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Abstract

The ubiquitin/proteasome pathway plays a crucial role in many biological processes. Here we report a novel role for the
Arabidopsis 19S proteasome subunit RPT2a in regulating gene activity at the transcriptional level via DNA methylation.
Knockout mutation of the RPT2a gene did not alter global protein levels; however, the transcriptional activities of reporter
transgenes were severely reduced compared to those in the wild type. This transcriptional gene silencing (TGS) was
observed for transgenes under control of either the constitutive CaMV 35S promoter or the cold-inducible RD29A promoter.
Bisulfite sequencing analysis revealed that both the transgene and endogenous RD29A promoter regions were
hypermethylated at CG and non-CG contexts in the rpt2a mutant. Moreover, the TGS of transgenes driven by the CaMV
35S promoters was released by treatment with the DNA methylation inhibitor 5-aza-29-deoxycytidine, but not by application
of the inhibitor of histone deacetylase Trichostatin A. Genetic crosses with the DNA methyltransferase met1 single or
drm1drm2cmt3 triple mutants also resulted in a release of CaMV 35S transgene TGS in the rpt2a mutant background.
Increased methylation was also found at transposon sequences, suggesting that the 19S proteasome containing AtRPT2a
negatively regulates TGS at transgenes and at specific endogenous genes through DNA methylation.
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Introduction

The 26S proteasome is an ATP-dependent proteinase complex

that is responsible for regulated proteolysis of polyubiquitinated

proteins in eukaryotic cells and is essential for the development of

plants [1,2]. The 26S proteasome is assembled from two particles:

the 20S core particle (20S CP) and the 19S regulatory particle (19S

RP). Proteolytic activities reside within the central chamber of the

20S CP, which is a hollow cylinder composed of four stacked rings

[3,4]. The 19S RP binds to one or both ends of the 20S CP and

sits directly over the ring pore. The 19S RP recognizes

polyubiquitinated proteins and is responsible for their ATP-

dependent unfolding and threading through a narrow channel into

the 20S CP [5]. The 19S RP is composed of two subcomplexes as

follows: a base containing six related AAA-ATPases (designated

RPT1–6 for regulatory particle triple-A ATPases) and three non-

ATPase subunits (designated RPN1, RPN2, and RPN10, for

regulatory particle non-triple-A ATPases), and a lid that contains

at least 12 additional RPN subunits (RPN1–3 and 25–13). In

plants, most genes encoding 19S RP subunits are duplicated. Such

subunit duplication would lead to an increase in not only subunit

redundancy but also subunit function. However, the functions of

only some of the plant 19S RP subunits are known. RPT2 is

essential for the channel opening of the a-ring of the 20S CP in

yeast and mammals by its conserved C-terminal motif [6,7]. The

Arabidopsis genome contains two genes, AtRPT2a and AtRPT2b

that are paralog RPT2 subunits with a difference of only four

amino acids in the protein sequence. We have recently discovered

that the rpt2a mutant shows a specific phenotype of enlarged leaves

caused by increased cell size correlated with extended endoredu-

plication, whereas the rpt2b mutant did not show any morpholog-

ical difference compared with the wild type [8].

DNA methylation is an important epigenetic mark for

transcriptional gene silencing including genomic imprinting and

repression of transposable elements in plants, vertebrates and some

fungi [9,10]. In general, cytosine methylation is found in both CG

and non-CG (CHG and CHH where H is A, T or C) contexts in

plants. In the model plant Arabidopsis thaliana, at least three

methylation pathways exist and each is associated with a specific

methyltransferase. DNA methylation is often considered a stable

epigenetic mark, but active demethylation has been observed in

both plants and animals and demethylases play an important role

in protecting plant genes from potentially deleterious methylation

[11]. In Arabidopsis, DNA glycosylases of the DEMETER (DME)

family are responsible for removing methylcytosines from DNA.

REPRESSOR OF SILENCING1 (ROS1), a DME homolog, is

required for demethylating a transgene promoter and some

endogenous genes, and for regulating their gene expression [12].

Plants maintain appropriate gene expressions and genomic

stability with the coordination of methylases and demethylases.

During subsequent analysis of RPT2a by stable transformation

with various expression constructs, many of these constructs

showed gene silencing in the rpt2a mutant background. Here, we
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demonstrate a novel function of RPT2a for the specific regulation

of gene silencing that involves DNA methylation in transgenes and

some specific endogenous genes.

