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Abstract

Transducer of Cdc42-dependent actin assembly (Toca-1) consists of an F-BAR domain, a Cdc42 binding site and an SH3
domain. Toca-1 interacts with N-WASP, an activator of actin nucleation that binds Cdc42. Cdc42 may play an important role
in regulating Toca-1 and N-WASP functions. We report here that the cellular expression of Toca-1 and N-WASP induces
membrane tubulation and the formation of motile vesicles. Marker and uptake analysis suggests that the tubules and
vesicles are associated with clathrin-mediated endocytosis. Forster resonance energy transfer (FRET) and Fluorescence
Lifetime Imaging Microscopy (FLIM) analysis shows that Cdc42, N-WASP and Toca-1 form a trimer complex on the
membrane tubules and vesicles and that Cdc42 interaction with N-WASP is critical for complex formation. Modulation of
Cdc42 interaction with Toca-1 and/or N-WASP affects membrane tubulation, vesicle formation and vesicle motility. Thus
Cdc42 may influence endocytic membrane trafficking by regulating the formation and activity of the Toca-1/N-WASP
complex.
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Introduction

The uptake of nutrients and proteins and recycling of receptors,

the process of endocytosis, represents a fundamental aspect of the

cell biology of all eukaryotic cells. In particular, defects in these

pathways have been linked to a wide range of disease states from

cancer to neurodegeneration [1]. The small GTPases of the Ras

superfamily are well known to have roles in endocytosis [2,3]. For

example, RhoB and RhoD regulate endosomal trafficking in co-

operation with mDia1 and Src kinase [4]. Cdc42, a protein

directly connected with cell migration and cell polarity, has also

been linked to endocytosis [5–7]. The mechanism(s) by which

Cdc42 may regulate endocytosis and/or membrane trafficking is

unclear.

A theme emerging from recent work on FCH-Bin-Amphiphy-

sin-Rsv (F-BAR) domain proteins and endocytosis is that there is a

requirement to couple membrane remodeling with microfilament

and microtubule dynamics [8]. The family of BAR domain

proteins (classical BAR, F-BAR and Inverse-BAR [I-BAR]; see

[9–11], for recent reviews) play important roles in remodeling

membranes. Current models suggest that BAR domain proteins

form dimers (and oligomers) and by so doing induce curvature on

lipids allowing restructuring of membranes [11–13].

For the present study, of particular importance are the proteins

of the Toca family (Toca-1, Cdc42 interacting protein 4 [CIP4;

Toca-2] and formin binding protein 17 [FBP17; Toca-3]). These

proteins share overall domain sequence and structure similarity;

F-BAR domain, Cdc42 binding site, and Src homology 3 (SH3)

domain. Further, the SH3 domain of these proteins binds to

neuronal-Wiskott Aldrich syndrome protein (N-WASP) and

dynamin [13–15]. FBP17 is the most well studied member of

the family and is shown to induce tubular membrane invaginations

and participate in endocytosis [16]. Toca-1 was identified in a

protein purification scheme using Cdc42 activated actin polymer-

ization from Xenopus cell extracts. Protein-protein interaction and

reconstitution assays using Toca-1 have shown that it forms a

complex with N-WASP through SH3 domain-polyproline rich

domain interactions and that Cdc42 can activate the Toca-1/N-

WASP complex to nucleate actin filaments via the Arp2/3

complex [17]. In vitro data suggest that Toca-1 and Cdc42 regulate

N-WASP-Arp2/3 interaction and actin polymerization by reliev-

ing inhibitory intramolecular interactions of the WA (W

[Verprolin, Cofilin] and Acidic region; Arp2/3 interacting)

domain. Most recently, Toca-1 has been shown to induce

filopodia formation in an N-WASP dependent manner [18].

Further, Toca-1 localizes to endocytic vesicles thus potentially

linking the processes of filopodia formation and endocytosis [18].

Here we aim to understand the importance of Cdc42 in

regulating the function of Toca-1 and N-WASP and have

investigated the cellular function of Cdc42-N-WASP-Toca-1

complex. FBP17 and CIP4 and their F-BAR domains alone

tubulate membranes in vivo [13,16,19]. In contrast, the Fes CIP4

homology domain (FCH; partial F-BAR domain), F-BAR domain,

or full-length Toca-1 protein did not induce membrane tubulation.
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Coexpression of Toca-1 with N-WASP does tubulate membranes

and induces the formation of motile membrane vesicles. Marker and

uptake analysis suggests that the tubules and vesicles are associated

with clathrin-mediated endocytosis. FRET shows that Cdc42, N-

WASP and Toca-1 form a trimer complex on the membrane tubules

and vesicles and that Cdc42 interaction with N-WASP is critical for

complex formation. Modulation (by using mutants and inhibitors) of

Cdc42 interaction with Toca-1 and/or N-WASP affects membrane

tubulation, vesicle formation and vesicle motility. Thus Cdc42 may

influence endocytic membrane trafficking by regulating the

formation and activity of the Toca-1/N-WASP complex.

