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A B S T R A C T   

Background: Skin cutaneous melanoma is characterized by high malignancy and prognostic het
erogeneity. Immune cell networks are critical to the biological progression of melanoma through 
the tumor microenvironment. Thus, identifying effective biomarkers for skin cutaneous mela
noma from the perspective of the tumor microenvironment may offer strategies for precise 
prognosis prediction and treatment selection. 
Methods: A total of 470 cases from The Cancer Genome Atlas and 214 from the Gene Expression 
Omnibus were systematically evaluated to construct an optimal independent immune cell risk 
model with predictive value using weighted gene co-expression network analysis, Cox regression, 
and least absolute shrinkage and selection operator assay. The predictive power of the developed 
model was estimated through receiver operating characteristic curves and Kaplan-Meier analysis. 
The association of the model with tumor microenvironment status, immune checkpoints, and 
mutation burden was assessed using multiple algorithms. Additionally, the sensitivity of immune 
and chemotherapeutics was evaluated using the ImmunophenScore and pRRophetic algorithm. 
Furthermore, the expression profiles of risk genes were validated using gene expression profiling 
interactive analysis and Human Protein Atlas resources. 
Results: The risk model integrated seven immune-related genes: ARNTL, N4BP2L1, PARP11, 
NUB1, GSDMD, HAPLN3, and IRX3. The model demonstrated considerable predictive ability and 
was positively associated with clinical and molecular characteristics. It can be utilized as a 
prognostic factor for skin cutaneous melanoma, where a high-risk score was linked to a poor 
prognosis and indicated an immunosuppressive microenvironment. Furthermore, the model 
revealed several potential target checkpoints and predicted the therapeutic benefits of multiple 
clinically used drugs. 
Conclusion: Our findings provide a comprehensive landscape of the tumor immune microenvi
ronment in skin cutaneous melanoma and identify prognostic markers that may serve as efficient 
clinical diagnosis and treatment selection tools.  
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1. Introduction 

Skin cutaneous melanoma (SKCM) is a highly aggressive and life-threatening form of skin cancer, accounting for roughly 80% of 
skin cancer mortality [1]. Global epidemiology studies have revealed a rising trend in the incidence of melanoma, which increases by 
3%–7% each year, causing a severe threat to human health [2]. Early-stage SKCM has a favorable 5-year survival rate of 80–90% after 
radical resection, but if local progression or metastasis occurs, the survival rate markedly deteriorates to below 20% [3,4]. Late-stage 
SKCM is notoriously characterized by a highly heterogeneous genetic background, inefficient therapeutic response, and prevalent drug 
resistance. As a result, its clinical efficacy and prognosis have not met expectations; thus, effective biomarkers for prognosis prediction 
and treatment selection are urgently needed. 

Recently, the influence of the tumor microenvironment (TME) on the biological behavior of melanoma has been a topic of intense 
discussion. The tumor microenvironment is a complex network of tumor cells and the surrounding stromal cells. In particular, the 
crosstalk of various immune cells therein, with other components, sustains the plasticity of melanoma cells and extensively modulates 
melanomagenesis and progression [5]. Moreover, immunotherapies that stand as the mainstay of advanced melanoma treatment, 
especially immune checkpoint inhibitors, are greatly dictated by immune cell infiltration in TME [6,7]. Specifically, recent research 
has highlighted the importance of antigen-specific CD8+ T cells in the tumor-draining lymph nodes (TdLN-TTSM cells) as the primary 
cell population for positive PD1 immunotherapy outcomes. Adoptive transfer of TdLN-TTSM cells has demonstrated superior 
anti-tumor therapeutic efficacy [8]. Moreover, the chemokine CXCL12 has been identified as a regulator of antigen-specific CD8+ T 
cells’ exit from tumors to lymphatic vessels, and its inhibition promotes T cell retention, resulting in enhanced melanoma control [9]. 
Therefore, a comprehensive evaluation of the TME is crucial for precisely managing SKCM. 

Advances in sequencing technology and bioinformatics algorithms have enabled researchers to quantify the immuno-phenotype 
within the TME using marker genes efficiently. These cutting-edge approaches have led to identifying gene signatures that can 
serve as prognostic and drug response prediction tools for various types of tumors [10–13]. Motivated by these discoveries, our study 
aimed to investigate the expression profile of immune-related genes and their prognostic significance in SKCM, to identify potential 
predictive biomarkers and therapeutic targets for the disease. 