Results and Discussion

The rpt2a mutant showed transcriptional gene silencing
We found that the rpt2a-2 mutant displayed a phenotype of

repressed transgene expression during construction of transgenic

plants for investigating RPT2a function. As an example of this,

introduction of the hygromycin B phosphotransferase gene (HPT)

driven by the constitutive CaMV 35S promoter into Col-0 wild-

type plants conferred plant survival on MS medium containing

hygromycin in Col-0 background. In contrast, the transgene

became inactive in rpt2a-2 and transgenic plants showed sensitivity

to hygromycin-containing media (Figure 1A and 1B). In order to

examine the function of AtRPT2a in transgene silencing

quantitatively, luciferase2 (LUC2) overexpressing plants were

produced in rpt2a-2 and rpt2b-1 mutant backgrounds by crossing

with transgenic wild-type. We confirmed that the transgenic plants

expressing LUC2 under the CaMV 35S promoter have a single

copy T-DNA inserted in the euchromatin region (Figure S2A, 2C,

2E). Although AtRPT2a and AtRPT2b share an almost identical

amino acid sequence, only the rpt2a-2 mutant showed one-tenth

the luminescence of the WT, and the rpt2b-1 mutant showed the

same level of luminescence as WT (Figure 1C). An identical result

was obtained with the rpt2a-1 allele (Figure S1). This result suggests

that RPT2a may regulate the expression of transgenes.

To determine whether repression of the transgene in the rpt2a

mutant was regulated at the transcriptional or post-translational

level, PT-PCR was used to examine the accumulation of LUC2

transcripts. Accumulation of LUC2 transcripts was dramatically

decreased in the rpt2a-2 mutant compared to that in the WT

(Figure 1D). Consistent with that observed for luciferase activity,

LUC2 transcript accumulation in the rpt2b-1 mutant was not

different to that in WT (Figure 1D). These results suggest that the

luciferase gene was repressed at the transcriptional level in the

rpt2a mutant.

The DNA methylation inhibitor released transcriptional
gene silencing in the rpt2a mutant

Transcriptional gene silencing (TGS) is often associated with

DNA methylation and histone modification. To examine whether

such epigenetic changes were involved in the repression observed

in the rpt2a mutant, we tested an inhibitor of cytosine methylation,

5-aza-29-deoxycytidine (5Aza-dC) and an inhibitor of histone

deacetylase, TrichostatinA (TSA). Following treatment with 5Aza-

dC, gene silencing in the rpt2a-2 mutant was released at the same

level as that of 5Aza-dC treated WT (Figure 2A). On the other

hand, treatment with TSA did not cause a change in luciferase

activity in the rpt2a mutant (Figure 2B). From the experiments

using the genes that have been reported to be transcriptionally

increased by TSA treatment [13,14], we confirmed that the TSA

treatment is effective (Figure S3). Although these results could not

deny the possibility that histone modification, except acetylation, is

involved in gene silencing in rpt2a mutant, these results suggest that

DNA hypermethylation is correlated with gene silencing in the

rpt2a mutant.

The mutation of DNA methyltransferase released gene
silencing in the rpt2a mutant

Three classes of DNA methyltransferases: MET1, CMT3 and

DRM1/2, regulate DNA methylation in Arabidopsis thaliana.

MET1 maintains CG methylation, while DRM1/2 and CMT3

are responsible for methylation at non-CG sites [15]. The above

data show that DNA methylation was involved in transgene

silencing in the rpt2a mutant (Figure 2A). To further investigate the

relationship between gene silencing in the rpt2a mutant and DNA

Figure 1. The rpt2a mutant shows transcriptional gene
silencing. (A) 35S::HPT in the Col-0 (WT) and rpt2a-2 mutant on MS
medium. Col-0 plants without any transgene indicate ‘‘Col-0’’. (B)
35S::HPT in the WT and rpt2a-2 mutant on MS medium containing
50 mM hygromycin. (C) Relative luminescence intensity of 35S::LUC2 in
WT, rpt2a-2 and rpt2b-1 mutants. 35S::LUC2 in WT is set as 100%. *t-test
P,0.05, error bar = S.D., n = 20. (D) Quantification of LUC2 gene
expression in 35S::LUC2 in WT, rpt2a-2 and rpt2b-1 mutants.
35S::LUC2 in WT is set as 1. Values are the averages of the three
experiments, and the level of 18S rRNA was used as an internal control.
doi:10.1371/journal.pone.0037086.g001
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methylation, we next examined luciferase activity in an rpt2a-2

met1-1 double mutant. In addition, DRM1, DRM2 and CMT3

are reported to have a redundant function [16] and thus, we made

a rpt2a-2 drm1 drm2 cmt3 quadruple mutant and checked the

luciferase activity in this background. LUC activity was found to be

much higher in the rpt2a-2 met1-1 double mutant compared to that

of the single rpt2a-2 mutant although this was still lower than that

observed in the met1 single mutant (Figure 3A). This result suggests

a partial release of gene silencing by met1 in the rpt2a mutant.

