using a multivariate normal
model. The distributions of the imputed data from this joint normal model MI and from FCS MI are not
asymptotically equivalent, unless all variables are continuous. These published comparisons have generally
noted little difference in efficiency, and relative robustness depended on how categorical variables were handled
by joint normal model MI.

An alternative to RGL (or CRGL) MI and FCS MI is joint model MI under the latent normal model of
Goldstein and Carpenter.2,19 This can be implemented using REALCOM-IMPUTE or the jomo package in R.
This software allows conditioning on fully observed variables. This approach also extends to multi-level data by
using random effects. Unlike the RGL model, the latent normal model does not imply conditional distributions
that are linear or logistic/multinomial regressions. This is why we compared FCS MI with RGL MI rather than
with joint model MI under the latent normal model. It also means that, in general, there is incompatibility
(sometimes known as ‘uncongeniality’12) between a latent normal imputation model and a linear or logistic
regression analysis model. Nevertheless, while some forms of incompatibility (uncongeniality) between
imputation and analysis models (e.g. an imputation model that ignores an interaction present in the analysis
model12) may cause substantial bias in the estimates of the parameters of the analysis model, other forms may
often not matter in practice.7 Moreover, MI under the latent normal model may be more robust than RGL MI to
model misspecification; more research on this is needed.

A limitation of our work is that, because it was not feasible to study every possible data-generating mechanism,
we cannot rule out the possibility that there are scenarios in which large efficiency gains are possible without
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requiring strong associations between variables, although this seems unlikely. We focussed on parameter
estimation. It is plausible that many of our conclusions could apply when the model of interest is used for
prediction, since in that case the linear predictor is a weighted average of the individual parameters. However,
further research is warranted into the RE and relative robustness of joint model MI and FCS MI when the
ultimate aim is prediction, classification or clustering. Another direction of future research would be to
compare FCS and RGL MI when data are missing not at random, the CRGL model is misspecified or FCS
MI does not use compatible conditional models.20 It is possible that FCS MI using incompatible conditional
models may be more efficient than joint model MI using a misspecified joint model, especially when those
conditional models have been chosen to fit well to the observed data.

In conclusion, FCS MI may be preferable to joint model MI using the compatible joint model, viz. the RGL
model: it is more robust and is usually only slightly less efficient.
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Appendix 1

LORs implied by CGRL model

Consider the CRGL(Z) model of expressions (3) and (4). Partition Y as Y ¼ ðYA,Y
>
B Þ
>, where YA is a binary

variable (and not a dummy variable for a categorical variable with more than two levels). Similarly, partition hy as
hy ¼ ðhyA, h

>
yBÞ
> and similarly with hyy, hyz, hw0, hwy and hwz.

Equation (3) implies that

PðYA ¼ 1jYB,ZÞ ¼
expð�yA þ h>yAyBYB þ h>yAzZÞ

1þ expð�yA þ h>yAyBYB þ h>yAzZÞ

By using Bayes’ Theorem, it is easy to show that

PðYA ¼ 1jYB,Z,WÞ ¼
expð�0 þ b>1 YB þ b>2 Zþ b>3 WÞ

1þ expð�0 þ b>1 YB þ b>2 Zþ b>3 WÞ

where

b3 ¼ h�1v hwyA

�0 ¼ hyA � h>w0b3 � 0:5 h>wyAb3

b1 ¼ hyAyB � h>wyBb3

b2 ¼ hyAz � h>wzb3

The CRGL(Z) model reduces to the RGL model when Z is empty. Hence, the above expressions for �0, b1 and
b3 apply to the RGL model if b2, hyAz and hwz are omitted.
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