Materials and Methods

Materials
GFP-clathrin was from Prof James Keen [20]. Caveolin-1-

mRFP was from Prof Richard E. Pagano (Addgene plasmid

12681). CFP-Akt-PH, CFP-PLCd-PH and GFP-Btk-PH were

provided by Dr Koichi Okumura (NUS, Singapore). GFP-Rab5

was provided by Prof Cecilia Bucci. All cell culture reagents are

from Invitrogen. Cdc42 interacting domain of WASP (amino acid

residues 215–295) was a kind gift from David B. Sacks (Harvard

Medical School, Boston). Cyt. D (Cytochalasin D) was purchased

from Calbiochem.

Mammalian cell culture and transfection
CHO cells (ATCC, U.S.A) were maintained in F-12 Nutrient

mixture (Kaighn’s modification) media containing 10% Fetal

Bovine Serum Qualified (FBS) and 1% antibiotics (penicillin and

streptomycin) in a humidified 37uC incubator with 5% CO2/95%

air. CHO cells were transfected using Fugene6 (Roche) according

to the manufacturer’s manual. HeLa cells (ATCC, U.S.A) were

maintained in DMEM medium supplemented with 10% FBS and

1% antibiotics (penicillin/streptomycin) in a humidified 37uC
incubator with 5% CO2/95% air. HeLa cells were transfected

using Fugene6 (Roche) according to the manufacturer’s manual.

Immunofluorescence
The cells were fixed in 4% paraformaldyhyde for 15 min

followed by three washes with PBS for five min each. Then the

cells were permeabilized in 0.2% Triton X-100 for 5 min. After

three washes with PBS, the cells were blocked in 5% normal goat

serum for 30 min. The cells then were washed and incubated in

PBS diluted primary antibody (anti-Rab5 (1:50), anti-Rab7 (1:50)

and anti-Lamp1 (1:50), all from Santa Cruz) at 4uC overnight.

After three washings, the cells were incubated with Alexa488,

Alexa594, or Cy5 conjugated secondary antibody. Finally the cells

were washed three times and mounted onto the glass slides using

Hydromount (National Diagnostics).

Subcloning
Human Toca-1 was amplified by PCR and subcloned from

pCS+ vector into pXJ40- mRFP vector between HindIII and NotI

site. FCH (amino acid residues 2–94) and F-BAR (amino acid

residues 2–293) were amplified by PCR using Myc-Toca-1/pCS+
as a template and was subcloned into pXJ40-GFP between

BamH1 and XhoI site.

Site directed mutagenesis
Myc-Toca-1W518K, mRFP-Toca-1W518K, mRFP-Toca-

1K33QR35Q, mRFP-Toca-1K51QK52Q, mRFP-Toca-

1R112QK113Q, mRFP-Toca-1MGD383-385IST and GFP-N-

WASPH208D were generated by mutated primer pairs using

site-directed mutagenesis kit (Stratagene). The mutations were

confirmed by DNA sequencing. For details of mutagenesis

methods see [18]. The list of mutants used in this study was

shown in Table S1.

FRET measurement
FRET was measured by (AP)-acceptor photobleaching

method [21,22] by making appropriate settings in a Zeiss

inverted laser scanning confocal microscope (LSM510) with the

objective of C-Apochromat 636/1.2 water immersion objective.

The fusion proteins of GFP/mRFP were excited using 488 and

561 nm laser line as excitation source, by selecting 405/488/

561 nm dichoric mirror and 490, 565 nm secondary dichoric

mirrors for GFP and mRFP emission respectively. The emission

was monitored by selecting GFP (BP 505–550 nm) and Red

(Long pass 575 nm) emission filters to record the fluorescence

intensity. Region of interest (ROI) was selected and photo-

bleached using 70% of 561 nm laser power by selecting 50

iterations. Bleaching was performed following pre scan images.

The increase in GFP fluorescence intensity followed by mRFP

bleaching was measured as FRET. FRET efficiency was

calculated using the change in background subtracted fluores-

cence intensity as 1006[(post- bleach intensity)2(pre-bleach

intensity)/(post- bleach intensity)].

In order to verify the increase in GFP intensity due to any

possible artifact we obtained the Pearson product moment

correlation coefficient r, a dimensionless index that ranges from

21.0 to 1.0 inclusive and reflects the extend of a linear relationship

between the two fluorescence intensity data of GFP and mRFP

while bleaching. In our case we expect 21.0 as the perfect fitting

of the linear relation. However we selected the range of 20.7 to

21.0 as the best range of index.

r~

P
(x{ x

{
)(y{ y

{
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(x{ x
{

)
2P

(y{ y
{

)
2

q

Where x and y are the sample means average (array1, GFP

intensity) and average (array2, mRFP intensity). For complete

details of AP-FRET method see [22].

