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Antibiotic-resistant Staphylococcus aureus is becoming a major burden on

health care systems in many countries, necessitating the identification of

new targets for antibiotic development. Elongation Factor P (EF-P) is a

highly conserved elongation protein factor that plays an important role in

protein synthesis and bacteria virulence. EF-P undergoes unique posttrans-

lational modifications in a stepwise manner to function correctly, but

experimental information on EF-P posttranslational modifications is cur-

rently lacking for S. aureus. Here, we expressed EF-P in S. aureus to ana-

lyze its posttranslational modifications by mass spectrometry and report

experimental proof of 5-aminopentanol modification of S. aureus EF-P.

Staphylococcus aureus is one of the most common

pathogens and a causal agent of health care–associated
infections worldwide. Rapidly developing multidrug

resistance among staphylococcal clinical isolates urges

the search of new antimicrobials against these patho-

genic bacteria. Elongation Factor P (EF-P) is a con-

served protein involved in balance regulation of

polyproline motif–containing proteins, stress resistance

and virulence [1–4], which makes EF-P a good candidate

to be a target for inhibition of pathogenic bacteria. EF-P

provides specialized translation of proteins with stalling

amino acid motif–containing consecutive proline resi-

dues (e.g., PPP or APP) [5,6]. Due to the interaction of

the special posttranslational modification (PTM) in the

loop in domain I of EF-P and the CCA end of the accep-

tor stem, the initiator tRNA-growing peptide is properly

evacuated from ribosome [7]. In contrast with the

archaeal/eukaryotic two domain analogues aIF5A and

eIF5A, which are uniformly modified with deoxyhy-

pusine moiety [8], three different types of PTM for EF-P

have been revealed in different eubacteria: b-lysinilation
[9], rhamnosilation [10] and 5-aminopentanolation [11].

Based on the bioinformatical analysis of bacterial gen-

omes [12], it was proposed that bacteria from the genera

of Listeria and Staphylococcus highly likely modify their

EF-P by 5-aminopentanol, the same type of PTM as for

Bacillus subtilis EF-P. The experimental information on

the presence and type of EF-P modification in patho-

genic bacteria S. aureus is currently missing. To define

the status of the PTM of EF-P from S. aureus, we per-

formed mass spectrometry (MS) analysis of EF-P from

S. aureus (SaEF-P) homologically expressed in S. au-

reus, and found the presence of 5-aminopentanolation in

the conservative region at K32.

Abbreviations

CID, collision-induced dissociation; EF-P, Elongation Factor P; HCD, higher-energy C-trap dissociation; MS, mass spectrometry; PTM,

posttranslational modification; SaEF-P, EF-P from S. aureus.
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Materials and methods

Cloning

For expression of EF-P tagged with six histidine residues in

S. aureus, the structural gene efp fused with histidine tag

(efp-his) was subcloned from pET28a:efp into shuttle vector

pRMC2 [13]. For this sequence of structural gene coding,

EF-P appended with six codons of histidine and stop codon

was amplified using primers pET28aecor1-f 50-TTTTTT
GAATTCGTGAGCGGATAACAATTCCCCTCTAG-30 and
pET28aecor1-r 50-TTTTTTGAATTCATCCTCAGTGGTGG

TGGTGGTGG-30 using Encyclo polymerase (Eurogene,

Moscow, Russia) according to the recommendations of the

manufacturer. The resulting fragment containing efp-his was

digested with EcoRI (SibEnzyme, Moscow, Russia), purified

from agarose gel and ligated with pRMC2 preliminary

digested with EcoRI and treated with alkaline phosphatase

(SibEnzyme). The ligation mixture was transformed in

Escherichia coli strain DH5a. DNA from obtained clones was

digested with XbaI (SibEnzyme) to reveal constructs with

proper orientation of efp-his plasmids. The plasmids resulting

in 208- and 6877-bp fragments after treatment with XbaI con-

tain efp-his downstream of Tn-inducible promoter in the same

orientation with the promoter. The resulting plasmid was des-

ignated pRMC2:efp-his. To avoid restriction barriers, we first

transformed pRMC2:efp-his and pRMC2 into E. coli strain

DC10, whose DNA methylation pattern repeats that of S. au-

reus [14,15] . Plasmid DNA isolated from E. coli strain DC10

was used for electroporation of S. aureus 6390 using the pro-

tocol by Grosser and Richardson [16].