Here, a set of seven immune-related genes in combination with clinical data from several independent databases were employed to 
establish a prognostic signature using TME immune cell infiltration features as its core. Our risk model demonstrates the robust 
predictive ability for SKCM prognosis, and it represents a pivotal biomarker paradigm for immunotherapy and prognostic evaluation of 
SKCM patients. 

2. Methods 

2.1. Data source and immune infiltration analysis 

The TCGA RNA-seq data (Counts) and clinical follow-up data of SKCM patients were obtained from the Cancer Genome Atlas 
(TCGA) database (https://portal.gdc.cancer.gov/). Additionally, microarray gene expression data of GSE65904 and its clinical follow- 
up data were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The TCGA 
dataset was used to investigate prognosis-related genes and potential risk score systems. The clinical data of TCGA and GEO samples 
were compiled in Table 1. The GEO datasets were used for external validation. The immune infiltration analysis of the TCGA datasets 
was performed using the limma package. The significantly different immune cells (SDICs) were selected using the Pheatmap and 
corrplot packages, and clustered heatmaps were generated. 

Table 1 
Clinical feature of the included samples from both TCGA and GEO databases.  

TCGA   

Feature Data total 
Gender(Male/Female) 290/180 470 
Age(years) 58.22 ± 15.73  
Tumor Stage(0/I/II/III/IV/unknown) 7/77/140/171/23/52  
T(0/1/2/3/4/unknown) 23/42/78/90/153/84  
M(0/1/unknown) 418/24/28  
N(0/1/2/3/unknown) 235/74/49/55/57  
Patient status(life/death) 248/222  
Survival time(days) 1837.48 ± 1937.10  
GEO 
Feature Data total 
Gender(Male/Female/unknown) 124/89/1 214 
Age(years) 62.35 ± 14.40  
Patient status(life/death/unknown) 108/102/4  
Survival time(days) 981.40 ± 1222.82   
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2.2. Weighted gene co-expression network analysis (WGCNA) and prognosis-related genes (PRGs) 

WGCNA is a systems biology approach used to describe gene co-expression patterns between different samples. In contrast to 
focusing only on individual differentially expressed genes, WGCNA can identify co-expression modules at a genome-wide level and 
identify candidate biomarker genes or therapeutic targets based on the within-module connectivity and associations with phenotypes. 
Additionally, WGCNA is flexible and adaptive, as its analysis is not restricted to a specific type of gene expression data and does not 
require prior assumptions or the setting of thresholds or parameters [14]. 

To perform WGCNA analysis, we utilized the WGCNA package, building upon the results of the SDIC analysis. Gene modules of | 
correlation coefficient|>0.5 and P value < 0.05 were considered strong immune cell-correlated modules. Module-trait genes (MTGs) 
with the lowest P value were defined to be used in the subsequent steps of the study, based on which univariate Cox analysis was used 
to select the PRGs. Herein, the filter was P value＜0.0001. 

2.3. Development of prognosis-related immune cells risk score (ICrisk) 

The PRGs were inputted into the least absolute shrinkage and selection operator (LASSO) -Cox regression to identify the final risk 
genes (RGs) and establish the ICrisk. The formula calculated the risk score: ICrisk =

∑
βi*Expi, where βi is the risk coefficient of RGs, 

and Expi represents the gene expression value. According to the median of TCGA ICrisk, TCGA, and GEO samples were divided into 
high-risk and low-risk groups, respectively. 

2.4. The receiver operating characteristic (ROC) curve and nomogram 

The TimeROC package was used to draw the ROC curves and evaluate the predictive power of ICrisk along with the clinical 
features. The predictive power is considered with higher accuracy when area under the time-dependent receiver operating charac
teristic curve (AUC) > 0.5. Then, a nomogram was established to predict the survival time of SKCM patients. In addition, DCA curves 
were drawn using the ggDCA package to validate the accuracy of the nomogram. 

2.5. Survival and independent prognostic analysis of the risk model 

Kaplan-Meier (K-M) analysis was used to perform survival analysis between the high- and low- ICrisk groups. At the same time, the 
survival package was used to draw survival curves and perform univariate and multivariate independent prognostic analysis of ICrisk 
and other clinical features. Independent prognostic factors were defined as P value＜0.05 in univariate and multivariate independent 
predictive analyses. In addition, the survival state diagram and risk heatmap were generated using the pheatmap package. 

