
HYPOTHESIS AND THEORY
published: 21 April 2021

doi: 10.3389/fncir.2021.643360

Frontiers in Neural Circuits | www.frontiersin.org 1 April 2021 | Volume 15 | Article 643360

Edited by:

Farzan Nadim,

New Jersey Institute of Technology,

United States

Reviewed by:

Horacio Rotstein,

New Jersey Institute of Technology,

United States

Leandro M. Alonso,

Brandeis University, United States

*Correspondence:

Frances K. Skinner

frances.skinner@gmail.com

Received: 18 December 2020

Accepted: 24 March 2021

Published: 21 April 2021

Citation:

Skinner FK, Rich S, Lunyov AR,

Lefebvre J and Chatzikalymniou AP

(2021) A Hypothesis for Theta Rhythm

Frequency Control in CA1

Microcircuits.

Front. Neural Circuits 15:643360.

doi: 10.3389/fncir.2021.643360

A Hypothesis for Theta Rhythm
Frequency Control in CA1
Microcircuits
Frances K. Skinner 1,2,3*, Scott Rich 1, Anton R. Lunyov 1, Jeremie Lefebvre 1 and

Alexandra P. Chatzikalymniou 1,3

1Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Krembil Research Institute, University Health

Network, Toronto, ON, Canada, 2Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada,
3Department of Physiology, University of Toronto, Toronto, ON, Canada

Computational models of neural circuits with varying levels of biophysical detail have

been generated in pursuit of an underlying mechanism explaining the ubiquitous

hippocampal theta rhythm. However, within the theta rhythm are at least two types

with distinct frequencies associated with different behavioral states, an aspect that

must be considered in pursuit of these mechanistic explanations. Here, using our

previously developed excitatory-inhibitory network models that generate theta rhythms,

we investigate the robustness of theta generation to intrinsic neuronal variability by

building a database of heterogeneous excitatory cells and implementing them in our

microcircuit model. We specifically investigate the impact of three key “building block”

features of the excitatory cell model that underlie our model design: these cells’ rheobase,

their capacity for post-inhibitory rebound, and their spike-frequency adaptation. We show

that theta rhythms at various frequencies can arise dependent upon the combination

of these building block features, and we find that the speed of these oscillations are

dependent upon the excitatory cells’ response to inhibitory drive, as encapsulated by

their phase response curves. Taken together, these findings support a hypothesis for

theta frequency control that includes two aspects: (i) an internal mechanism that stems

from the building block features of excitatory cell dynamics; (ii) an external mechanism

that we describe as “inhibition-based tuning” of excitatory cell firing. We propose that

these mechanisms control theta rhythm frequencies and underlie their robustness.

Keywords: theta rhythm, theta oscillation, hippocampus, inhibition, network, microcircuit

1. INTRODUCTION

Hippocampal theta rhythms (≈3–12 Hz) observed in local field potential (LFP) recordings are
associated with cognitive processes of memory formation and spatial navigation (Colgin, 2013,
2016; Hinman et al., 2018). Exactly how theta rhythms emerge is a complicated and multi-layered
problem, but it is known that there are two types of theta in the hippocampus, denoted type 1
and type 2, that have high (7–12 Hz) or low (4–7 Hz) frequencies, respectively. Type 2, but not
type 1, rhythms are dependent on cholinergic drive (Kramis et al., 1975; Bland, 1986; Buzsáki,
2002). That is, type 2 rhythms are atropine-sensitive and type 1 are not. In rodents, it has been
shown that social stimuli elicit high theta, and fearful stimuli elicit low theta (Tendler andWagner,
2015), and type 2 theta oscillations have been shown to be associated with increased risk-taking
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behavior (Mikulovic et al., 2018). In humans, theta frequencies
are lower overall (Jacobs, 2014), but it is still possible to
distinguish high and low theta frequencies, with low theta
supporting encoding and retrieval of memories (Kota et al.,
2020). Clearly, what the particular theta frequency is has
functional significance, and so how theta frequencies are
controlled is functionally important to consider.

It is now well-documented that theta rhythms can be
generated intra-hippocampally, emerging spontaneously from
an isolated whole hippocampus preparation in vitro (Goutagny
et al., 2009). In other words, hippocampal microcircuitry is
able to produce theta rhythms on its own. Simultaneous access
to cellular and population output in this in vitro preparation
presented an opportunity to untangle cellular and population
dynamics of how theta rhythms are generated. We took
advantage of this and built cellular and microcircuit models
that could generate theta rhythms with parameters directly
constrained by experimental data from the whole hippocampus
preparation and the experimental literature (Ferguson et al.,
2013, 2015a, 2017). Motivated by the perspective presented by
Gjorgjieva et al. (2016), we considered a “building blocks for
circuit dynamics” analysis approach in our microcircuit model
design (Ferguson et al., 2017). In this perspective, biologically
known cellular, synaptic, and connectivity characteristics are
considered as building blocks for circuit dynamics. For example,
one such cellular “building block” is post-inhibitory rebound

FIGURE 1 | Schematic showing aspects involved in the hypothesis developed in this study. Theta rhythms are generated intrinsically in a whole hippocampus

preparation of Goutagny et al. (2009) (“Experiment”). Their generation is captured in a microcircuit model design by Ferguson et al. (2017) (“Model Networks”). In the

present paper we assess the robustness of this model design and develop a hypothesis for theta frequency control (“Hypothesis Development”).