Protein isolation and purification

For efp-his expression in S. aureus, we modified the proto-

col designed for E. coli [17]: for induction, oxytetracycline

was added to a culture of S. aureus at concentration

200 ng�mL�1. After 4 h of growth in LB medium at 37 °C
with agitation at 180 r.p.m., the cells were harvested by

centrifugation at 4000 g, washed in cell resuspending buffer

and treated with lysostaphin at a concentration of

2 mg�mL�1 to lyse the cells. The lysate was cleared using

centrifugations at 75 465 g and then at 234 998 g for

30 min each. The cleared lysate was applied on Ni-NTA

column (QIAGene, Hilden, Germany). His-tag-containing

proteins EF-P and lysostaphin were eluted and separated

using anion exchange column MonoQ5/50 GL (GE, Chi-

cago, USA) with column volume of 1 mL using 10 column

volumes gradient (0–100% B) with buffers A (10 mM mag-

nesium acetate, 50 mM KCl, 10 mM NH4Cl, 5 mM Hepes,

pH 7.5, 1 mM DTT) and B (10 mM magnesium acetate,

1 M KCl, 10 mM NH4Cl, 5 mM Hepes, pH 7.5, 1 mM

DTT) and flow rate of 1 mL�min�1. Eluted EF-P was sepa-

rated by SDS/PAGE, cut from the gel and analyzed by

MS.

MS analysis

Gel bands were reduced, alkylated and digested with

trypsin at 37 °C overnight [18]. Extracted peptides were

then analyzed using an Ultimate 3000 nano-RSLC (Thermo

Scientific, San Jose, CA, USA) coupled in line with an

Orbitrap ELITE (Thermo Scientific). In brief, peptides were

separated on a C18 nanocolumn with a linear gradient of

acetonitrile and analyzed in a top 20 collision-induced dis-

sociation (CID) and a top 10 higher-energy C-trap dissocia-

tion (HCD) data-dependent MS. Data were processed by

database searching using SequestHT (Thermo Fisher Scien-

tific) with PROTEOME DISCOVERER 2.4 software (Thermo

Fisher Scientific) against S. aureus Swiss-Prot database.

Precursor and fragment mass tolerance were set at

10 p.p.m. and 0.6 Da, respectively, for CID and 10 p.p.m.

and 0.02 Da, respectively, for HCD. Trypsin with up to

two missed cleavages was set as enzyme. Oxidation (M,

+15.995 Da) and 5-aminopentanol/+101.084 Da (K) were

set as variable modification, and carbamidomethylation (C,

+ 57.021) as fixed modification. Peptides and proteins were

filtered with false discovery rate <1%. ProSight Lite was

used to confirm the fragment ions assignment [19]. Tables

corresponding to the fragments’ masses for the three MS2

spectra are presented in Tables S1–S4.

Results and Discussion

EF-P is a three-domain protein that can be found in

eubacteria with the exception of at least three species,

Carsonella ruddii, Hodgkinia cicadicola and Nasuia del-

tocephalinicola [20]. It was shown that EF-P promotes

translation of proteins containing polyproline residues

and possibly other stalling amino acid motifs [6,21].

Although the functional analogue of EF-P–eIF5a is

absolutely necessary for the eukaryotic cell, deletion of

efp gene is not lethal for a number of eubacterial species.