2.6. Tumor microenvironment and survival analysis of the risk model 

Immune and stromal scores were calculated using the estimate package. The differences in immune and stromal scores between 
high- and low-risk groups were compared to explore the relation between ICrisk score and TME; the results were visualized using the 
ggpubr package. For the survival analysis of the RGs, The TCGA samples were divided into high- and low-expression groups based on 
the best cut-off value of RGs to explore the influences of RGs on the patients and perform the survival analysis between the two groups. 

2.7. Tumor mutation burden (TMB) profiles of the risk model 

The mutation data for SKCM patients were downloaded from the TCGA data portal and integrated using Perl (version 5.30.0) 
software. Waterfall plots were drawn to visualize mutation frequencies using the R package “maftools”, and the mutation status of 
SKCM patients was compared between high- and low-risk groups. Meanwhile, SKCM patients were divided into groups with different 
TMB statuses and risk scores according to the optimal cut-off value of TMB for survival analysis, respectively. 

2.8. The relevance analysis of immune cells and RGs 

Besides the relationship between immune cells and risk scores, the correlation between immune cells and the expression of RGs was 
analyzed. The results were finalized using the ggplot2 package with a filter of |correlation coefficient| >0.4 and P value < 0.001. 

2.9. The relevance analysis of immune checkpoints and gene-set enrichment analysis (GSEA) 

The relevance between immune checkpoint genes and RGs was analyzed to study the relationship between immune checkpoints 
and the ICrisk model. Then, the ggplot2 package was used to visualize this relevance. Furthermore, TCGA samples were divided into 
high- and low-expression groups according to the RGs’ median expression value. Gene ontology (GO) and kyoto encyclopedia of genes 
genomes (KEGG) were utilized using the clusterProfiler package to study the functional enrichment. 
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2.10. Clinical relevance heatmap 

To allow the study of the correlation between the clinical features and patients’ prognosis, the ComplexHeatmap package was used 
to analyze and visualize the differences between high- and low- ICrisk groups. 

2.11. The therapeutic sensitivity prediction of patients with different risk scores 

At this step, the sensitivity of immunotherapy and other clinical used drugs was predicted. The potential response to immune 
treatment was represented by the immunophenscore (IPS), which was downloaded from The Cancer Immunome Database (TCIA) [15] 
（https://www.tcia.at/）. TCIA provides results of comprehensive immunogenomic analyses of next-generation sequencing data 
(NGS) data for 20 solid cancers from the TCGA database and other data sources. A higher IPS predicts a better response to immu
notherapy. In addition, the pRRophetic [16] package was used to calculate the 50% inhibiting concentration (IC50) value of 138 drugs. 

Validation in the gene expression profiling interactive analysis (GEPIA) and human protein atlas (HPA) databases. 
To validate the mRNA expression and prognosis of the identified IRGs in SKCM patients, we utilized the GEPIA database (http:// 

gepia.cancer-pku.cn/). This web-based resource enables loading all identified IRGs onto the server and offers data from TCGA and 
Genotype-Tissue Expression (GTEx) for validation analysis. We employed the standard processing pipeline [17] for the screening 
modules and main analysis conditions. To further validate the protein expression levels of the identified IRGs in SKCM tissues and 
normal skin tissues, we employed the HPA portal (https://www.proteinatlas.org/), which currently stands as the most comprehensive 
protein database. Using transcriptome, proteomics, and other omics technologies, the HPA has mapped an extensive collection of 
human protein expression images of tissues, cells, and organs. All the data in this knowledge resource is open access to allow scientists 
to freely access the data for exploration of the human proteome. 

2.12. Statistical analysis 

All the before-mentioned packages and statistical analyses were performed in R.4.1.0 software. The K-M and Cox regression an
alyses were used to analyze the overall survival (OS) differences in categorical variables. For continuous variables, Cox regression was 
used to calculate the hazard ratio (HR) and the differences of the OS. For the relevance analyses, the Spearman method was applied to 
calculate the correlation coefficient and P value. The Wilcoxon test estimated the statistical difference between the two groups. Unless 
otherwise stated, the P values were two-sided, and P < 0.05 was considered statistically significant. 