(PIR), which has previously been invoked as a contributor to the
generation of cortical oscillations (McCormick et al., 2015).

In this paper we use our theta-generating microcircuit model
to develop a hypothesis of how the theta frequencies could be
controlled. We first describe the model microcircuit design and
then assess the robustness of theta generation in the model by
considering heterogeneous pyramidal (PYR) cell populations.
From this, we use phase response curves (PRCs) and show that
inhibitory inputs affect the theta frequency. We thus propose a
hypothesis for theta frequency control in CA1 microcircuits that
is dependent on internal features of PYR cells and “inhibition-
based tuning” of PYR cell firing. We summarize our study in
schematic form in Figure 1.

2. A DESIGN OF MICROCIRCUIT MODELS
THAT PRODUCE THETA RHYTHMS

We have built cellular-based excitatory-inhibitory (E-I) network
models (Ferguson et al., 2017) to understand how the theta
rhythms observed in a whole hippocampus preparation by
Goutagny et al. (2009) could be generated. The model networks
(see Figure 1 schematic) are designed to represent a “piece” of the
CA1 region of the hippocampus – ∼1 mm3 that was determined
to be enough to self-generate theta rhythms (Goutagny et al.,
2009; Ferguson et al., 2017). It includes only two distinct cell
types, pyramidal (PYR) cells and fast-firing parvalbumin-positive
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(PV+) cells, as represented by a single compartment model with
an Izhikevich mathematical model structure (Izhikevich, 2006).
These cellular models have parameters determined from fits to
electrophysiological recordings from the whole hippocampus
preparation to match frequency-current (f-I) curves of PYR cells
(Ferguson et al., 2015a) and fast-firing PV+ cells (Ferguson
et al., 2013). The individual PYR cell model does not generate
bursting output. The model network consists of 10,500 cells
(10,000 PYR cells and 500 fast-firing PV+ cells) (Ferguson et al.,
2013, 2015b), with connectivity parameters estimated from the
experimental literature. In particular, there is sparse coupling
(< 1%) between PYR cells. We note that we took advantage of a
scaling relationship between cell number, connection probability
and excitatory synaptic weight that allowed us to use 10,000 PYR
cells rather than the 30,000 cell number size as estimated for the
“piece” of tissue.

We examined our models from a “building block for circuit
dynamics” perspective (Gjorgjieva et al., 2016) to determine if
theta rhythms (i.e., theta frequency population bursts) could
be generated according to experimental constraints. We first
found that experimentally constrained PYR cell network models
(E-cell networks alone) could generate population bursts of
theta frequency (Ferguson et al., 2015b), suggesting that a
cellular “building block” feature of spike frequency adaptation
(SFA) present in the constrained PYR cell models could
be an important contributor to theta rhythm generation. A
sample of output from a E-cell only network is shown in
the Supplementary Material. However, we also found that in
these E-cell only networks the PYR cells do not fire sparsely
as was observed experimentally (Huh et al., 2016). When we
included PV+ cells to create E-I model networks, population
bursts of theta frequency were still possible and were now
associated with sparse PYR cell firing in accordance with
the experimental data. As the addition of PV+ cells allows
PIR to be possible in the PYR cells, we consider PIR as
another building block feature of importance in generating
these intrinsic theta rhythms. Along with SFA and PIR features,
the PYR neurons have an inherent rheobase (Rheo) feature,
which is the amount of current required to make the PYR
cell spike (derived from fitting to the experimental data in
Ferguson et al., 2015a). We consider this to be a third
building block feature for theta rhythm generation. Further,
for the model output to be consistent with experimental
observations of excitatory postsynaptic current (EPSC) and
inhibitory postsynaptic current (IPSC) amplitude ratios, we
found that the connection probability from PV+ to PYR
cells was required to be larger than from PYR to PV+
cells—a particular prediction that has been examined and
found to be consistent with empirically derived connectivities
(Chatzikalymniou et al., 2020).

3. AN ASSESSMENT OF THE MODEL
DESIGN FOR ROBUST THETA RHYTHMS

In our previous work, we did not specifically examine the
sensitivity of theta rhythms to SFA, PIR, or Rheo features. To

address this here, we create a model database of 10,000 PYR
cell models.