Fluoresence Recovery After Photobeaching (FRAP)
FRAP was performed on a Zeiss inverted LSM510 with C-

Apochromat 636/1.2 water immersion objective and a pinhole

size 1 airy unit. The temperature was maintained at 37uC in a

humidified atmosphere with 5% CO2. GFP tagged proteins were

bleached in a defined rectangular region using a 488 nm laser line

at 100% power and 25 iterations. The fluorescence recovery was

recorded by a 488 nm laser line at 5% laser power every 1 second.

The fluorescence intensity of the background, the whole cell and

the bleached region were recorded before bleaching, just after

bleaching and during the recovery. In the analysis of the FRAP

data, the background fluorescence intensity was subtracted and the

fluorescence intensity was normalized against fluorescence inten-

sity of whole cell in order to correct the effect of the focal plane

drifting and the photobleaching in the imaging process. Then each

data point was normalized to the fluorescence intensity before

bleaching to get the relative fluorescence intensity in a region of

interest (ROI). The relative intensity (RI) was calculated using the

following equation: RI = [It(0)/ROI(0)]/[ROI(t)/It(t)], It(0), whole

cell intensity before bleaching; ROI(0), intensity of bleached region

before bleaching; It(t), whole cell intensity at a certain time point;

ROI(t), intensity of bleached region at a certain time point. T1/2
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was calculated as the time required recovering to 50% of the

fluorescence before bleaching.

FLIM
FLIM experiments were performed with the LIFA system

(Lambert Instruments, The Netherlands) on an inverted wide-field

fluorescence microscope (Olympus IX71, Center Valley, PA) with

606/1.35 oil immersion objective. Fluorescence lifetime was

measured using software provided by Lambert Instruments. GFP

was excited by a sinusoidally modulated 4 mW 470 nm light-

emitting diode at 40 MHz. The GFP filter set was used for

excitation and emission signals. The emission was collected by an

intensified CCD camera. Fluorescein isothiocyanate was used as a

standard lifetime reference of 4 ns. 12 phase and modulation shifted

images were taken, fitted with a sinus function and used for the

calculation of lifetime (for further details see [18]). The lifetimes

from 50 ROIs were taken from different cells are averaged to give

the average lifetime and standard deviation. The experiments were

repeated three times and data from a single representative

experiment are shown. The lifetime (ns) is shown in pseudo colours.

Confocal microscopy and time-lapse acquisition
Immunofluorescence was examined on an Olympus FV1000

confocal microscope (Olympus, Japan) using a 636/1.4 oil

immersion objective with a pinhole at airy 1. GFP tagged proteins

were excited by a 488 nm laser line and the emission was selected

using a band-pass filter between 500–550 nm. mRFP tagged

proteins were excited by a 561 nm laser line and the emission was

selected using a band-pass filter between 580–680 nm. The images

were taken at a speed 2 ms/pixel sequentially at a size 5126512.

The time lapse images were taken at 10 sec interval in a

humidified chamber at 37uC with 5% CO2.

Total Internal Reflection Fluorescence Microscopy (TIRFM)
To examine the vesicle dynamics at the cell surface, TIRFM

was performed on an inverted Olympus FV TIRF microscope in a

humidified atmosphere with 5% CO2. Plan-Apochromat 636/

1.45 oil-immersion objective was used and 488 nm/561 nm laser

line were used to excite GFP and mRFP sequentially. The

penetration depth was set at around 100 nm. Light emitted by the

fluorophores was detected by a CoolSnap HQ2 camera (Photo-

metrics, USA). Metamorph software controls the multidimensional

time-lapse acquisition. The exposure time was 200 ms and total

360 frames were taken with 5 sec interval. The stack files were

processed using Metamorph to generate movie files.

Uptake assays
Quantification of fluorescence intensities was performed using

Metamorph software (Universal Imaging, PA, USA), as previously

describe in [18]. Briefly, fluorescence intensities were measured by

thresholding and outlining whole individual cells, followed by

determination of integrated fluorescence intensities, which were

then normalized to cell area. Average values were expressed as a

ratio relative to control cells without transfection.

(a) Transferrin uptake assay. The cells were serum starved for

45 min and FITC labeled transferrin (Molecular Probes) was

added to the cell at a final concentration 25 mg/ml. After

incubation for 10 min at 37uC, the cells were washed twice with

Dulbecco’s PBS containing 1 mM CaCl2 and 0.5 mM MgCl2 (D-

PBS; Invitrogen) at 4uC. To reduce cell surface labeling,

subsequently the cells were incubated in 50 mM of deferoxamine

(Sigma), an iron chelator, in 150 mM NaCl, 2 mM CaCl2,

25 mM sodium acetate/acetic acid, pH 4.5, for 10 min [23], and

re-equilibrated with two additional washes with ice-cold D-PBS.