LUC activity in the rpt2a-2 drm1 drm2 cmt3 quadruple mutant

was also higher than that in the single rpt2a-2 mutant, whereas that

of the drm1 drm2 cmt3 triple mutant was higher than that in the

quadruple mutant (Figure 3B). This result suggests a partial release

of gene silencing in the rpt2a mutant by the drm1drm2cmt3 triple

mutant. These results are consistent with gene silencing in the rpt2a

mutant caused by both CG and non-CG hypermethylation. The

rpt2a-2 met1 double mutant showed much higher LUC activity than

that of the rpt2a-2 drm1 drm2 cmt3 quadruple mutant, due to a

greater influence of CG methylation on the as-1 regulatory

element within the CaMV 35S promoter [17].

The rpt2a mutation leads to DNA hypermethylation in
the promoter of the silenced loci

To confirm that the DNA methylation is increased in the rpt2a

mutant, we checked the methylation level of the rpt2a mutant by

bisulfite sequencing. Methylation levels in the CaMV 35S promoter

increased in the rpt2a mutant compared to that in WT. However,

the CaMV 35S promoter was also highly methylated in WT,

consistent with the results of 5Aza-dC treatment and genetic

Figure 2. 5-aza-29-deoxycytidine (5Aza-dC) treatment releases
gene silencing in the rpt2a mutant. (A) Relative luminescence
intensity of WT and the rpt2a-2 mutant treated with 50 mM 5-aza-29-
deoxycytidine (5Aza-dC). Seedlings grown in MS medium for 2 weeks
are transferred to MS liquid medium containing 50 mM 5Aza-dC for one
week. 35S::LUC2 in WT without 5Aza-dC treatment is set as 100%. *t-test
P,0.05, error bar = S.D., n = 15. (B) Relative luminescence intensity of
WT and the rpt2a-2 mutant treated with 0.1 mM TrichostatinA (TSA).
Seedlings grown in MS medium for 2 weeks are transferred to MS liquid
medium containing 0.1 mM TSA for one week. 35S::LUC2 in WT without
TSA treatment is set as 100%. *t-test P,0.05, error bar = S.D., n = 15.
doi:10.1371/journal.pone.0037086.g002

Figure 3. DNA methyltransferase mutants release gene silenc-
ing in the rpt2a mutant. (A) Relative luminescence intensity of WT,
rpt2a-2, met1-1 and rpt2a-2met1-1 double mutants. 35S::LUC2 in WT is
set as 100%. *t-test P,0.05, error bar = S.D., n = 10. (B) Relative
luminescence intensity of WT, rpt2a-2, drm1 drm2 cmt3 triple mutant
(ddc) and rpt2a-2 drm1 drm2 cmt3 quadruple mutant (rpt2a/ddc).
35S::LUC2 in WT is set as 100%. *t-test P,0.05, error bar = S.D., n = 20.
doi:10.1371/journal.pone.0037086.g003
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analysis of DNA methyltransferases, and the differences in DNA

methylation level between WT and the rpt2a mutant were obscure.

We therefore placed the LUC gene under control of the cold- and

drought-responsive RD29A promoter [18]. We confirmed that

transgenic plants expressing LUC under the RD29A promoter

have a single copy T-DNA inserted in the euchromatin region

(Figure S2B, 2D, 2F). Luminescence was induced in WT

containing RD29A::LUC when plants were treated with cold stress

for 12 hours. On the other hand, luminescence was repressed in

rpt2a-2 with and without low temperature treatment (Figure 4A).