3.1. PYR Cell Model Database and
SFA/PIR/Rheo Features
While there are various ways in which a model database could be
created, we do this by simply varying specific parameter values of
the PYR cell model (Equation 1) in a regular fashion.

CmV̇ = k(V − vr)(V − vt)− u+ Iother (1)

u̇ = a[b(V − vr)− u]

if V ≥ vpeak, then V ← c, u← u+ d

where k = klow if V ≤ vt , k = khigh if V > vt

Cm (pF) is the membrane capacitance, vr (mV) is the resting
membrane potential, vt (mV) is the instantaneous threshold
potential, vpeak (mV) is the spike cut-off value, a (ms−1) is
the recovery time constant of the adaptation current, b (nS)
describes the sensitivity of the adaptation current to subthreshold
fluctuations—greater values couple V and u more strongly
resulting in possible subthreshold oscillations and low-threshold
spiking dynamics, c (mV) is the voltage reset value, d (pA) is the
total amount of outward minus inward currents activated during
the spike and affecting the after-spike behavior, and k (nS/mV)
represents a scaling factor. Iother is applied to determine values
for PYR cell features, as described below.Model parameter values
(units above) for the PYR cell are: vr = −61.8; vt = −57; vpeak =
22.6; c =−65.8; khigh = 3.3;Cm = 115; a = 0.0012; b = 3; d = 10; klow
= 0.1. These parameters are as previously determined for strongly
adapting cells (Ferguson et al., 2015a).We refer to them as default
parameter values, and specifically, the a, b, d, klow parameters are
varied in creating the model database. Further details about the
model database are provided in the Supplementary Material.

From the created model database of PYR cell models, we
obtain a range of SFA, PIR, and Rheo features that are quantified
in the following fashion. For Rheo: Starting from vr , each PYR
cell model is given a constant current from −25 to 25 pA in
0.5 pA increments. If a spike is generated within the first 500
ms, then that constant current value is considered as the Rheo
quantified value. For PIR: Starting from vr , each PYR cell model
is subjected to a one second hyperpolarizing step current for
current values from 0 to −25 pA with a resolution of 0.5 pA. If a
spike occurs upon termination of a given hyperpolarization step
(i.e., a PIR spike) but not at the previous step value, then that step
value is considered as the PIR quantified value. For SFA: Starting
from vr , each PYR cell model is subjected to input currents for
one second, from 0 to 98 pA (inclusive) in 2 pA increments.
For each input current, the number of spikes is recorded, and
the interspike interval is calculated between the first and second
spikes, and the last and second from last spike. The inverse is
taken and defined as the initial and final frequency at that current.
The initial and final frequencies as a function of the current
steps creates a smooth, approximately linear relationship, so lines
are fitted to the initial and final frequency plots. The slopes of
those lines are subtracted from one another to produce the SFA
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FIGURE 2 | Distributions of PYR cell features from created model database. A heterogeneous set of PYR cells was created and their “building block” features of SFA,

Rheo, and PIR were quantified. Details of this quantification are provided in the Supplementary Material. Histograms show the number of occurrences of SFA [=]

Hz/pA, Rheo [=] pA, PIR [=] pA values, and vertical black arrows indicate [SFA,Rheo,PIR] base values. Also shown are narrow (N) and broad (B) subsets of

heterogeneous PYR cell populations and low (L), medium (M), or high (H) subsets of heterogeneous PYR cell populations that do or do not include base building block

values. SFA histogram has a bin resolution of 0.05, and Rheo, PIR histograms have a bin resolution of 0.5.

quantified value. Therefore, the larger the quantified SFA value
is, the stronger is the amount of the PYR cell adaptation, i.e.,
we get more reduction in the PYR cell spike frequency for a
fixed amount of input current; the more negative the quantified
PIR value is, the larger is the hyperpolarizing step required to
generate a spike at the end of the step; the larger the quantified
Rheo value is, the more input is required to cause the cell to
spike. For the PYR cell model with default parameter values, the
quantified values for the building block features are: SFA = 0.46
Hz/pA, Rheo = 4.0 pA, and PIR = −5.0 pA. We refer to these as
base feature values.With the created database of PYR cell models,
we obtain a range of building block feature values distributed
as shown in Figure 2. Further details about SFA, PIR, and Rheo
features are provided in the Supplementary Material.

3.2. Observations
In the extensive E-I network simulations of Ferguson et al. (2017),
the PYR cell models used were homogeneous, and all had default
model parameter values. However, the networks themselves were
not homogeneous because of the noisy external drives to the PYR
cell models. To examine the robustness of the theta-generating
mechanism in the E-I network models to variability in the
SFA, PIR, and Rheo features, we create heterogeneous PYR cell
populations from the model database and examine whether the
presence of theta rhythms in E-I networks is affected by varying
these building block features. We carry out our examination
such that the heterogeneous PYR cell population in the E-I
networks either does or does not include PYR cells that have
base values. As a brief aside, we note that when we examine
E-I networks that have homogeneous PYR cell models with
parameter values different from the default ones, but that have
similar SFA, PIR, and Rheo base values, the resulting networks
produce clear population bursts, but with a bit of variation in
frequency and power. Specific examples are provided in the
Supplementary Material.