The coverslip was mounted onto glass slide using hydromount and

examined with Olympus FV1000 confocal microscopy.

(b) Cholera toxin B uptake assay. Cells grown on coverslips to 70–

80% confluency were rinsed twice with D-PBS and serum-starved

for 1 hr in serum-free medium. Cells were incubated with 5 mg/ml

Alexa 488-cholera toxin B (Molecular Probes) in serum-free

DMEM for 30 min at 37uC and 5% CO2. Subsequently,

coverslips were placed on ice and rinsed twice with ice-cold D-

PBS and mounted onto glass slide using hydromount and

examined by confocal microscopy.

(c) Dextran uptake assay. Cells were serum starved for 1 hr and

dextran was added into the culture medium at a final concentration

of 1 mg/ml. The cells were then incubated in 37uC for 30 min.

Subsequently the cells were washed twice with ice-cold D-PBS and

mounted using hydromount.

Quantification of tubulation, vesicle number and motility
(a) Tubule and vesicle index. Cells were divided into eight sectors

and each sector was scored for the presence of vesicles or tubules.

Each sector accounts for 12.5% of total morphological activity.

The eight sector values for each cell were then added to give %

vesicle/tubule index per cell. (b) Vesicle number. Vesicle number was

analyzed by selecting fixed areas within each cell and counting the

number of vesicles present. Vesicle numbers were then normalized

to the non-transfected cell. The experiments were repeated 2–3

times, with n = 20, as the mean +/2 S.D. (standard deviation) and

a representative experiment is presented. (c) Vesicle motility. Vesicle

motility was tracked using Metamorph software.

Statistical analysis
In general, readings were obtained from at least 3 independent

experiments, and expressed as the mean +/2 S.D.. Experimental

data were analyzed by Student’s t-test. Difference was significant

when p,0.05. (* stands for p,0.05; ** for p,0.01; *** for p,0.001).

Figure 1. Characteristics of Toca-1/N-WASP induced membrane tubulation, vesicle formation and motility. (A) Cells were transfected
with cDNA encoding; GFP alone (panel a), GFP-FCH domain (panels b,b9), GFP-F-BAR domain (panels c,c9). mRFP-Toca-1 or GFP-N-WASP in HeLa cells
(panels d,e). mRFP-Toca-1 or GFP-N-WASP in CHO cells (panels f,g). Toca-1 and N-WASP expressed individually induce filopodia formation as
described in [18] but not tubules or vesicles. (B–C) CHO cells were transfected with mRFP-Toca-1 and GFP-N-WASP (B, C part a) or with mRFP-Toca-1/
HA-N-WASP and GFP-actin (C, parts b and c) as described in the Material and Methods section. (B) Confocal image of cells expressing mRFP-Toca-1-
GFP-N-WASP. mRFP-Toca-1 (a and d), GFP-N-WASP (b and e) and the merge (c and f), green – N-WASP and red – Toca-1. Upper panels show vesicles
(a–c) and lower panels (d–f) tubules. (C). TIRF live cell microscopy was used to follow the dynamics of tubule and membrane vesicle formation at the
membrane (a). A time lapse sequence of mRFP-Toca-1 is shown with time in sec. The lower panels show a schematic of the time-lapse sequence
illustrating how vesicles align to form tubules which then disassemble to give vesicles. (b) The process of vesicle formation from tubules is shown
with mRFP-Toca-1 and GFP-actin as the two labels being followed. N-WASP is present but silent in HA tagged form. (c) mRFP-Toca/HA-N-WASP and
GFP-actin were used to follow actin polymerization during vesicle motility. One vesicle was selected for analysis. Background signals were removed to
allow clear visualization of the relationship between mRFP-Toca-1 and GFP-actin. Similar results were obtained with mRFP-N-WASP/myc-Toca-1 and
GFP-actin. Bar = 10 mm. Movies S1, S2, S3 illustrate the dynamics of the Toca-1/N-WASP phenotype (see Suppl. data).
doi:10.1371/journal.pone.0012153.g001
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Figure 2. Effect of Toca-1 F-BAR mutants on Toca-1/N-WASP phenotypes. Cells were transfected with mRFP-Toca-1 F-BAR mutants with N-
WASP as outlined in the figures. (A). Phenotypes of Toca-1 F-BAR domain mutant/N-WASP combinations. (B) Motility of wild-type vesicles and Toca-1
F-BAR domain mutant generated vesicles. (C) FRAP analysis of Toca-1F-BAR domain mutant generated vesicles (a–d). Effect of Toca-1 F-BAR domain
mutants on vesicle size (e) and motility (f). Bar = 10 mm. For statistical analysis numbers are averages +/2 S. D., with n = 5–15, from 2-3 experiments.
doi:10.1371/journal.pone.0012153.g002
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Results

Toca-1/N-WASP interaction induces the formation of
dynamic membrane tubules and vesicles

Tubulation reflects F-BAR domain mediated membrane

deformation activity. In vitro tubulation can be seen as the

deformation of lipid vesicles. FBP17 and CIP4 and their F-BAR

domains alone tubulate membranes in vivo [13,16,19]. In contrast,

the FCH (partial F-BAR domain), F-BAR domain, or full-length

Toca-1 protein did not induce membrane tubulation (Fig. 1A).