3. Results 

3.1. Immune cells infiltration analysis 

In the current study, we utilized the TCGA database to investigate immune cell infiltration in a cohort of 472 SKCM patients. Our 
results revealed that the central immune cells in SKCM were macrophages and T cells. In contrast, other immune cells, such as B cells 
and neutrophils, constituted only a small proportion of the infiltrated immune cells (Fig. 1A). We also examined the positive and 
negative correlations between different immune cells in the included samples. Our analysis showed that activated dendritic cells and 
neutrophils had the most positive correlation among immune cells, while CD8+ T cells and CD4+ T memory resting cells had the most 
negative correlation (Fig. 1B). 

3.2. Construction of the immune cells risk score model (ICrisk) 

The first step of establishing the model was selecting the optimal soft threshold in WGCNA analysis, which was set to 10 (Fig. 1C). 
Based on WGCNA results (Fig. 1D), 19 co-expressed gene modules were identified (Fig. 1E). The brown module was selected from the 
module-trait genes relationships as it led to the least total P values. Within this module, a total of 1484 genes were included, then a 
univariate Cox analysis was applied, resulting in the preservation of 452 prognosis-related genes (Table S1). Finally, after the LASSO- 
COX regression (Fig. 1F and G), seven genes were identified as the risk genes to be used in constructing the risk score model. These risk 
genes are ARNTL (Aryl hydrocarbon receptor nuclear translocator like), N4BP2L1 (NEDD4 binding protein 2 like 1), PARP11 (Poly 
(ADP-ribose) polymerase family member 11), NUB1 (Negative regulator of ubiquitin like proteins 1), GSDMD (Gasdermin D), HAPLN3 
(Hyaluronan and proteoglycan link protein 3), and IRX3 (Iroquois homeobox 3) (Fig. S1, Table S2). Therefore, the previously 
mentioned ICrisk formula was used to calculate the risk scores of each sample in TCGA and GEO databases, classifying them into high- 
and low-risk groups. 

3.3. The predictive power of the risk to SKCM patients 

After performing univariate and multivariate independent prognostic analyses, the tumor (T), node (N), and risk score were 
identified as independent prognostic factors through hazard ratio analysis, where the hazard ratios were around 1.4 with p-values 
<0.001 (Fig. 2A and B). The AUC values at 1, 3, or 5 years in the ROC curves were greater than 0.7 (Fig. 2C), illustrating the 
considerable value of the model in predicting the overall survival (OS) of SKCM patients. Moreover, comparing the AUC of the 
established risk model and other clinical features, such as stage, demonstrated that the established risk model had better prediction 
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power (Fig. 2D). Subsequently, a nomogram was constructed to predict patients’ survival time after suffering SKCM, displaying the 
weight of each prognostic factor (Fig. 2E and F), and the corresponding DCA curves confirmed the effectiveness of the nomogram 
(Fig. 2G). 

Fig. 1. Construction of the immune cells risk score model (ICrisk). (A) The analysis of the immune cell infiltration from the TCGA database. (B) 
Immune cells correlation heatmap indicating the positive and the negative correlations between the different immune cells in the included sample. 
(C) The optimal soft threshold in WGCNA analysis was selected before the model establishment. (D) Gene modules identified by WGCNA. (E) 
Correlation between gene modules and immune cells. (F, G) The LASSO coefficient profiles about 7 IRGs, the lower X-axis indicates log (λ), the 
upper X-axis indicates the average number of OS-related genes, and the Y-axis shows the partial likelihood deviance error. Red dots indicate the 
average partial likelihood deviance about the model with a given λ, the vertical bars represent the range of the partial likelihood deviance errors, 
and the vertical black dotted lines meant the best fit with the optimal λ values. 
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3.4. Survival analysis of the ICrisk in TCGA and GEO datasets 

Based on the ICrisk, patients were stratified into low- and high-risk groups. K-M curves demonstrated that patients with high-risk 
scores had significantly lower OS than low-risk scores with a p-value below 0.0001 (Fig. 3A). Furthermore, the risk curve and the 
scatter diagram of TCGA samples indicated that the mortality of the high-risk group was higher than the low-risk group (Fig. 3C). 
Although surprisingly, six out of the risk model genes were upregulated in a low-risk group than the high-risk group, IRX3 was the only 
gene upregulated in the high-risk group (Fig. 3B). These correlation results were also speculated in GEO samples (Fig. 3D–F). 