This might reflect comparatively rare occurrences of the

stalling motifs in these eubacterial species, which makes

EF-P dispensable for basic metabolism of the bacteria

[3]. Nevertheless, in some organisms, manifestation of

pathogenicity and stress resistance can be remarkably

reduced in Defp strains, for example, in the case of Sal-

monella enterica [2] and Shigella flexneri [4]. In Bacil-

lus subtilis, loss of EF-P or its 5-aminopentanol

modification results in a swarming motility defect [11].

Modification of EF-P was shown to be important for

rescuing of ribosome stalling caused by polyproline syn-

thesis. Pseudohongiella spirulinae, Thalassolituus oleivo-

rans and Nitrincola nitratireducens harbor both b-
lysinilation and rhamnosilation systems [22–24]. The

third modification, 5-aminopentanolation, was found in

B. subtilis, and BsEF-P has a conservative KPGKG

motif where the 32nd lysine residue carries the
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modification [11]. SaEF-P has a typical three-domain

structure with unstructured loop in domain I and

KPGKG motif with lysine residue in the 32nd position

[17,25,26]. To reveal modification in S. aureus, we car-

ried out homologous expression of SaEF-P tagged with

six histidine residues. Purified protein was used for clas-

sical bottom-up proteomic analysis, a peptide corre-

sponding to sequence (VIDFQHVKPGKGSAFVR)

was identified with and without 5-aminopentanol on

K32 (Fig. 1A,B). The site specificity was signed by two

flanking y fragments (y6 and y7) on either side of lysine

K32. We also found an acetylation modification at K32

(Fig. 2). For the three forms of the peptides, the

statistics, the ion assignment and the fragment mass

error are presented in the Supporting Information

(Table S2 for peptide with aminopentanol, Table S3 for

nonmodified peptide and Table S4 for acetylated pep-

tide). We assume that the acetylation plays a role as pri-

mary group for a 5-aminopentanol construction, and it

is detected during analyses as a stable intermediate of

the full modification. However, no valid information

about the relative proportion of the different forms of

the peptide can be deduced from the signal intensity,

considering that a modification on lysine can affect the

ionization efficiency. Previously it was shown that only

part of EF-P in bacteria carry modifications [27,28].

y16
+++

Y15
+++

y10
++y9

++

y8
++

y7
++

y11
++ y12

++

y13
++

y 14
++

y15
++

y9
+

y8
+ y10

+

Y14
+++

y6
+

V I D F Q H V K P G K* G S A F V R

A

B
V I D F Q H V K P G K G S A F V R

y16
+++

y6
+

y15
++

y14
++

y13
++

y12
++

y11
++

y10
++

y9
+

y10
+

y8
+

y7
+

y5
+

y5
+

y15
++

y9
++

Fig. 1. Annotated high-resolution MS2 spectrum for the identification of modification on K32. Observed fragments are indicated on the

amino acid sequence and on the high-resolution Fourier transform-based mass spectrometry (FT-MS/MS) spectrum. (A) tandem mass

spectrometry (MS/MS) spectrum with 5-aminopentanol on K32. (B) No modification on K32.
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As a result of our experiments, we established that

the EF-P in S. aureus is modified with 5-aminopen-

tanol at position K32 within the highly conserved

PGKG motif in domain I. The finding makes it possi-

ble to apply data about possible enzyme modifiers [27]

of this type of EF-P PTM to the S. aureus case. When

the exact enzyme cascade is established, it will be pos-

sible to make an experiment with coexpression of EF-

P with the modifying enzymes, and thus obtain a mod-

ified S. aureus EF-P in homogeneous form for future

structural studies.

Despite the available information, it is still unclear

how 5-aminopentanol is involved structurally in

polyproline synthesis. Because of the ambiguity in

position of the hydroxyl group [11], the structure of 5-

aminopentanol is not fully clear, and the hydroxyl

group could be directly involved in processes of

polyproline synthesis. Having fully modified S. aureus

EF-P in good quantities, by methods of structural

biology it will be possible to determine interaction

mechanisms of the modification with the ribosome and

also determine the exact position of the hydroxyl

group in the modification.