This suggests that the F-BAR domain of Toca-1 is more tightly

regulated than that of CIP4 and FBP17. However, coexpression

of Toca-1 with N-WASP was sufficient to induce the formation of

membrane tubules and vesicles in CHO cells (Fig. 1B) and HeLa,

COS7 and N1E115 cells (Fig. S1). Using time-lapse TIRFM we

examined the dynamics of the processes of membrane tubulation

and vesicle formation. In cells that contained few tubules, the

vesicles were seen to align and form tubules. This sequence was

reversible as tubules could be seen to disintegrate and give rise to

vesicles (Fig. 1C, a; see movies S1 and S2). Thus tubule formation

is a result of dynamic membrane deformation in the absence of

vesicle scission. Using GFP-actin and mRFP-Toca-1/HA-N-

WASP we were able to observe vesicle formation from tubules

and follow actin dynamics (Fig. 1C, b). Vesicle formation

involved scission from the tubule and was possibly driven by

actin polymerization. The vesicles themselves were motile with a

speed of approx. 60 nm/sec (Fig. 1C, c). Both vesicle formation

and motility were associated with an actin comet emerging

behind the direction of movement (Fig. 1C; see movie S3)

reminiscent of viral/bacterial movement in mammalian cells (e.g.

[24,25]).

Toca-1 F-BAR domain mutants failed to form tubules when

expressed with N-WASP suggesting that F-BAR domain activity is

essential for tubule formation (Fig. 2A). Vesicles are still formed

when Toca-1 F-BAR domain mutants were coexpressed with N-

WASP. This may be explained by the Toca-1mutant/N-WASP

complex still being competent to promote scission of preexisting

deformed membranes. We then analyzed these vesicles in detail.

The vesicles formed by F-BAR domain mutated Toca-1 and

N-WASP are more motile and smaller in size than vesicles formed

by wild type Toca-1 and N-WASP (Fig. 2B and C, e–f). Con-

sistent with this, the vesicles formed by Toca-1 F-BAR domain

mutants recover faster than the controls in FRAP experiments

(Fig. 2C, a–d).

Characteristics of Toca-1/N-WASP induced membrane
tubules and vesicles

To understand the function of the tubules and vesicles formed

by Toca-1/N-WASP expression we next carried out a marker

analysis. We found that the tubules were colocalised with the

plasma membrane target (PMT) sequence [26,27] (Table 1 and

Fig S2). The vesicles induced by Toca-1/N-WASP were positive

for Rab5 and Rab7 but not Lamp1 (Table 1 and Fig. S3A). In

contrast, the tubules, did not stain positive for Rab5, Rab7 or

Lamp1. This suggests that tubules are not linked directly to

endosomal membranes, but rather to the plasma membrane. In

addition, we observed the tubule formation under TIRFM

which can only image approx 100 nm from the coverslip. Toca-

1 family members, FBP17 and CIP4, generate tubules

that colocalise with the plasma membrane [14–16]. Taken

together, these results strongly support the view that tubules are

derived from the plasma membrane and not the endosomal

membrane.

Clathrin colocalized with Toca-1 in the membrane tubules and

vesicles but caveolin did not (Table 1 and Fig. S3C and S3D). PH

(pleckstrin homology) domain probes colocalized in the membrane

Table 1. Colocalization analysis of Toca-1 and N-WASP
expressing cells.

Vesicle

Marker Colocalization Pearson CC ± S.D.