3.5. Different TME and TMB patterns in the ICrisk 

To this end, we estimated both stromal and immune scores in TCGA samples. The stromal scores ranged from − 1781.3 to 1886.2, 
while the immune scores ranged from − 1473.7 to 3707.7. Notably, these estimated scores negatively correlated with tumor purity 
(Fig. 4A). Of note, the immune and stromal scores displayed distinct distributions in the high- and low-risk groups (Fig. 4B). 

Fig. 2. The univariate (A) and multivariate (B) analysis for the ICrisk (95% confidence interval (95% CI)). (C) The receiver operating characteristic 
(ROC) curves of ICrisk in predicting 1,3, and 5 year survival. (D) The ROC curves of ICrisk and other clinical features in predicting 1-year survival. 
Nomogram predicting the overall survival (E) and calibration plots for predicting survival at 1,3, and 5 years (F). The points for each of the six 
variables are obtained by drawing a line upwards from the value of each variable to the points line. The sum of points for the six variables is marked 
in the total points line, and the line drawn perpendicularly downward indicates the probability of survival at 1, 3, and 5 years. (G) Decision curve 
analysis (DCA) of the nomogram predicting 1, 3, and 5 years OS. 
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Fig. 3. Survival analysis of the ICrisk in TCGA and GEO datasets. K-M curves of the high-risk and low-risk groups of TCGA (A) and GEO (D), respectively. Curves were compared using the log-rank test. 
The expression heatmap of identified genes in TCGA (B) and GEO samples (E). Risk survival status plot of TCGA (C) and GEO samples (F). 
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The distribution of mutations in the low- and high-risk subgroups was compared, and the top five mutant genes in both groups were 
TTN, MUC16, BRAF, DNAH5, and PCLO (Fig. 4C and D). Notably, the low-risk group exhibited a higher mutational burden (Fig. 4E). 
The TMB is known to be positively correlated with immunotherapy efficacy, and consistent with this, the high-TMB group had a better 
probability of survival (Fig. 4F). In accordance with previous results, patients with high TMB and low-risk scores had the most 
favorable survival outcomes. Conversely, patients with low TMB and high-risk scores experienced the poorest survival outcomes 
(Fig. 4G). 

3.6. ICrisk predicts therapeutic benefits 

IC50 values were calculated for 138 drugs in TCGA-SKCM patients to investigate the potency of ICrisk in predicting SKCM response 
to standard drugs, including chemotherapy, targeted therapy, and immunotherapy. The results indicated that patients in the low-risk 
group were more sensitive to imatinib, parthenolide, and sorafenib with p-values of 2.8e-09, 5.5e-05, and 9e-16, respectively 
(Fig. 5A–C). In contrast, patients in the high-risk group exhibited increased sensitivity to lenalidomide, metformin, and methotrexate, 

Fig. 4. The association of ICrisk with TME and TMB. (A) The risk score’s correlations between stromal score (left panel) and immune score (middle 
panel), and the correlation between estimate score and tumor purity (right panel). (B) Differences of TME scores in the ICrisk. The waterfall plots of 
most frequent somatic mutations in high-risk (C) and low-risk (D) groups. (E) TMB status in the ICrisk. (F, G) Survival analysis of risk groups with 
different TMB statuses. 
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Fig. 5. The ICrisk’s capacity in predicting therapeutic benefits. The predicted sensitivity of high- and low-risk patients to several clinically used 
drugs, including imatinib (A), parthenolide (B), sorafenib (C), lenalidomide (D), metformin (E), and methotrexate (F). (G–J) The association be
tween IPS and ICrisk. IPS, IPS-PD1, IPS-CTLA4, and IPS-PD1/CTLA4 scores significantly increase in the low-risk group. 
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where the p-values were 2.22e-16, 4.4e-6, and 1.4e-14 (Fig. 5D–F). Regarding immunotherapy sensitivity, the low-risk group had a 
higher immunophenoscore (IPS), indicating that low-risk patients were more responsive to immunotherapies such as PD-1 and CTLA4 
inhibitors (Fig. 5G–J). 

