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Cardiovascular disease is one of the main human health risks, and the incidence is increasing. Salidroside is an important bioactive
component of Rhodiola rosea L., which is used to treat Alzheimer’s disease, tumor, depression, and other diseases. Recent studies
have shown that salidroside has therapeutic effects, to some degree, in cardiovascular diseases via an antioxidative mechanism.
However, evidence-based clinical data supporting the effectiveness of salidroside in the treatment of cardiovascular diseases are
limited. In this review, we discuss the effects of salidroside on cardiovascular risk factors and cardiovascular diseases and highlight

potential antioxidant therapeutic strategies.

1. Introduction

Cardiovascular diseases (CVDs) are the most common cause
of mortality globally among all diseases. Heart attack and
stroke are the leading causes of CVDs-related deaths. In-
dividuals with CVDs or with risk factors for CVDs, such as
diabetes and hyperlipidemia, need early detection and ap-
propriate medical interventions [1]. Owing to the complex
mechanisms underlying CVDs, in addition to conventional
medicines, the identification of natural herbal products with
multiple targets is an important research goal. Salidroside
(SAD) is a polyphenolic compound isolated from Rhodiola
rosea L. According to Modern Practical Materia Medica, R.
rosea L. has the following effects: (1) central inhibitory effect,
(2) antifatigue effect, (3) promotion of cardiovascular
function, (4) anti-inflammatory effect, (5) hypoglycemic
effect, (6) antiperoxidation effect, and (7) antiradiation ef-
fect. SAD, an important bioactive component of R. rosea L.,
is effective for the treatment of Alzheimer’s disease, de-
pressive disorder, tumor, and CVDs [2-5]. In particular,
accumulating studies show that SAD plays a protective role
by suppressing cardiovascular risk factors and the devel-
opment of coronary heart disease, heart failure, stroke, and

pulmonary hypertension. This review provides a systematic
overview of the effects and mechanisms of action of SAD in
CVDs. In particular, we summarize evidence for the anti-
oxidant effects of SAD, its relationships with risk factors for
CVDs (e.g., obesity and aging), and its effects in various
CVDs (e.g., atherosclerosis and stroke).

2. Antioxidant Effects of SAD

Oxidative stress refers to the imbalance between oxidation
and antioxidation in vivo, and it is associated with aging and
various diseases. Reactive oxygen species (ROS) overpro-
duction is the main reason for this imbalance. Mitochondria
are a major source of intracellular ROS. The antioxidant
system can effectively remove the ROS produced during
metabolism and protect biological macromolecules against
oxidative damage by ROS, including superoxide dismutase
(SOD), glutathione peroxidase (GSH-Px), and catalase
(CAT) [6, 7]. Accordingly, mitochondrial damage or a
decrease in antioxidant enzyme synthesis results in excessive
ROS production. R. rosea L. ethanol extract, which has high
levels of phenolic compounds, particularly SAD, has strong
antioxidant activity, as determined by DPPH, ABTS, and
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FRAP assays [8]. Further studies have shown that SAD not
only inhibits ROS production by the regulation of mito-
chondrial biogenesis but also inhibits ROS-mediated CVDs
by increasing the activity of the antioxidant enzymes SOD
and GSH-Px [9, 10]. Finally, SAD has antioxidant effects in
vivo and in vitro.

3. Cardiovascular Risk Factors

CVDs are the result of long-term interactions among many
adverse factors. Risk factors include hyperlipidemia,
smoking, drink, diabetes, obesity, aging, and genetic factors.
Active prevention and treatment of these risk factors are
essential to reduce the incidence of CVDs. Extensive re-
search has shown that SAD influences cardiovascular risk
factors, as summarized below.