For E-I networks with heterogeneous PYR cell populations
that have PYR cells that do include SFA, Rheo, and PIR
base values, theta rhythms continue to be expressed. We also
find that the network theta power is larger when there is
a narrow rather than a broad range of values encompassing
base ones. Figure 2 shows the narrow and broad ranges of
values in our created database. Further details are provided in
the Supplementary Material. This observation of theta power
difference suggests that particular quantified feature values affect
the robustness of theta rhythms since the power is larger when it
more narrowly encompasses base values.

For heterogeneous E-I networks that have PYR cells that do
not include base values for all features, we build E-I networks
that have a low (L), medium (M), or high (H) range of values for
SFA, Rheo, and PIR features in different combinations. Thus, a
given heterogeneous E-I network has a triplet of [SFA,Rheo,PIR]
features that have a L, M, or H range of values. These values are
shown in Figure 2. In Figure 3, we show the frequency (left) and
power (right) of the output of these heterogeneous E-I networks
designated by dots of a given color. The red circled dot is the
only E-I network that does have base values for all of the building
block features, i.e., [SFA,Rheo,PIR] = HML. We observe the
following for the network frequency: Networks with Rheo = L
do not produce theta rhythms when PIR and SFA = M or H;
There are no theta rhythms when Rheo = M values and SFA and
PIR = H; As Rheo increases, the network frequency increases,
and there appears to be a stronger control of frequency by the
Rheo feature relative to SFA and PIR features. For the theta
power, we find that it is lowest when Rheo = L and increases as
Rheo increases, but decreases as SFA or PIR increase. However,
when Rheo = M, the power increases as SFA increases and as
PIR decreases. From these trends, it would appear that the Rheo
feature controls the theta frequency and power more than SFA
or PIR. As larger values of Rheo refer to larger depolarizing
currents being required for the PYR cell to fire, our observations
imply that the amount of current needed for a PYR cell to
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FIGURE 3 | Frequency and power of theta rhythms in heterogeneous E-I networks. Each dot represents the frequency (left) or power (right) of the output of the

network that has [SFA,Rheo,PIR] features with a L, M, or H range of values as plotted, with the dot color representing the specific frequency or power value given in

the color bar. The red circled dot is the network that has feature values that include base values for all of the features, i.e., [SFA,Rheo,PIR] = HML. The dark blue

circles do not produce a rhythmic output, and the vertices that do not have any dots are where there were no individual PYR cell models to generate the particular

heterogeneous network. Further details are provided in the Supplementary Material.

fire is an essential controller of theta frequency and power,
assuming that other features allow rhythms to exist in the first
place. Further details from this examination are provided in the
Supplementary Material.

In summary, the exploration of our microcircuit model of
theta rhythm generation in the whole hippocampus preparation
leads us to the following conclusions regarding the influence of
the three “building blocks” on this dynamic: (i) a larger theta
power occurs in E-I networks with heterogeneous PYR cells that
include their base values and are narrowly distributed around
them, and (ii) particular rheobase current values control the
frequency and power of network rhythms more than the ability
of the PYR cell to spike on inhibitory rebound or the particular
amount of spike frequency adaptation. Thus, these simulations
of E-I networks with heterogeneous PYR cell populations have
allowed us to gauge the contributions of the different features and
have helped us to confirm the robustness to cellular heterogeneity
of the theta-generating rhythm mechanism in our microcircuit
model design.

4. USING THE ASSESSMENT AND DESIGN
TO DEVELOP A HYPOTHESIS FOR THETA
FREQUENCY CONTROL

As described above, we find that large, minimally connected
recurrent networks with fast-firing PV+ cells and PYR cells
can produce theta frequency population rhythms consistent
with experiment, driven, and controlled in part by the building
block features of SFA, PIR, and Rheo in PYR cells. In our
previous I-cell only network models of PV+ cells, coherent
network output was possible with experimentally constrained
PV+ cellular models and synaptic connectivities (Ferguson et al.,
2013). A sample of output from an I-cell only network is shown
in the Supplementary Material. In creating the E-I network

model setup, the PV+ cell network was “designed” to be in a
coherent state—a function of the appropriate excitatory drive
being received and the connectivity of PV+ cells. Specifically, we
chose the synaptic weight (between PV+ cells) to be such that it
could be at the “edge” of firing coherently (high frequency) or
not (see Figure 3 in Ferguson et al., 2013), and as such, given
an appropriate excitatory drive from the PYR cells, the PV+ cell
network could be in a high frequency coherent regime and be
considered to be producing an inhibitory “bolus” to the PYR cells.
This is an important consideration for our phase response curve
(PRC) considerations below.