We confirmed that cold treatment induced transcript accumula-

tion of LUC and endogenous RD29A in WT, whereas these

transcripts were repressed in rpt2a-2 upon the cold treatment

(Figure 4B, 4C). In contrast, gene expression of other cold-

responsive genes COR15A and DREB1 were induced in rpt2a-2

(Figure S4). These results reveal that the rpt2a mutant shows gene

silencing of the genes under control of both the RD29A and CaMV

35S promoter, suggesting that TGS in the rpt2a mutant is

independent of promoter sequences. DNA methylation levels of

exogenous and endogenous RD29A promoters were next investi-

gated. Compared to that in WT, the methylation level of the

exogenous RD29A promoter increased and broadened in the rpt2a

mutant both before and after cold treatment (Figure 4D, S5). This

result may imply that demethylation of the RD29A promoter was

abnormal in the rpt2a mutant. The endogenous RD29A promoter

contained a very low level of DNA methylation in WT before and

after cold treatment. On the other hand, the methylation level of

the endogenous RD29A promoter increased in the rpt2a mutant

both before and after cold treatment (Figure 4E). The RD29A

promoter contains a cis-acting dehydration-responsive element

(DRE) involved in the induction by exposure to low temperature

[18]. After cold treatment, the methylation level of DRE in

endogenous RD29A promoter greatly increased in rpt2a-2 suggest-

ing that DNA methylation of DRE represses the transcription of

endogenous RD29A genes in rpt2a-2 (Figure S6). These results are

consistent with TGS of transgenes in the rpt2a mutant caused by

increased DNA methylation in the promoter region. Interestingly,

cold treatment also induced a slight increase of DNA methylation

in the Col-0 background (Figure S7). This result may indicate that

a rapid increase of transcription induces DNA methylation for

marking of activated genes and for monitoring of genome stability.

The transposable element is highly methylated in the
rpt2a mutant

We have shown that the DNA methylation level of the promoter

site of transgenes increased in the rpt2a mutant. We next tested the

hypothesis that endogenous genes were also hypermethylated in

the rpt2a mutant. The Arabidopsis genome contains silenced

transposable elements. We tested methylation levels at several

transposons by methylation-sensitive PCR with McrBC, which

preferentially cuts methylated DNA [19]. Higher levels of

methylation result in increased McrBC digestion and consequently

reduced amplification products. Compared with Col-0, methyla-

tion levels of AtSINE1 and AtGP1 increased in the rpt2a-2

(Figure 5A). On the other hand, the methylation level of AtCOPIA4

and AtMEA-ISR were not different from Col-0. The methylation

levels of AtGP1 and AtMEA-ISR were examined further by bisulfite

sequencing analysis. We confirmed that the methylation level of

AtGP1 increased in rpt2a-2, but that of AtMEA-ISR was not

significantly different from Col-0 (Figure 5B, 5C, S8). This result

shows that DNA methylations increased in the rpt2a mutant in

specific genome loci, but not in the whole genome.

We show here that the loss of AtRPT2a function results in TGS

and an increase in the DNA methylation of promoter sequences of

transgenes. Transposons also showed hypermethylation in the

rpt2a mutant. These observations suggest that AtRPT2a, a 19S

proteasome subunit protein, is required for the negative regulation

of DNA methylation at transgenes and specific genome loci. This

is the first report that the proteasome has the potential of

regulating DNA methylation.

Genome-wide methylation analysis has shown that about 30%

of genes are methylated in Arabidopsis [20] and this DNA

methylation status is dynamically regulated by DNA methylation

and demethylation reactions [11]. We showed that hypermethyla-

tion in rpt2a-2 involved all three methyltransferases. There was no

difference in the expression level of these genes for the DNA

methyltransferase between Col-0 and rpt2a-2 (Figure S9). PEST

motif prediction (http://mobyle.pasteur.fr/cgi-bin/portal.

py?#forms::epestfind) showed that MET1, CMT3 and DRM1/

2 all contain PEST motifs suggesting that these DNA methyl-

transferases can be degraded by the 26S proteasome. Taken

together, hypermethylation in the rpt2a mutant is thought to be

due to the accumulation of DNA methyltransferase. This

hypothesis is supported by a report that, in mammals, Dnmt1

(the homolog of MET1) is degraded by proteasomes upon

treatment with a DNA methylation inhibitor [21]. However,

increased methylation in rpt2a was observed at specific loci rather

than globally, indicating that the accumulation of DNA methyl-

transferases alone was not responsible for hypermethylation in the

rpt2a mutant.

ROS1 and ROS3 are required for demethylation [12,22].