3.1. Obesity and Diabetes. Epidemiological analyses have
proven a clear relationship among diabetes, obesity, and
CVDs. Notably, the progression from obesity to diabetes
associated with an abnormal lipid profile is strongly cor-
related with insulin resistance. As highlighted in the lit-
erature, the relationships among obesity, abnormal lipid
profiles, insulin resistance, and diabetes contribute to the
occurrence and development of CVDs [11, 12]. Various
studies have evaluated the use of SAD for the treatment of
obesity, insulin resistance, and diabetes. Wang et al. find
that 50 mg/kg/day SAD for 48 days can significantly repress
the elevation of body weight and adipogenesis in epidid-
ymal white adipose tissues by reducing food intake. It also
attenuates the levels of triglycerides and total cholesterol in
the liver. SAD can decrease the levels of total tri-
acylglycerides, total cholesterol, low-density lipoprotein
cholesterol, and high-density lipoprotein cholesterol in the
plasma [13, 14]. Insulin resistance is involved in the
pathogenesis of these disorders and may benefit from in-
tervention with SAD. As expected, SAD reduces blood
glucose and serum insulin levels and increases sensitivity to
insulin. These effects may be mediated by AMPK/SIRT1
signaling and the mitochondria-related AMPK/PI3K/Akt/
GSK3p pathway [15, 16]. Insulin resistance is responsible
for the development of type 2 diabetes mellitus. Recent
studies have shown that SAD stimulates glucose uptake,
regulates hepatic gluconeogenesis and lipid metabolism,
and improves 3-cell survival in the treatment of diabetes
[17, 18].

SAD has beneficial effects on vascular diastolic dys-
function via the soluble guanylyl cyclase pathway in the
Goto-Kakizaki model of type 2 diabetes [19]. SAD (1-10 ug/
ml) has a protective effect on high glucose-induced endo-
thelial cell injury by activating the Ca/CaM/CAMKII/eNOS
pathway [20]. SAD prevents advanced glycation end-
product-induced endothelial dysfunction, and its effects may
be attributed, in part, to the induction of HO-1 and the
attenuation of phosphorylated NF-kB p65 [21]. In addition,
SAD ameliorates diabetic nephropathy and antihyperalgesic
activity and prevents cognitive impairment in a rat model of
diabetes [22-24]. Accordingly, we expect SAD to be useful
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for the treatment of lifestyle-related diseases, such as hy-
perlipidemia, exogenous obesity, and diabetes.

3.2. Hyperlipidemia. Hyperlipidemia is a risk factor for
CVDs. A large number of studies have proven that the
interplay between lipids and immune cell infiltration is the
main cause of the formation of vascular atherosclerosis (AS).
AS begins with the accumulation and oxidation of sub-
endothelial cholesterol in blood vessels. This subsequently
stimulates the production of innate and acquired immunity
and causes chronic inflammation of the vascular wall [25].
Since the theory of oxidative modification of LDL in AS was
initially proposed 30 years ago, oxidized low-density lipo-
protein (ox-LDL) has been used as a stimulator of AS. The
protective effects of SAD have been demonstrated in ox-
LDL-injured HUVECs, and these effects may be related to
the inhibition of oxidative stress inhibition and restoration
of mitochondrial dysfunction by activating the AMPK/
SIRT1 pathway [26]. Further research has shown that SAD
also protects against ox-LDL-induced endothelial injury by
promoting autophagy via the SIRT1-FoxOl1l signaling
pathway [27].

3.3. Nonalcoholic Fatty Liver Disease. Increasing studies
indicate that nonalcoholic fatty liver disease (NAFLD) is
independently associated with the development of carotid
intima-media thickening and plaques and coronary artery
calcification, with a 65% increase in CVDs events [28].
Consistent with the effects of SAD on obesity, lipid meta-
bolism, insulin resistance, and diabetes, it has a regulatory
effect on high-fat diet-induced NAFLD. In particular, SAD
has an anti-NAFLD effect via the inhibition TRPM2 ion
channel activation, regulation of AMPK-dependent TXNIP/
NLRP3 pathways, insulin signaling pathway, and gut
microbiota-bile acid-farnesoid X receptor axis [29-32].

3.4. Aging. Tt is well-known that aging is one of the key
factors in the occurrence of CVDs. Antioxidants have
beneficial effects in aging-associated CVDs [33]. Recently,
the Chinese medicinal herb Rhodiola has been reported to
have antiaging activity in Alzheimer’s disease, Parkinson’s
disease, CVDs, and so on [5]. SAD, as its main component
with antioxidant effects, prolongs the lifespan and delays the
onset of age-related biomarkers [34]. In addition, SAD at-
tenuates endothelial cellular senescence and inhibits the
vascular aging response [35].