From the several model sets of heterogeneous E-I model
network outputs described in the previous section, we
choose three that exhibit strong population rhythms of
different frequencies. Details on these three chosen networks
(specifically the heterogeneous PYR population as well as the
classification of their rhythms as “strong”) can be found in the
Supplementary Material. Raster plot outputs of the PYR cells in
these chosen heterogeneous E-I networks are shown in Figure 4

where the different rhythms are referred to as “slow,” “medium,”
and “fast.” Given the minimal nature of the microcircuit model,
the frequencies of these rhythms fall a bit outside theta ranges
(higher) for some networks, although the underlying theta
generation mechanism and the model design is the same.

Let us now take advantage of our microcircuit design to
examine how these frequencies are controlled by turning to PRC
considerations (Schultheiss et al., 2011). We note that PRCs are
commonly calculated using a brief, strong, excitatory current
pulse as a perturbation. We slightly modify that paradigm here
and instead use a negative pulse whose amplitude and duration
is motivated by the type of synaptic inputs generated during
an “inhibitory bolus” in our network model (see Figure 5). We
know that the PYR cell network can generate theta population
bursts on its own given its cellular adaptation characteristics (SFA
feature; Ferguson et al., 2015b). While on their own the PYR cells
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FIGURE 4 | Raster plot outputs of PYR cells from three heterogeneous E-I simulations. These three model sets generating population burst rhythmic output exhibit

three different frequencies that we refer to as “slow” (9.6 Hz), “medium” (13 Hz), and “fast” (15 Hz) from their respective model sets. For all three sets, the

heterogeneous PYR cells include those with Rheo base values, whereas only the model set producing the “medium” output has PYR cells with SFA base values.

Except for the model set producing “slow” output, PYR cells have PIR base values. That is, the triplet [SFA,Rheo,PIR] feature for the slow, medium and fast networks

are MMH, HML, and LML, respectively.

FIGURE 5 | Motivation for the setup in phase response curve (PRC) calculations. Assuming a theta-generating mechanism based on model design, PRCs are

generated based on an inhibitory input (“bolus”) coming from the PV+ cell network to an individual PYR cell. Each PYR cell is receiving a noisy drive shown as “Other

Input” as well as from other PYR cells. An illustrative f-I curve is shown for an individual PYR cell. An illustration of a computed PRC based on the inhibitory input to a

particular PYR cell is also shown. It would be dependent on the particular PYR cell’s model parameter values that dictates its f-I curve.

do not fire sparsely as in experiment, they do when a PV+ cell
population is included (Ferguson et al., 2017). We consider that
the resulting frequency of the E-I network’s population bursts is
due to a combination of the individual PYR cell’s firing frequency
and how much an inhibitory input could advance or delay the
PYR cell spiking (as quantified by PRCs). The setup to consider
this is schematized in Figure 5 and consists of the following: Each
PYR cell in the heterogeneous population receives excitatory
input from other PYR cells as well as a noisy drive (other

input). The amount of input a PYR cell receives would of course
fluctuate over time, but under reasonable approximation the
PYR cell receives a mean excitatory input of about 20–30 pA.
This approximation is based on the fact that in our E-I network
models (see Figure 1), theta population bursts occur when PYR
cells receive a zero mean excitatory drive with fluctuations of
≈10–30 pA (Ferguson et al., 2017). We then calculate PRCs as
described above. The inhibitory pulse can advance or delay the
subsequent PYR cell’s spike as quantified by the PRC, which in
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turn is dependent on the PYR cell’s intrinsic properties. All of
these aspects are schematized in Figure 5.

We consider the three cases of heterogeneous E-I networks
exhibiting different population burst frequencies shown in
Figure 4 and described as having a “slow,” “medium,” or “fast”
population burst frequency output. We generate PRCs for the
several PYR cell models in the population for each of these
model sets that produce the different frequency population
burst outputs. Each PYR cell model in the heterogeneous
population has particular PRC characteristics due to its given
model parameter values, and thus exhibits a specific intrinsic
frequency for a given input.

4.1. PRC Calculations
These proceed as follows: A set input current (20:2:30 pA) is
tonically applied to the model cell, and the period (defined λ)
of the cell’s firing is calculated as the time between the 9th
and 10th cell spike. The inverse of the period represents the
firing frequency of the cell, reported as averages and standard
deviations for entire model sets. We compute the phase response
of a model neuron to a perturbation at 100 equidistant times in its
normal firing cycle, where the perturbation is a 1ms current pulse
with −500 pA amplitude (as mentioned previously, considered
an approximation of the synaptic input received by these cells
following an “inhibitory bolus”). For 1 ≤ i ≤ 100, we define