GFP-actin ** 0.5560.09

GFP-clathrin *** 0.7360.04

Rab5 ** 0.6760.10

Rab7 ** 0.5160.12

Lamp-1 - 0.1660.08

RFP-caveolin - 0.1060.08

CFP-PLCd-PH *** 0.7160.04

CFP-Akt-PH *** 0.5560.06

GFP-Btk-PH *** 0.7460.05

Phalloidin (F-actin) ** 0.5360.11

Tubule

Marker Colocalization

GFP-actin *** 0.7260.05

CFP-PLCd-PH *** 0.7060.06

CFP-Akt-PH *** 0.6060.05

GFP-Btk-PH *** 0.7560.12

Phalloidin (F-actin) *** 0.7560.05

GFP-clathrin *** 0.7560.07

YFP-PMT *** 0.7260.09

Cells were transfected with Toca-1 and N-WASP and left for 24–36 hr. After
fixation cells were incubated with primary antibody followed by secondary
antibody for markers of membrane trafficking pathways as described in the
Material and methods section. PH domains were visualized with GFP, or CFP.
Olympus FV1000 confocal microscope software was used for colocalization
analysis. Where Pearson colocalization coefficient (CC) of; ,0.25 indicates no
colocalization (-), 0.25–0.5 indicates potential colocalization (*), 0.5–0.7 indicates
some colocalization (**) and .0.7, indicates high colocalization (***). The CC is
an average +/2 S. D., with n = 8–10, from 3 experiments.
doi:10.1371/journal.pone.0012153.t001

Table 2. Uptake assays of endocytic markers by Toca-1 and
N-WASP expressing cells.

Endocytic pathway Marker
Toca-1-N-WASP expression
(% of control)

Clathrin-mediated
endocytosis

Transferrin 50.2611.6

Caveolin-medicated
endocytosis

Cholera toxin B 103.268.7

Pinocytosis Dextran 112.1619.3

Cells were transfected with Toca-1 and N-WASP and left to express the proteins
for 24–36 hr. Markers for uptake pathways were then added and uptake
monitored for 10 min for transferrin and 30 min for dextran and cholera toxin B
(For images see Fig. S4). The cells were then washed, fixed and examined by
confocal microscopy. Quantification of the % uptake of different markers in cells
transfected with Toca-1-N-WASP compared with control cells as described in
Material and methods section. The % uptake is an average +/2 S. D., with
n = 10, from 3 experiments.
doi:10.1371/journal.pone.0012153.t002

Cdc42 Regulates Toca-1/N-WASP

PLoS ONE | www.plosone.org 6 August 2010 | Volume 5 | Issue 8 | e12153



tubules and vesicles suggesting the involvement of phosphoinosi-

tides, and PIP2 (Phosphatidylinositol 4,5-bisphosphate) in partic-

ular (Table 1 and Fig. S3E).

We next examined which membrane uptake pathway was being

affected by coexpression of Toca-1/N-WASP. Using transferrin,

cholera toxin B and dextran uptake we found that only transferrin

uptake was inhibited. The inhibition is likely due to high levels of

tubule and vesicle formation perturbing the normal uptake

process. Inhibition of transferrin uptake was dependent on the

interaction of Toca-1/N-WASP as a SH3 domain mutant of

Toca-1W518K, that does not interact with N-WASP [17],

coexpressed with N-WASP, did not affect transferrin uptake.

Further, expression of Toca-1 or N-WASP alone did not affect

transferrin uptake significantly (Table 2 and Fig. S4). Taken

together these data are consistent with a role of Toca-1/N-WASP

in early clathrin-mediated endocytosis.

Role of F-actin on Toca-1/N-WASP phenotypes and
dynamics

Actin and actin filaments associate with the Toca-1-N-WASP

induced membrane tubules and vesicles (Fig. S3B). To determine

whether destruction of F-actin microfilaments affected the

phenotype, Cyt. D was used (Fig. 3). Cyt. D inhibited vesicle

formation (Fig. 3A) and the tubules were morphologically different

(thicker and stabilized; see FRAP analysis below). Cyt. D did not

affect the interaction of Toca-1 and N-WASP in membrane

tubules and vesicles as seen by AP-FRET (Fig. 3C). Cyt. D

inhibited vesicle motility (Fig. 3B).

To compare protein dynamics within membrane vesicles and

tubules under the different experimental conditions FRAP was

used. Cells were transfected with Toca-1 and N-WASP cDNA,

allowed to express for 36 hr and their phenotypes were followed.