4. Cardiovascular Diseases
4.1. Coronary Heart Disease

4.1.1. Atherosclerosis. AS is the main pathological basis of
coronary heart disease, cerebral atherosclerotic infarction,
and peripheral vascular disease. The pathogenesis of AS
involves several key factors: (1) endothelial cell injury, (2)
lipid accumulation at the injury site, (3) internalization of
lipids by monocytes and foam cell formation, and (4) in-
flammatory factor-induced proliferation of vascular smooth
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muscle cells. The protective effects of SAD have been in-
vestigated in female LDL receptor knockout (LDLr™"") mice
treated with a high-fat diet to induce AS. SAD treatment
(50 mg/kg/day for 8 weeks) clearly reduced the plaque area
of the aortic arch by lowering lipids and anti-inflammatory
effects [36]. Furthermore, NLRP3-related pyroptosis might
be another mechanism by which SAD decreases AS plaque
formation [37]. The antiatherosclerotic effects of SAD
protect endothelial function by promoting nitric oxide (NO)
production, which is associated with mitochondria depo-
larization and the subsequent activation of the AMPK/PI3K/
Akt/eNOS pathway [38].

Endothelial dysfunction plays important roles in CVDs,
including AS. Oxidative stress, the renin-angiotensin sys-
tem, ox-LDL, and homocysteine are the main causes of
endothelial injuries [39]. Consequently, endothelial cells
could be targets of SAD to protect against AS. Pretreatment
of cells with SAD significantly reduces endothelial injury in a
process mediated by the regulation of oxidation stress sig-
naling pathways, such as the AMPK pathway, mTOR
pathway, and Nrf2 pathway, in response to stimulation by
hydrogen peroxide (H,0,) [40-42]. Using another model of
homocysteine stimulation, SAD improved NO bioavail-
ability, stimulated mitochondrial biogenesis, inhibited ROS
production, and regulated the ER-stress pathway to protect
endothelial cell function [9, 43, 44]. In addition, SAD exerts
angiogenic and cytoprotective effects via the Akt/mTOR/
p70S6K and MAPK signaling pathways in human bone
marrow-derived endothelial progenitor cells [45].

4.1.2. Myocardial Ischemia. Myocardial infraction (MI) is a
CVDs caused by persistent ischemia and hypoxia of the
coronary artery. Ischemia/reperfusion (I/R) injury is an
important complication during the treatment of MI in
clinical settings. However, effective cardioprotective thera-
pies are lacking for MI and I/R injury. Some scholars have
recently proposed that focusing on the rational combination
of judiciously selected and multitargeted therapies may be
effective [46]. Multitarget mechanisms underlying the effects
of SAD under MI have been identified. Recent studies have
shown that SAD is a multitarget drug. On the one hand, SAD
protects against LPS-induced myocardial injury in vivo and
hydrogen peroxide-induced myocardial cell injury in vitro
via the activation of the PI3K/Akt pathway [47, 48]. On the
other hand, SAD protects against hypoxia-induced myo-
cardial cell death and promotes cardiac angiogenesis in acute
MI rats by upregulating HIF-1a and the VEGF-mediated
pathway [49, 50]. In addition, SAD inhibits apoptosis by
restoring the tricarboxylic acid cycle and by the preservation
of mitochondrial integrity [51, 52]. Finally, SAD attenuates
isoproterenol-induced acute MI by the regulation of the
Nox/NF-kB/AP1 pathway [53]. These studies support the
role of SAD as a potential treatment for ischemic heart
disease.

I/R injury refers to ischemia and subsequent reperfusion
injury in acute MI. Recently, the effects and mechanisms of
action of traditional Chinese medicine on I/R injury have
been gradually characterized [54]. SAD is effective in

preventing I/R injury. By pretreating rats with 50 mg/kg
SAD, Xu et al. found that SAD activates the PI3K/Akt
pathway and reduces apoptosis in cardiomyocytes, which in
turn inhibits I/R injury [55]. In cell experiments, myocardial
cells were induced by hypoxia/reoxygenation to mimic I/R
injury, and the injury effect was inhibited by SAD pre-
treatment, as evidenced by the suppression of apoptosis, an
increase in N-acetylglucosamine linkage to cellular proteins,
and the activation of Akt signaling [56-58].