1p =
λ

100
and deliver the perturbation at i∗1pms after the 10th

cell spike. We then measure the time between the 10th and 11th
cell spike as the “perturbed period” (defined λp). We calculate
the difference between this and the previously calculated period
(in the absence of any perturbation) and normalize this by the
normal firing period, meaning that in the PRC plots the y-axis

is
λ− λp

λ
. This means that negative values plotted in the PRC

correspond with a phase-delay, i.e., the perturbed period was
longer than the unperturbed period, and vice-versa. The x-axis in
the PRC plots are the normalized time at which the perturbation

was delivered, simply calculated as
i

100
.We note that we perform

this calculation separately for each i, i.e., we re-initialize the
cell and let it respond naturally to a tonic input until the 10th
spike for each value of i, rather than perform these perturbations
sequentially and risk confounding the responses.

In Figures 6B,C, we quantify aspects of the PRC curves. In
Figure 6B, we simply extract the value of the normalized phase
difference from the mean PRC curve for a perturbation delivered
at a normalized phase of 0.3 (denoted by the arrows overlaid on
Figure 6A). In Figure 6C, we quantify one aspect of the mean
PRC curve’s rate of change, specifically the variability of the
difference quotient calculated at each phase step, in the following
straightforward way: first, this difference quotient is calculated
for all but the last value of the normalized phase; second, the
variance of these data is calculated simply using the var function
in MATLAB.

The code for generating and plotting these PRCs can be
found at https://github.com/sbrich/Theta_PRCs. PRCs for input
currents other than 20 pA that is shown in Figure 6A can be
found at https://osf.io/yrkfv/.

4.2. Observations
In Figure 6, we first show an example of PRCs calculated for
an input current of 20 pA (Figure 6A). PRCs are calculated for
each model in a particular model set of heterogeneous PYR cell
models, with the averaged curve presented along with a range
of ± one standard deviation (shown by the shading around the
curve in each plot of Figure 6A). These PRCs showcase distinct
features: for instance, the PYR cells in the medium case uniquely
exhibit a region of phase-advance, while the PYR cells in the fast
case have the largest phase delay for perturbations delivered at
all but the latest phases. Clear distinctions between the PRCs for
each model set persist for all the input currents used.

To better visualize the influence of the intrinsic properties of
the PYR neurons on theta rhythm frequency, we plot an extracted
feature of the mean PRC against the mean firing frequency of
these model sets for each of our computed input currents in
Figures 6B,C, with the corresponding theta rhythm frequencies
associated with each model set denoted by the data point’s
color, with the extracted PRC features in each case described
in the previous section. These visualizations clearly illustrate
that both the PRC and the mean intrinsic firing frequency
of the PYR neurons in a given model set contribute to the
overall theta rhythm frequency; otherwise, these points would
be “flat” with respect to either the x or y axis. Furthermore, the
relationship between the extracted PRC feature of interest and
the mean intrinsic firing frequency varies notably depending on
the output theta rhythm frequency: for instance, in Figure 6B

both the “slow” and “medium” model sets show a monotonically
decreasing relationship between the extracted PRC value and the
mean intrinsic firing frequency, while the “fast” model set shows
a monotonically increasing relationship. Taken together, these
results show that it is a combination of the inhibitory drive and
the PYR cell’s excitability that contributes to the overall theta
rhythm frequency.

The PRCs measure of how the PYR cells respond to
perturbation help articulate potential mechanisms by which these
differing theta rhythm frequencies arise. For instance, while
the PYR cells in the fast case have the fastest individual firing
frequencies (notably faster than what is seen in population
models), their PRCs may be illustrative of how the inhibitory
“bolus” decreases this firing frequency toward the theta range.
Meanwhile, the PYR cells in the medium case have the
slowest individual firing frequencies, although they participate
in “medium” theta rhythm frequencies. The PRC in this case,
particularly the region of phase-advance, may elucidate how
inhibitory synaptic input actually accelerates PYR cell activity.
These particular examples rely upon the PRC feature extracted
and plotted in Figure 6B.

Thus, in the context of having stable population burst output
given by an E-I model network design with appropriate SFA,
PIR, and Rheo features, the PRC calculations here show that
an appropriate inhibitory input contributes to the resulting
population burst frequency. In essence, this analysis of the PRC
features of our model sets supports a hypothesis that intrinsic
properties of PYR cells, including those encapsulated by the
PRC measure, play a critical role in controlling the frequency of
population theta rhythms.
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FIGURE 6 | Theta rhythm frequency is influenced by inhibitory drive as quantified via PRCs and firing frequencies of individual PYR cells. (A) Mean PRC (solid line) for

the heterogeneous PYR cell population involved in “slow” (left), “medium” (middle), and “fast” (right) theta oscillations, calculated with an input current of 20 pA and

with the shading representing ± the standard deviation. There are 25, 556, and 74 different PYR cell models in the 10,000 PYR cell populations of slow, medium, and

fast cases, respectively. More details are provided in the Supplementary Material. The mean and standard deviation of the firing frequencies of the PYR cells at this

input level are included in the inset of each panel. (B,C) After calculating both the mean PRC and mean intrinsic firing frequency for the PYR cell populations

associated with our “slow” (red), “medium” (blue), and “fast” (green) theta oscillations for six input currents (20:2:30 pA), we extract a particular feature of the mean