Mutations in ROS1 cause hypermethylation of the RD29A

promoter, leading to silencing of the transgene and its homologous

endogenous gene. ROS1 is also required to suppress DNA

methylation in a number of other endogenous genomic loci

including many transposons [23,24]. Since we showed that the

rpt2a mutant shows a similar phenotype to the ros1 mutant, a

hypothesis is presented that AtRPT2a could function with ROS1

and ROS3 in a demethylation pathway. Unfortunately, we have

not excluded the relationship between the RPT2a and ROS

pathway in this report.

Recent works raise an alternative hypothesis for the function of

AtRPT2a. The 19S RP has been shown to be required for

methylation of histone H3 lysine 4 (H3K4) in yeast and mammals

[25,26]. In Arabidopsis, genome-wide analysis showed that DNA

methylation and H3K4 di- and tri-methylation are mutually

exclusive [27]. Although TSA treatment did not release gene

silencing in the rpt2a mutant in this report, these observations raise

the possibility that an increase of DNA methylation in the rpt2a

mutant may be caused by a decrease of H3K4 methylation and

expansion of DNA methylation. We could not totally rule out the

possibility that the proteasome indirectly controls DNA methyl-

ation since the ubiquitin/26S proteasome pathway regulates many

biological phenomena. Further studies are required to determine

the causes of hypermethylation in the rpt2a mutant.

Epigenetic modification is an important mechanism for

adaption of gene expression to development and environmental

status [28]. In addition, the Ub/proteasome system plays a crucial

role in the response of hormone signaling and environmental stress

[2,29]. We have demonstrated that the RPT2a subunit is required

Proteasome and Gene Silencing
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Figure 4. Gene silencing in the rpt2a mutant is correlated with DNA hypermethylation. (A) Relative luminescence intensity of RD29A::LUC
in WT and rpt2a-2. Plants are untreated or treated with cold (4uC) for 12 hours. (B) Quantification of LUC gene expression in RD29A::LUC in WT and
rpt2a-2. Expression levels are relative to that of untreated WT plants. Values are the average of three experiments, and the level of 18S rRNA was used
as an internal control. (C) Quantification of RD29A gene expression in RD29A::LUC in WT and rpt2a-2. Expression levels are relative to that of untreated
WT plants. Values are the averages of three experiments, and the level of 18S rRNA is used as an internal control. (D) Mean levels of DNA methylation
in different cytosine context at the exogenous RD29A promoter in WT and the rpt2a-2 mutant. Frequencies of methylcytosine at CG, CHG and CHH
sites are indicated. Twenty clones are sequenced for each sample. (E) Mean levels of DNA methylation in different cytosine contexts at the
endogenous RD29A promoter in WT and the rpt2a-2 mutant.
doi:10.1371/journal.pone.0037086.g004
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for the regulation of DNA methylation, suggesting that the

proteasome participates in epigenetic modification for proper gene

expression depending on the environmental status.

Materials and Methods

Plant materials
For germination of Arabidopsis thaliana (ecotype Columbia-0) wild

type and mutants, seeds were surface-sterilized and placed on

Murashige and Skoog (MS) medium supplemented with 2%

sucrose (Germination inducible medium: GIM). After cold

treatment for 2 days to synchronize germination, seeds were

transferred to 22uC and 50% relative humidity under a 16/8 h

light/dark cycle (this time point indicates 0 days after sowing:

DAS). The seeds of the met1-1 mutant were provided by Dr.

Robert A. Martienssen (Cold Spring Harbor Laboratory). Seeds of

the rpt2a-1, rpt2a-2, rpt2b-1, and drm1 drm2 cmt3 triple mutants were

obtained from the ABRC (The Arabidopsis Biological Resource

Center, Ohio State University, Columbus, OH, USA; stock

number: SALK_130019, SALK_005596, SALK_043450, and

CS16384 respectively). Sequences bordering the T-DNA insertion

were determined using primer pairs listed in Table S1. 35S::HPT

plants were obtained by transformation of the wild-type

Arabidopsis plants of the Columbia-0 ecotype with T-DNA

composed of a HPT gene conferring resistance to hygromycin

driven by the 35S promoter of the cauliflower mosaic virus.

35S::LUC2 plants were obtained by transformation of Columbia-0

with a destination vector p7-LUC2. Mutants were crossed to each

transgenic line, and F3 progenies homozygous for transgenes and/

or the mutations were used for experiments. RD29A::LUC plants

were obtained by transformation of Columbia-0 with a destination

vector pGWB35 containing genomic fragments of the promoter

region of RD29A (824-bp upstream of the ATG). Mutants were

crossed to each transgenic line, and F3 progenies homozygous for

the transgenes and/or the mutations were used for experiments.