4.2. Stroke. Similar to MI, increasing evidence shows that
SAD and its analogues reduce ischemic stroke and cerebral I/
R injury in adult rats. In general, the mechanisms underlying
the neuroprotective effects of SAD may involve three path-
ways. First, SAD inhibits the inflammatory responses in
multiple ischemic stroke processes, as indicated by the re-
duction of LPS-induced BV2 microglial cell mobility via NF-B
and MAPK signaling, the reduction of inflammatory effects
via PI3K/Akt signaling after permanent middle cerebral artery
occlusion or cerebral I/R injury, and the induction of primary
microglia from the M1 phenotype to M2 phenotype [59-62].
Second, protective effects of SAD against ischemic stroke are
related to endothelial function. The intraperitoneal admin-
istration of SAD before middle cerebral artery occlusion
improves human brain microvascular endothelial cell activity
by activating the PI3K/Akt pathway. Furthermore, SAD al-
leviates brain ischemic injury, and I/R injury caused blood-
brain barrier injury by delayed tPA treatment and the inhi-
bition of tumor necrosis factor-alpha [63, 64]. Third, SAD
regulates mitochondrial function against exertional heat
stroke-induced organ damage in a rat model [65]. Recently,
increasing SAD analogues have been found to have the same
neuroprotective effects. For example, 2-(4-methoxyphenyl)
ethyl-2-acetamido-2-deoxy-B-D-pyranoside ~ (GlcNAc-Sal)
confers neuroprotective effects via the regulation of local
glucose metabolism by increasing glucose uptake, O-
GlcNAcylation, and elevating GLUT3 expression in a rat
model of cerebral ischemic injury [66-68]. Further research
has shown that GIcNAc-Sal prevents brain I/R injury and
suppresses mouse hippocampal HT22 cell apoptosis by re-
ducing ROS generation, NO production, and the expression
of caspase-3 [69]. In addition, the SAD metabolite p-tyrosol at
a dose of 20 mg/kg also attenuates neuronal damage in the
hippocampus as well as lipid peroxidation in brain tissue in
animals subjected to global cerebral ischemia with reperfusion
[70]. Taken together, SAD could prevent stroke and exert
neuroprotective effects via multiple mechanisms.

4.3. Cardiac Function Injury in Exhaustive Exercise.
Exercise training can maintain health, but exhausting ex-
ercise leads to a reduction in cardiac function. There is
experimental evidence that SAD has a protective effect
against exercise-induced decreases in cardiac function. The
protective effects of SAD have been investigated in rats
trained with exhaustive swimming. SAD treatment evidently
decreases the levels of brain natriuretic peptide, cardiac
troponin I, and ROS in the serum [71]. It also decreases the
level of CK-MB, which is mainly used to diagnose acute
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myocardial injury [72]. Further research has shown that the
underlying mechanisms include antioxidative stress by
MAPK signal transduction and improved mitochondrial
respiratory function by the Nrf2 signaling pathway [71, 72].

4.4. Pulmonary Hypertension. Pulmonary hypertension re-
fers to a hemodynamic and pathophysiological state in
which pulmonary arterial pressure increases beyond a
certain threshold, leading to right heart failure. Pulmonary
hypertension is a common and frequently occurring disease
with high rates of morbidity and mortality. Increasing ev-
idence shows that Rhodiola may be used for the treatment of
pulmonary hypertension [73]. The abnormal proliferation
and apoptotic resistance of pulmonary vascular smooth
muscle cells are major causes of pulmonary hypertension.
Rhodiola and SAD have antipulmonary hypertension effects,
mainly by inhibiting cell proliferation and promoting cell
apoptosis. The main mechanisms include the regulation of
the adenosine A2a receptor-related mitochondria-depen-
dent apoptosis pathway, AMPK pathway, and AKT pathway
[74-76]. In addition, SAD can also reduce blood pressure in
diabetic rats and has a dual protective role in diabetes and
hypertension [77].

4.5. Drug-Induced  Cardiotoxicity —and  Myocarditis.
Anthraquinones are widely used for the treatment of acute
and chronic leukemia, malignant lymphoma, breast cancer,
and other solid tumors. However, their clinical applications
are limited by cardiotoxicity. SAD inhibits this cardiotox-
icity. Wang et al. found that SAD effectively protects car-
diomyocytes against doxorubicin-induced cardiotoxicity by
suppressing excessive oxidative stress and activating a Bcl2-
mediated survival signaling pathway [78]. Zhang et al. found
that SAD has a protective effect against epirubicin-induced
early left ventricular regional systolic dysfunction in patients
with breast cancer [79].