Fluorescence was monitored for approx. 30 sec pre-bleach to

Figure 3. Effect of Cyt. D on the Toca-1/N-WASP phenotypes. (A). Cells were transfected with Toca-1 and N-WASP cDNA as described in the
Material and methods sections. After 36 hr cells were chosen for either tubulation or membrane vesicle formation. Using time-lapse microscopy the
change in phenotype was followed after addition of Cyt. D (4 mM) for 60 min. Panels show images at zero time (a, a9) and at 60 min (b, b9) of a
representative cell. (a9b9) are enlargements of areas in panels a–b, respectively, showing (a9b9, Cyt. D) vesicle to tubule transitions. Bar = 10 mm. (B).
Cells were then scored for presence of vesicles (vesicle index), tubules (tubule index) and vesicle motility as described in the Material and methods
section. (C) Shows AP-FRET analysis of Toca-1/N-WASP in tubules or vesicles after Cyt. D treatment. (a) Images show typical cells used and the ROI.
Green/red tracings show changes in intensity of the ROI before and after photobleaching. (b) A statistical analysis of FRET data with controls and FRET
pairs. Bar = 10 mm. (D) FRAP analysis of the protein dynamics within the tubules/vesicles, with and without Cyt. D. Images show typical cells used and
the graphs below show the bleach followed by the recovery profile. Time in sec. Bar = 10 mm. For statistical analysis numbers are averages +/2 S. D.,
with n = 7–10, from 2–3 experiments.
doi:10.1371/journal.pone.0012153.g003
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Figure 4. FRET and FLIM analysis of the Toca-1/N-WASP interaction. Cells were transfected with mRFP-Toca-1 and GFP-N-WASP cDNA and
left to express mRFP/GFP for 36 hr as described in the Material and methods section. (A) Cells were selected for either a vesicle or tubule phenotype.
ROIs focusing on these structures were chosen, as shown, and AP-FRET carried out as described in the Material and methods section. Green/red traces
to the left of the cell images indicate mRFP/GFP fluorescence pre and post-bleach. The time course of these experiments is approx. 60 sec. (B) The
Toca-1 SH3 domain mutant W518K (which is unable to bind N-WASP) was analyzed as shown for the wild-type in (A). (C) A summary of data obtained
for controls as well as FRET pairs is shown. The CC shows the relationship between the mRFP and GFP signals during AP-FRET. GFP/mRFP FRET
controls were as described in [22]. For the positive FRET scenario we expect high negative cross correlation between donor and acceptor signals. We
define positive FRET when the FRET efficiency (FE) .3% and CC .20.7. (D) Cells are analyzed by frequency-domain FLIM as described in the Material
and methods section. (a) Lifetimes are colour coded (between 1.0–3.0 ns). Cells were chosen as for AP-FRET for the presence of either tubules or
vesicles and then 12 phase shifted images captured and processed to generate a lifetime image. (b) These images were processed to demonstrate
more clearly morphological structures as follows; the higher lifetime signals (the non-interacting signals) from the original FLIM image were masked
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obtain a baseline, bleaching carried out and then recovery

monitored for approx. 300 sec (Fig. 3D). For Cyt. D treatment,

FRAP analysis was carried 60 min after treatment. FRAP analysis

was carried out in an ROI incorporating either membrane vesicles

or tubules. Toca-1-N-WASP induced membrane tubules and

vesicles had similar recovery rates of approx. 44 sec. Interestingly,

Cyt. D treatment, which eliminated membrane vesicle formation

but not tubules formation, prevented fluorescence recovery after

photobleaching (Fig. 3D, panel d). This suggests that actin

polymerization and or filaments are required for tubule dynamics

and vesicle formation.

Toca-1 and N-WASP interact in tubules and vesicles
To determine whether the interaction of Toca-1 with N-WASP

was important for the induction of membrane tubules and vesicles

the W518K mutant of Toca-1 was used. Coexpression of Toca-

1W518K with N-WASP did not induce membrane tubulation or

the formation of vesicles (Fig. 4B). This result suggests that N-

WASP plays an important role in control of the membrane

tubulation activity of Toca-1.

To show conclusively that Toca-1/N-WASP interaction was

important for the induction of membrane tubules and vesicles we

carried out FRET experiments on these cellular structures. GFP-

N-WASP and mRFP-Toca-1 were coexpressed and AP-FRET

carried out on fixed samples. If N-WASP and Toca-1 are binding

each other and the distance between GFP and mRFP is less than

10 nm FRET can occur. In this AP-FRET method the mRFP

fluorescence is bleached and the GFP fluorescence followed pre

and post bleach. In the FRET scenario GFP intensity will increase

on mRFP bleaching. Further, in the FRET scenario the rates of

change in GFP/mRFP fluorescence should be inversely correlat-

ed. The intensity changes following bleaching are expressed as a

cross correlation coefficient (CC). In addition to these experiments

we also carried out a number of controls. These include using free

GFP/mRFP proteins as well as a tandem GFP-mRFP fusion

protein. We define a positive FRET as %FE .3% and a CC

between 20.7 to 21.0. Full details of this methodology can be

found in [22]. Figure 4 shows examples of FRET experiments

focusing on either membrane vesicles or tubules. Toca-1 and N-

WASP not only colocalize in these membrane vesicles/tubules but

also interact as seen by the positive FRET. In contrast, Toca-

1W518K fails to FRET with N-WASP (Fig. 4A–C).