For 5-aza-29-deoxycytidine (5Aza-dC) treatment and Trichos-

tatinA (TSA) treatment, seedlings grown for one week were

transferred to MS liquid medium containing 50 mM 5Aza-dC

(Wako) or to MS liquid medium containing 0.1 mM TSA (Wako).

Luciferase activity
Five millimeter diameter leaf sections were floated on 50 ml of

Pikkagene cell lysis buffer (TOYO B-Net. CO., LTD) containing

20 ml of 0.1 mM D-Luciferine potassium salt and incubated for

30 min. Samples were measured using a Luminescenceor JNR II

(Atto).

Transcript level analysis
Total RNA was extracted by the guanidine thiocyanate method

[30]. Total RNA (0.6 mg RNA) was used as a template for first

strand cDNA synthesis with ReverTraAce -a-H reverse transcrip-

tase (TOYOBO, Osaka, Japan). First strand cDNA (0.7 ml) was

then assayed for gene-specific DNA fragments using the primer

pairs listed in Table S1. PCR amplification was performed in the

optimum cycles with each gene using the Taq DNA polymerase

(New England BioLabsH Japan inc, Tokyo, Japan). Amplified

fragments were separated on 1.2% (w/v) agarose gels and

visualized by ethidium bromide staining. Real-time PCR was

performed with the Power SYBR Green PCR Master Mix

(Applied Biosystems) on an Applied Biosystems 7300 Real-Time

PCR system (Applied Biosystems). Relative quantitation of gene

expression is based on the comparative CT method (User Bulletin

No. 2: ABI PRISM 7700 Sequence Detection System, 1997) using

18S rRNA as a reference gene. The following PCR program was

used: 2 min at 50uC; 10 min at 95uC; 40 cycles of 15 sec at 95uC,

and 1 min at 60uC. Two biological and three technical replicates

were performed. The sequences of the primers used are specified

in Table S1.

Figure 5. DNA methylation level of transposons is increased in
the rpt2a mutant. (A) McrBC PCR of transposons at Col-0 and rpt2a-2
(no transgene: rpt2a-NT). McrBC-digested genomic DNA is amplified by
PCR with primers for the indicated transposons. Input DNA was
normalized for each genotype with Actin2. (B) Mean levels of DNA
methylation in different cytosine context at the AtGP1 in Col-0 and
rpt2a-2 (no transgene). (C) Mean levels of DNA methylation in different
cytosine context at the MEA-ISR in Col-0 and rpt2a-2 (no transgene).
doi:10.1371/journal.pone.0037086.g005
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Bisulfite sequencing
For analysis of DNA methylation by bisulfite sequencing, DNA

was isolated from the first leaves of 3-week-old plants of WT and

mutants using a Nucleon PhytoPure DNA extraction kit (GE

healthcare). The protocol of bisulfite treatment in this study is

based on the methods of Kanazawa et al., 2007 [31]. DNA was

cleaved with the restriction enzyme EcoRI, extracted with phenol/

chloroform, and precipitated by ethanol. The cleaved DNA was

alkali denatured in 0.3 M NaOH at 37uC for 40 min. Denatured

DNA was incubated in a total volume of 600 mM with freshly

prepared 5.9 M urea/3.35 M sodium bisulfite/0.5 mM hydro-

quinone pH 5.0, at 60uC for 36 h under mineral oil. A Quick

PCR purification kit (Qiagen) then recovered the DNA. NaOH

was added to the DNA solution to a concentration of 0.3 M and

then incubated at 37uC for 30 min. Glycogen and ammonium

acetate were added to the solution to final concentrations of

0.16 mg/ml and 2.64 M, respectively. DNA was then precipitated

with ethanol and dissolved in 10 ml of TE (pH 8.0). Two rounds of

PCR were carried out using 1 ml of bisulfite-treated DNAs as a

template. Primers for the RD29A promoter and transposons were

modified based on the methods of Zheng et al. (2008) and Gao et

al. (2010) [22,32]. To amplify the exogenous RD29A promoter,

primers pRD29A nested and pRD29A transR1 were used for the

first round PCR, and primers pRD29A converted and pRD29A

transR2 were used for the second round PCR. To amplify the

endogenous RD29A promoter, primers pRD29A nested and

pRD29A endoR1 were used for the first round PCR, and primers

pRD29A converted and pRD29A endoR2 were used for the

second round PCR. The PCR products were cloned into a

pCR2.1 vector (Invitrogen) and 20 clones per one plant were

subjected to sequence analysis.