PRC (the mean phase shift caused by a perturbation delivered at a phase of 0.3 in (B) and the variance of the mean PRC’s derivative in (C)) and plot it against the

mean intrinsic firing frequency. In neither case is there a linear relationship between either axis and the theta rhythm frequency, indicating that it is a more complex

combination that determines the population frequency. Note that, given the monotonic relationship between the input current and firing frequency in this range, the

leftmost point for each color represents an input current of 20 pA, with each subsequent point moving rightwards representing the next input current step.

5. DISCUSSION

We have used a microcircuit model, as designed to generate theta
rhythms representing those observed in a whole hippocampus
preparation, to develop a hypothesis for theta frequency control.
Our work has allowed us to propose a hypothesis that
encompasses two aspects: (i) an internal mechanism that stems
from SFA, PIR, and Rheo building block features of PYR cells,
and (ii) an externalmechanism that involves an “inhibition-based
tuning” of PYR cell firing. From previous work, we already knew
that our sparsely coupled CA1 PYR cell E-only networks could
produce theta frequency population bursts on their own, but the
majority of the PYR cells would be firing, which is unlike the
experimental observations of sparse PYR cell firing. With the
inclusion of PV+ cells to create E-I networks, the population
of PYR cells fired sparsely in accordance with experiment. It
makes sense that the addition of inhibitory cells leads to less
firing of PYR cells due to potential silencing from the inhibition.
That theta rhythms of strong power can still emerge despite the
participation of fewer PYR cells in the rhythm is likely due to
the PV+ cells tuning the otherwise diverse frequencies of the
PYR cells to similar frequencies, enabling this smaller group of
cells to produce strong rhythms. This constitutes a main part
of our proposed hypothesis. Relatedly, it has been shown that

feedforward inhibition plays a role in maintaining low levels of
correlated variability of spiking activity (Middleton et al., 2012).

It is important to highlight two key points that underlie our
proposed hypothesis. First, the PYR cell population needs to
be large enough so that it can collectively generate a strong
excitatory drive to the inhibitory PV+ cells, and in turn the PV+
cell population should be able to fire enough (and coherently) to
create a strong inhibitory “bolus” to tune the PYR cell population
output. Second, the net input (recurrent excitation, excitatory
drive, incoming inhibition) thus received by the PYR cells leads
to the generation of theta rhythms and its resultant frequency.
Some similarities exist between these points and the “PING
mechanism” underlying the generation of gamma rhythms in
E-I networks (Kopell et al., 2010; ter Wal and Tiesinga, 2013).
In PING, the interneurons are recruited by high firing PYR
cells which feed back to the PYR cells that subsequently fire
when inhibition has sufficiently decayed, and it is interesting to
note that recent research shows that rhythms with frequencies
approaching the theta range can arise in PING-motivated
networks (Rich et al., 2017). For the theta rhythms here, the large
population of PYR cells is able to create a large enough excitatory
drive to the inhibitory population that is able to fire coherently
and feedback to tune the PYR cell firing to robust theta frequency
rhythms. It is important to acknowledge that this mechanism and
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the subsequent frequency control hypothesis emerged from using
E-I networks that have parameter values with direct links to the
whole hippocampus preparation. That is, although the model is
minimal, it did not have arbitrary model parameter values.

We do not know whether a clear relationship between PYR
cell inputs and network frequency as described in the second key
point above actually exists, and it would be highly challenging
to directly examine this experimentally. We further note that
the minimal nature of our E-I model networks regarding
different inhibitory cell types and biophysical characteristics
limits experimental design considerations. However, since a
detailed, biophysical CA1 network model that includes PYR
cells and eight different inhibitory cell types has been created
(Bezaire et al., 2016), one can consider using it as a proxy for
the actual biological system to start to explore this. We have
done this by bringing together the described microcircuit model
used herein and the detailed, full-scale CA1 microcircuit model,
and examined how the theta network frequency produced by the
detailedmodel depends on the net input received by the PYR cells
(Chatzikalymniou et al., 2020). We found that the biologically
detailed models strongly support this dependence and thus our
proposed hypothesis for theta rhythm frequency control. Thus,
this indicates that theta frequencies in the biological system may
be controlled in such a fashion. In turn, this suggests that directly
modulating intrinsic properties of PYR cells could strongly affect
population theta rhythms.