3.7. ICrisk is associated with the SKCM immune signature 

The interconnection between immune checkpoints and identified genes was further explored in this study. The analysis of immune 
checkpoints and risk genes revealed that most risk genes were positively correlated with immune checkpoints, except for IRX3, which 
showed a negative correlation with most immune checkpoints. Moreover, the risk score was also negatively correlated with most 
immune checkpoints, although a few immune checkpoints (VTCN1, TNFRSF14, CD276) did not follow this pattern (Fig. 6A). The next 
step was investigating the crosstalk between the risk genes and immune cells. The results indicated a strong association between risk 
genes and immune cells. For example, GSDMD was positively correlated with only one immune cell, while HAPLN3 was inter
connected with 28 immune cell phenotypes (Table S3). In total, 88 immune cell phenotypes were found to be related to ICrisk, of which 
16 exhibited positive relationships, while 72 were negatively related (Fig. 6B). 

To explore the potential mechanisms involved in the different clinical outcomes related to ICrisk, we performed GSEA enrichment 
analysis with GO and KEGG annotations for different expressions of identified IRGs. Surprisingly, we found that six risk genes (ARNTL, 
GSDMD, HAPLN3, N4BP2L1, NUB1, and PARP11) exhibited nearly uniform functional enrichment in low- and high-expression groups. 
The genes involved in leukocyte activation and regulation, immune function, adaptive immune response, cytokine and cytokine re
ceptor interaction, primary immune efficiency, and hematopoietic cell lineage were enriched in the high-expression group. 
Conversely, in the low-expression group, genes related to skin development, such as cornified envelope and retinol metabolism, 
keratinocyte differentiation, and epidermis development, were enriched. However, consistent with the previous results of the immune 
checkpoint analysis, IRX3 exhibited an opposite trend (Fig. 6C–F, S2A-D). 

3.8. Expression profiling of risk genes and prognosis analysis 

Our ICrisk signature was validated in both GEPIA and HPA datasets. Analysis of the GEPIA transcriptional data revealed that all risk 
genes exhibited differential expression in mRNA between tumor and normal tissues, with GSDMD, HAPLN3, NUB1, and PARP11 being 
more highly expressed in tumor samples. At the same time, ARNTL, IRX3, and N4BP2L1 were more highly expressed in normal tissues 
(Fig. 7A–G). Immunohistochemistry analysis of protein expression patterns in the HPA demonstrated consistency with mRNA 
expression for ARNTL, GSDMD, and NUB1 but not for N4BP2L1, which showed the opposite trend. HAPLN3 and PARP11 displayed 
fewer cancer-specific expression patterns (Figs. S3A–F). 

Additionally, we individually conducted the survival analysis of the risk genes, revealing a significant difference in OS between 
high- and low-expression groups for all genes, underscoring their prognostic relevance. Specifically, K-M curves showed that patients 
in the high-expression group for IRX3 had a poorer OS, while patients in the high-expression group for the other risk genes had a better 
OS (Fig. 7A–G). Finally, comparing clinical features, We observed significant differences in age, stage, and tumor (T) between the high- 
and low-risk groups (Fig. 7H). 

4. Discussion 

The high malignancy and prognostic discrepancy of cutaneous melanoma have underscored the pressing need for effective bio
markers to accurately predict survival and therapeutic response. Recent advances in sequencing technologies have made it possible to 
systematically identify critical genetic and epigenetic alterations in various types of melanoma. Additionally, the availability of bulk 
transcriptome information from cancer genome databases has enabled the mining and translating data from multiple genomics aspects 
[18,19]. In this study, we leverage several landmark datasets to construct an immune-based prognostic signature through an extensive 
network analysis of immune-related gene profiles in SKCM. 

Herein, our study demonstrates consistent results that underscore the effectiveness of our prognostic model. Specifically, we 
developed the ICrisk signature, which uses a risk-score system to classify SKCM patients into high-risk and low-risk groups with 
significantly different survival probabilities. Both univariate and multivariate Cox regression analyses identified the risk score as an 
independent prognostic factor. Furthermore, we validated the robustness of our risk model in two independent datasets. Importantly, 
our clinical relevance Heatmap revealed that the risk score was independent of conventional clinical characteristics. We also found 
that the risk score demonstrated higher sensitivity and better clinical applicability than conventional criteria for predicting melanoma 
survival, as evidenced by our ROC curves and nomogram analysis. These results highlight the potential of our model for improving 
clinical decision-making in managing cutaneous melanoma patients. 