Based on ideas that functionally related proteins

could colocalize with the EF-P [9] gene, we checked

the EF-P gene neighborhood using STRING [29]

(Fig. 3). We have found that one protein, Xaa-Pro

aminopeptidase, strongly colocalizes within closely

related organisms in Firmicutes. Taking into account

that primary function of EF-P is the release of the

ribosome stalling caused by polyproline motifs, it is
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Fig. 2. Annotated high-resolution MS2 spectrum for the identification of acetylation modification on K32. Observed fragments are indicated

on the amino acid sequence and on the high-resolution FT-MS/MS spectrum.

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+

– B
ac

te
ria

Proteobacteria (1729 taxa)
Firmicutes (1050 taxa)

BacteriodetesChlorobi group (421 taxa)
Actinobacteria (737 taxa)

Cyanobacteria (143 taxa)
Mollicutes (68 taxa)
Spirochaetales (48 taxa)
Deinococci (40 taxa)
ChlamydiaeVerrucomicrobia group (37 taxa)
Fusobacteriales (30 taxa)
Chloroflexi (19 taxa)
FibrobacteresAcidobacteria group(18 taxa)
Thermotogales (17 taxa)
Aquificae (16 taxa)
Synergistaceae (15 taxa)
Planctomycetes (15 taxa)
unclassified Bacteria (14 taxa)
Thermodesulfobacteriaceae (17 taxa)
Deferribacteraceae (6 taxa)
Nitrospiraceae (4 taxa)
Gemmatimonadetes (3 taxa)
Chrysiogenaceae (2 taxa)
Dictyoglomus (2 taxa)
Armatimonadetes (2 taxa)

Nitrospina sp. AB629B18
Caldisericum exile

Eukaryota (477 taxa)
Archaea (168 taxa)

Fig. 3. Co-occurrence of putative proline aminopeptidase (light

yellow arrow) and efp (red arrow) revealed by analysis in STRING

[29].
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highly likely that the proline aminopeptidase could be

related to this process role. Supposedly, it could

degrade the inactive proteins containing polyproline

amino acid motifs, and thus release ribosome from

stalling events.

Recently discovered possible enzymes modifiers

apparently are involved in the modification process of

S. aureus EF-P. When the modifying proteins and

sequence of modifying EF-P reactions are clarified, it

would be interesting to knock out the enzyme-modifier

genes to check how this affects the functions of EF-P,

fitness of S. aureus and especially virulence. These

studies could show if the modifiers themselves are

potential inhibition targets. In the future it would be

possible to conduct structural studies of modifier

enzymes and their interactions with EF-P, and find

ligands for disruption of these interactions.

In S. aureus in the part of proteome controlled by

EF-P activity, some proteins are related to virulence

[30]. Based on the other studies of bacteria’s EF-P

[2,4,11], we can assume that the lack of functional EF-

P, as well as its modifying enzymes, could negatively

affect the viability of S. aureus and possibly lead to a

loss of virulence. Thus, further studies in this area can

potentially open the way to the creation of new anti-

staphylococcal antibiotics.

Conclusions

In this study, we report the finding of 5-aminopentanol

PTM at K32 of S. aureus EF-P by MS analysis. Using

bioinformatic methods, we found putative Xaa-Pro

aminopeptidase colocalized with S. aureus EF-P. The

Xaa-Pro aminopeptidase possibly could play a role in

ribosome release by means of degradation of stalling

peptides. Direct studies of the peptidase could shed

light on its exact role. The found PTM opens the way

for future studies of the 5-aminopentanol modification

pathway in S. aureus and studies of the PTM struc-

tural details. We hope that this knowledge about the

S. aureus EF-P modification could kick off research of

its modification pathway inhibition. The results

obtained could be further used for development of

new antistaphylococcal drugs.
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