Myocarditis is often caused by the immune response
after viral infection. Wang et al. found that SAD possesses

antiviral activity in vivo and in vitro by an antioxidant effect
and the inhibition of cytokine expression [80]. Similarly,
SAD reduces LPS-induced myocardial depression in sepsis
by regulating the inflammatory response [81]. Therefore, it is
a candidate therapeutic agent for myocarditis.

5. Molecular Targets of SAD in CVDs

In light of emerging evidence for the cardiovascular benefits
of SAD (Figure 1), we discuss the major molecular targets in
detail (Figure 2). (1) AMPK signaling pathway. AMPK plays
a major role in regulating the cellular energy balance. The
occurrence and development of CVDs are closely related to
the disruption of cellular energy metabolism. Therefore,
AMPK is an important molecular determinant of CVDs
[82]. In a review of recent literature, Zheng concluded that
AMPK is an important target of SAD in diabetes [17].
Furthermore, AMPK can regulate autophagy, mitochondrial
function, apoptosis, and inflammatory responses by inter-
acting with PI3K/Akt, mTOR, and SIRTI in endothelial cells
[26, 38, 40]. (2) PI3K/Akt signaling pathway. Akt can widely
regulate cell proliferation, survival, growth, migration, and
other physiological functions. SAD activation of the PI3K/
Akt signaling pathway and downstream targets, such as
mTOR and GSK3p, determines its function in cardiovas-
cular processes [15, 45]. (3) Mitochondria-dependent sig-
naling pathway. Traditional Chinese medicine used to treat
CVDs is closely related to the regulation of mitochondrial
function [83]. SAD results in specific mitochondrial depo-
larization and therefore is able to potently regulate the
mitochondria-dependent signaling pathway, modulate mi-
tochondrial-mediated apoptosis, and decrease ROS pro-
duction [38, 52]. (4) Nrf2 signaling pathway. Nrf2 is an
important transcription factor in the regulation of oxidative
stress and a central regulator in the maintenance of intra-
cellular redox homeostasis [84]. SAD, as an antioxidant, can
induce Nrf2 nuclear translocation, activate the expression of
Nrf2-regulated antioxidant enzyme genes, and decrease the
levels of intercellular ROS [42].
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6. Discussion

Based on the research summarized in this review, we
conclude that SAD has an anti-CVDs effect via an anti-
oxidative mechanism. However, the clinical use of SAD
requires additional experimental studies. For example, the
bioavailability of SAD is not clear. Guo et al. have reported
that SAD is rapidly metabolized to p-tyrosol after i.v. ad-
ministration (50 mg/kg) in rats and has the highest con-
centration in the heart. However, 64.00% of the total dose is
excreted through the urine in the form of SAD [85]. Owing
to the lack of detailed bioavailability, pharmacology, and
toxicology experiments, an appropriate clinically recom-
mended dose has not been established, limiting its clinical
applications. Additionally, SAD may have effects on car-
diovascular drug metabolism. The main enzymes for me-
tabolizing drugs in humans are cytochrome P450 proteins
(CYP). R. rosea L. inhibits CYP2C9 [86]. Losartan, glime-
piride, and other drugs commonly used to treat hyperten-
sion and diabetes are mainly metabolized by CYP2C9
enzymes. The inhibition of these metabolic enzymes may
increase the long-term efficacy of drugs. However, it may
also increase hepatotoxicity. Finally, there are few clinical
trials of SAD in CVDs. Although Dazhu Hongjingtian in-
jection (YBZ11852006) promotes blood circulation and

reduces blood stasis, it is mainly used for the treatment of
stable exertion angina pectoris in coronary heart disease.
Traditional Chinese medicine syndrome differentiation for
heart blood stasis is based on the following symptoms: chest
pain, colic, immovable, pain-induced shoulder back and
medial arm, chest tightness, palpitation restlessness, dark
lips and tongue, and fine pulse. However, to confirm that
SAD is the main component underlying its functions, more
experimental research is needed.

7. Conclusion

CVDs are the result of the long-term accumulation of
multiple factors. Therefore, it is necessary to develop
multitargeted treatments. Overall, salidroside has an
established chemical structure and metabolites with an
efficient heart-targeting effect. It also affects cardiovas-
cular diseases via anti-inflammatory, antioxidant, and
antiapoptotic effects, including atherosclerotic coronary
heart disease, MI, and stroke. Therefore, SAD is a po-
tential anticardiovascular drug. However, in view of the
lack of clarity regarding its mechanism of action, addi-
tional experimental research is needed for clinical
applications.
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