Our ICrisk signature has integrated 7 IRGs (ARNTL, GSDMD, HAPLN3, IRX3, N4BP2L1, NUB1, PARP11). A subset of these iden
tified genes are not solely defined to be associated with carcinogenesis but rather to play a regulatory role in non-malignant physi
ological or pathological processes, such as ARNTL controlling circadian rhythms [20], GSDMD regulating inflammatory responses in 
cardiac and lung injury pyroptosis [21,22], and IRX3 regulating obesity-related metabolism [23]. In recent years, studies have started 
supporting their roles in cancer pathology (Table 2). However, evidence relating to melanoma is still lacking. Consistent with K-M 
survival results, ARNTL and NUB1 exhibited tumor-suppressing phenotypes in several in vitro studies. Conversely, GSDMD, HAPLN3, 
and N4BP2L1 are indicated to correlate with poor tumor prognosis, suggesting they might function distinctively in melanoma. 
Regarding PARP11, a recent critical study uncovers its link to TME immunosuppression. Specifically, PARP11 has been shown to 
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downregulate IFNAR1 (type I interferon receptor) on CD8+ cytotoxic T lymphocytes, which results in inhibition of the 
tumor-eliminating ability of these cells, as well as decreased efficacy of CAR-T (chimeric antigen receptor T-cell) immunotherapy [33]. 
Although PARP11 was defined as less cancer-specific in the HPA, our risk model, coupled with existing literature, still supports its close 
correlation with TME and the prognosis of SKCM. 

Fig. 6. The ICrisk is associated with SKCM immune signature. (A) Immune checkpoint correlation analysis. (B) Crosstalk between immune cells and 
risk score, the color of the dots indicate the software used in the estimation. (C–F) GESA enrichment analysis explores correlation between risk genes 
and possible biological pathways, including GO (C for PARP11 and E for IRX3) and KEGG (D for PARP11 and F for IRX3). 
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Out of our gene set, HAPLN3 has already been integrated into other prediction models, two of which were concerning melanoma 
[35,36]. These studies have concluded that HAPLN3 is a potential signature that could be used in prognosis, risk assessment, and 
prediction of immunotherapy response in melanoma patients, especially in combination with specific clinical features. In addition, a 
pan-cancer analysis has examined several pathological roles of the GSDM family in kidney renal clear cell carcinoma (KIRC). In 
particular, GSDMD is considered the most promising biomarker for evaluating KIRC prognosis and drug sensitivity [37]. Overall, the 

Fig. 7. Risk genes expression and survival analysis. The scatter difference diagram of ARTNL (A), GSDMD (B), HAPLN3 (C), IRX3 (D), N4BP2L1 (E), 
NUB1 (F), and PARP11 (G) mRNA expression in tumor (T) and normal (N) skin tissue. (A–G) Corresponding K-M survival analysis of risk genes. (H) 
Clinical characteristics heatmap integrating ICrisk. 
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aforementioned genes in melanoma have received comparatively less in-depth research attention, particularly regarding their specific 
roles in melanoma TME and immunity, which still need to be well-established. To date, most evidence of their involvement in mel
anoma pathogenesis is based on bioinformatics studies. Therefore, additional research efforts are essential to comprehensively un
derstand the contribution of these identified genes to melanoma immunity and prognosis. 

SKCM treatment is constantly evolving, with researchers consistently updating current therapies and exploring novel treatment 
strategies. Currently, immunotherapy remains the primary focus of research, with efforts being made to maximize its potential. The 
combination of CTLA4 and PD1 blockage has demonstrated a significant breakthrough in treating advanced melanoma [38]. 
Furthermore, postoperative adjuvant therapy utilizing PD1 blockage has shown significant survival benefits in early-stage melanoma 
patients [39]. Moreover, ongoing research investigating novel immune targets, such as LAG-3 and TIM-3, exhibits promising potential 
for therapeutic improvement [40,41]. In our study, the risk model’s immunological characteristics and drug sensitivity can offer 
alternative insights into the treatment strategy for SKCM. 

Our findings suggest that high ICrisk indicates an immunosuppressed status, characterized by low frequency of TMB, subdued 
immune cell activities, and overall downregulation of immune checkpoints. Consequently, the high-risk group may have fewer 
immunotherapy options and benefits compared to the low-risk group. Notably, CD276 was the immune checkpoint that demonstrated 
the most significant positive association with the risk score. CD276, also known as B7–H3, belongs to the B7 family of immunoreg
ulatory proteins that play a crucial role in regulating T-cell activation and autoimmunity. Previous pre-clinical studies have shown that 
targeting CD276 can improve the therapeutic control of melanoma by increasing patient-derived cells’ sensitivity to chemotherapy, 
MAP kinase (MAPK), and AKT/mTOR inhibitors [42]. Combining the blockade of PD1 with CD276 can lead to further enhanced ef
ficacy [43,44]. Therefore, enoblituzumab, a humanized anti-CD276 mAb (monoclonal antibody), has been designed and is currently 
undergoing intensive clinical trials for various advanced cancers [45–47]. 