In the previous work of Ferguson et al. (2015a), we had
created PYR cell models that were either strongly adapting based
on fits to the experimental data, or weakly adapting based on
another experimental dataset. In Ferguson et al. (2015b), when
either PYR cell models were used in E-cell only networks, that
could produce theta frequency population bursts. As discussed
in Ferguson et al. (2015a), it is unlikely that there are distinct
types of biological PYR cells that are strongly or weakly adapting,
but rather a continuum of adaptation amount dependent on the
underlying balances of biophysical ion channel currents. Our
explorations of the robustness of the theta generationmechanism
in the microcircuit model here revealed that the frequency and
power of theta rhythms were not strongly controlled by SFA
feature values relative to Rheo feature values. Thus, although we
created the model database starting from the strongly adapting
PYR cell model parameter basis, it likely would not havemattered
if the robustness examination of theta rhythm generation had
been undertaken using weakly adapting PYR cell models instead.

It is perhaps not surprising that Rheo feature values are the
main controller of the existence of theta rhythms and their
frequency and power, as the particular Rheo value dictates
whether a PYR cell would spike or not. We note that the
experimental findings of Goutagny et al. (2009) had already
suggested the importance of PIR in the generation of theta
rhythms. In actual CA1 PYR cells, it has been shown that
PIR spiking does occur, mediated by h-channels, and is locally
controlled by biophysical ion channel balances (Ascoli et al.,
2010). Whether PYR cells actually fire due to PIR during
ongoing theta rhythms may or may not be the case, and one
could potentially disentangle this in the models. However, the
hypothesis developed in this work points to a confluence of

features that culminate in the net current to individual PYR cells
being a focus of theta rhythm frequency control. Thus, changes
in the net drive to PYR cells or changes to the PYR cell’s intrinsic
properties such as h-currents that would affect PIR would be
expected to affect the resulting theta rhythm frequency.

Previously, in vitro slices from hippocampus have been shown
to generate theta rhythms (Fellous and Sejnowski, 2000; Gillies
et al., 2002), and modeling studies have been built on these data
to examine how theta rhythms are generated (e.g., see Gloveli
et al., 2005; Orbán et al., 2006). The difference between such
studies and the work here is that the in vitro whole hippocampus
preparation spontaneously produces theta rhythms without any
pharmacological or stimulatory influences, indicating that the
theta rhythm generating mechanism in the whole hippocampus
preparation is likely relevant in the behaving animal. Indeed,
direct correlates between the in vitro preparation and in vivo
recordings were shown regarding a reversal of theta rhythms
(Jackson et al., 2014). Our E-I network models were built in
direct correspondence with the whole hippocampus preparation,
including the large PYR cell network size, and the specific cellular
model parameters derived from fits to recordings from the whole
hippocampus preparation. In this way, they are fundamentally
different from the several models of theta rhythms that have
previously been developed (Kopell et al., 2010; Ferguson and
Skinner, 2018).

PRC theory has been used in a variety of ways in the
Neuroscience field (Schultheiss et al., 2011), and particularly
in consideration of network dynamics. For example, Hansel
et al. (1995) used PRCs to explain the differential capacity for
excitatory drive to synchronize networks of Type I or Type II
neurons (these types are differentiated by their bifurcation type;
Izhikevich, 2006), Rich et al. (2016) analyzed synchronization
features in purely inhibitory networks using PRCs, and Achuthan
and Canavier (2009) used PRCs to understand clustering in
networks. We took advantage of PRC theory by considering
phase-resetting of the PYR cells due to incoming inhibitory
input. In this way, we were able to hypothesize an inhibition-
based tuning mechanism for control of the theta rhythm
frequency based on the PRC shape (amount of advance or
delay) and the PYR cell’s intrinsic firing frequency. Our use
of PRCs relied on our observations of the effect of different
PRC shapes on the resulting theta rhythm. For example, such a
consideration was used by Rich et al. (2016) to explain differential
synchrony patterns in inhibitory networks of Type I vs Type II
neurons, and Pervouchine et al. (2006) used spike time response
curve methods to analytically explore theta-generating circuits
dependent on biophysical characteristics of oriens-lacunosum
molecular inhibitory cell types. While theory is strongly needed
and analytical considerations should be exploited whenever
possible, at the same time, this should not limit the integration
of experimental constraints (Skinner, 2013). We note that the
work here did not start from theoretical considerations such as
Type I/II cell types which can yield insights, but rather, due to
the opportunity of being able to obtain simultaneous cellular
and population output, multi-level experimental constraints were
used in building and designing the E-I microcircuit models from
the beginning.
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In conclusion, we have developed a hypothesis for how theta
rhythm frequencies are controlled in the CA1 hippocampus. This
hypothesis is built on the theta-generating mechanism of the
microcircuit model design. Even though it does not include all
of the known inhibitory cell types, it perhaps captures essential
elements in play in biological circuits and may apply more
widely in the brain regarding the generation and control of theta
rhythm frequencies.
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