McrBC PCR
McrBC PCR was performed on genomic DNA that was

extracted from 3-week-old rosette leaves from 5 plants grown

under identical conditions as described above. 250 ng genomic

DNA was digested with McrBC for 3 hours and assayed using the

PCR primers listed in Table S1.

Supporting Information

Figure S1 Relative luminescence intensity of 35S::LUC2 in WT

and rpt2a-1. *t-test P,0.05, error bar = S.D., n = 25.

(TIF)

Figure S2 Analysis of T-DNA insertion site. (A) Southern blot

analysis of Col-0, 35S::LUC2 in WT and in rpt2a-2 genomic DNA

with the LUC2 as a probe. (B) Southern blot analysis of Col-0,

RD29A::LUC in WT and in rpt2a-2 genomic DNA with the LUC

as a probe (Methods S1). (C) 35S::LUC2 T-DNA insertion site in

At5g58580. (D) RD29A::LUC T-DNA insertion site in At3g11860.

(E) Insertion check of 35S::LUC2 by PCR. (F) Insertion check of

RD29A::LUC.

(TIF)

Figure S3 RT-PCR analysis of TSA treated plants: ABI3,

At3g29650 and 18S rRNA (control).

(TIF)

Figure S4 (A) RT-PCR analysis of cold inducible genes:

COR15A, DREB1B and 18S rRNA (control). (B) Quantification of

RD29A gene expression in Col-0 and rpt2a-2 (no transgene: rpt2a-

NT). Expression levels are relative to that of untreated WT plants.

Values are the averages of three experiments, and the level of 18S

rRNA is used as an internal control.

(TIF)

Figure S5 (A) Scheme of analyzed region in exogenous RD29A

promoter. (B) Bisulfite sequencing of DNA methylation in the

exogenous RD29A promoter site (from 2346 bp to 251 bp

upstream of the promoter). Upper graph shows methylation

status in WT and the lower graph shows DNA methylation

status in the rpt2a-2 mutant. The height of the vertical lines

shows the frequency of methylcytosine. Red, blue and green

lines indicate frequencies of methylcytosine at CG, CHG and

CHH sites, respectively. Red bars on the x-axis are DRE and

DRE/CRT core sequences. Twenty clones are sequenced for

each sample.

(TIF)

Figure S6 (A) Scheme of analyzed region in endogenous

RD29A promoter. (B) Bisulfite sequencing of DNA methylation

in the endogenous RD29A promoter site (from 2327 bp to

232 bp upstream of promoter). The upper graph shows

methylation status in WT and the lower graph shows DNA

methylation status in the rpt2a-2 mutant. The height of the

vertical lines shows the frequency of methylcytosines. Red, blue

and green lines indicate frequencies of methylcytosine at CG,

CHG and CHH sites, respectively. Red bars on the x-axis are

DRE and DRE/CRT core sequences. Twenty clones are

sequenced for each sample.

(TIF)

Figure S7 (A) Bisulfite sequencing of DNA methylation in the

endogenous RD29A promoter site (from 2327 bp to 232 bp

upstream of the promoter) in Col-0 and rpt2a-2 (no transgene:

rpt2a-NT). The upper graph shows methylation status in cold-

untreated and treated Col-0, and the lower graph shows cold-

untreated and treated rpt2a-2 (no transgene). (B) Mean levels of

DNA methylation in different cytosine context at the exogenous

and endogenous RD29A promoter in Col-0 and rpt2a-2 (no

transgene). Red, blue and green lines indicate frequencies of

methylcytosine at CG, CHG and CHH sites, respectively. Twenty

clones are sequenced for each sample.

(TIF)

Figure S8 Bisulfite sequencing of DNA methylation in the

AtGP1 site in Col-0 and rpt2a-2 (no transgene: rpt2a-NT).

(TIF)

Figure S9 RT-PCR analysis of DNA methyltransferase genes:

MET1, CMT3, DRM2 and 18S rRNA (control).

(TIF)

Table S1 Primers used in this study.

(PDF)

Methods S1 Supplementary methods.

(PDF)
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