Furthermore, the drug sensitivity analysis indicates that the high-risk group may benefit from lenalidomide, methotrexate, and 
metformin. In particular, recent research suggests that metformin can enhance the efficacy of anti-PD1 Ab in melanoma models by 
stimulating the production of mitochondrial reactive oxygen species, which robustly activates CD8+ infiltrating T lymphocytes’ 
proliferation [48]. These findings suggest synergistic immune checkpoints and immune activation may offer potential therapeutic 
options for SKCM patients in the immunosuppressed high-risk group. Ultimately, we aim to optimize combination regimens of 
chemotherapy, targeted therapy, and immunotherapy based on our ICrisk model, thereby providing new insights for SKCM treatment 
strategies. 

Before our research, various prognostic immune-related gene signatures for skin melanoma had been identified. These signatures 
have different numbers of marker genes, ranging from 2 to 33 [35,36,49–52]. While a larger number of marker genes is usually 
considered to enhance the specificity and predictive power of prognostic models, an excessive number of marker genes can also 
complicate the data, introduce noise, and increase the cost of gene testing, thus impeding clinical translation. In this context, our study 
developed the ICrisk model with an appropriate number of marker genes, achieving AUC values of 0.7 for predicting 1-, 3-, and 5-year 
survival. Significantly, we expanded the pool of SKCM biomarkers by identifying novel prognostic genes that have not been previously 
evaluated as a complete set in published prognostic models for SKCM. Moreover, we comprehensively assessed ICrisk in multiple 
aspects, including the tumor microenvironment, mutational burden, drug sensitivity, immune checkpoints, and biological pathways. 
These analyses provided a more thorough understanding of the model’s performance and potential clinical relevance. 

However, our study has several limitations that need to be acknowledged. Firstly, our study is based primarily on existing database 
resources, where the sample cohorts are retrospective. Therefore, the robustness of the predictive value of the risk model needs to be 
validated with additional external clinical samples and real-world data. Secondly, the datasets’ clinical information was limited in 
terms of surgery and radiation therapy, which prevented us from incorporating these clinical characteristics into the assessment of the 
predictive value of the ICrisk. Thirdly, as previously mentioned, the biological functions of the identified genes in SKCM, particularly in 
TME regulation, are not yet clearly defined and require further examination using experimental methods. 

Table 2 
The role of identified IRGs in cancer pathology.  

Identified 
genes 

Roles in cancer pathology 

ARNTL Promoting apoptosis and inhibiting cell viability via autophagy in oral cancer [24]; Suppressing cell proliferation and enhancing sensitivity to 
cisplatin in ovarian cancer cells [25] and nasopharyngeal carcinoma by activating CDK5 [26] 

GSDMD Highly expressed in bladder cancer tissue and linked with a higher risk of local tumor recurrence [27] 
IRX3 Regulating the differentiation of Wilms tumor by activating WNT/β-catenin-signalling [28]; Enhancing the morphologic and phenotypic 

differentiation block of acute myeloid leukemia cells [29] 
N4BP2L1 Promoting oral squamous cell carcinoma invasion by activating miR-448 [30] 
NUB1 Inhibiting proliferation and invasion of gastric cancer cells through upregulation of p27Kip1 and inhibition of epithelial-mesenchymal transition 

[31]; Exerting IFN-a induced antimitogenic function in renal cell carcinoma [32] 
PARP11 Downregulating type I interferon receptor and promoting immunosuppression in the TME [33] 
HAPLN3 Highly expressed in breast cancer tissue and positively correlated to human epidermal receptor 2 level [34]  
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5. Conclusion 

Our study identifies prognostic immune genes associated with SKCM and establishes a network related to prognosis. Furthermore, 
we highlight the crucial role of seven identified IRGs in regulating the immune microenvironment, disease progression, and drug 
sensitivity in SKCM patients. These findings provide potential strategies for guiding personalized and precise therapies for SKCM. 
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