To confirm the AP-FRET results showing direct interaction of

Toca-1 with N-WASP by an independent method we used

frequency-domain FLIM. In this FRET method the lifetime of the

donor is used as an indicator of protein-protein interaction. A

positive FRET leading to decreased donor lifetime. The lifetime of

GFP in cells is approximately 2.2 ns. If GFP is within 10 nm of an

acceptor, such as mRFP, FRET can occur. With cytosolic GFP

and mRFP FRET does not occur and coexpression does not affect

GFP lifetimes (Fig. 4D). Using GFP-N-WASP and mRFP-Toca-1

expressing cells we measured the GFP lifetimes using the

frequency domain method. With this method we were able to

combine intensity measurements with lifetimes and obtain some

spatial resolution of sites where Toca-1 interacted with N-WASP

(Fig. 4D). Supporting the AP-FRET analysis Toca-1 interacted

with N-WASP in vesicles with a lifetime of 1.64 ns and tubules

with a lifetime of 1.59 ns (Fig. 4D). Similar FLIM data were

obtained using time-domain measurements (data not shown).

Dynamin is essential for vesicle formation but not for
tubulation

As Toca-1 has been reported to bind dynamin [15], we also

examined the phenotype of Toca-1-dynamin coexpression

(Fig. 5A). We expressed mRFP-Toca-1 with GFP-dynamin and

both proteins were localized to membrane vesicles but tubules

were not generated. Interestingly, the vesicles were not motile and

were morphologically distinct from Toca-1/N-WASP vesicles and

similar to the dynamin-carrying vesicles found in the absence of

Toca-1 expression regardless of the protein expression level. Toca-

1 was in a complex with dynamin in these membrane vesicles as

seen by FRET analysis (Fig. 5A, b). We speculated that Toca-1/N-

WASP mediated tubule formation arose because of limiting

amounts of endogenous dynamin. To investigate this possibility

further we used wild-type (WT) and K44A-dominant negative

(DN)-dynamin. DN-dynamin prevented the formation of mem-

brane vesicles and all transfected cells contained membrane

tubules. In contrast, expression of WT-dynamin with Toca-1/N-

WASP eliminated membrane tubules and cells were rich in

membrane vesicles (Fig. 5B).

Cdc42 regulates Toca-1/N-WASP complex formation
We next investigated the role of Cdc42 in Toca-1/N-WASP

complex formation and activity. First we determined whether

Cdc42 did indeed interact directly with Toca-1 and/or N-WASP

within the Toca-1/N-WASP complex in tubules and membrane

vesicles using AP-FRET. These experiments involved using low

level expression of GFP-Cdc42G12V (which did not significantly

affect phenotype) in combination with either mRFP-Toca-1/HA-

N-WASP or mRFP-N-WASP/myc-Toca-1. Cdc42G12V inter-

acted with Toca-1 in tubules but not in vesicles (Fig. 6A). Cdc42

interacted with N-WASP in both tubules and membrane vesicles.

Thus the Cdc42-N-WASP-Toca-1 complex does exist in both

tubules and vesicles; however, Cdc42 interacts with Toca-1 only in

tubules.

To determine whether Cdc42 interaction was necessary for the

formation of the Toca-1/N-WASP complex we used Cdc42

binding defective mutants, Toca-1MGD383-385IST and N-

WASPH208D. Interestingly, N-WASPH208D was not competent

to make a complex with Toca-1 suggesting that Cdc42 binding to

N-WASP was essential for the formation of a trimer complex

(Fig. 6B). For comparison, we also examined whether the N-

WASPDWA mutant formed a complex with Toca-1 and found

that it did. However, the Toca-1/N-WASPDWA complex had a

null phenotype (Fig. 6C). The Toca-1 Cdc42 binding defective

mutant MGD383-385IST was still able to complex with N-WASP

and did not alter the phenotype of the complex dramatically

(Fig. 6B).

Cdc42 interaction with Toca-1 and N-WASP regulates
membrane tubulation, vesicle formation and motility

When the Cdc42 binding defective Toca-1MGD383-385IST

mutant was expressed with N-WASP the length of tubules were

dramatically shorter by approx 50% (Fig. 7A). In addition, vesicle

in Photoshop and then (using Metamorph) the masked image was given a pseudo color and overlaid with intensity image. Lifetime images are shown
with the intensity images below. The lifetimes of GFP-N-WASP within tubules and vesicles can be obtained using this analysis. (c) Summary of
lifetimes obtained for controls, N-WASP alone, Toca-1/N-WASP and Toca-1W518K/N-WASP. Bar = 10 mm. For statistical analysis numbers are averages
+/2 S. D., with n = 7–15, from 2–3 experiments.
doi:10.1371/journal.pone.0012153.g004
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Figure 5. Dynamin function, Toca-1 interaction and phenotype. (A). Cells were transfected with mRFP-Toca-1 and either GFP-dynamin2 or
GFP-dynamin1 cDNA (not shown) as described in the Material and methods. The top two panels show the cell phenotypes of individual protein
expression. The lower two panels show the double expression with different level of protein expression. Bar = 10 mm. Numerical data are derived from
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size was reduced by the Toca-1 Cdc42 binding-defective mutant.

These results suggest that direct binding of Cdc42 to Toca-1

regulates its F-BAR domain membrane tubulation activity. In

contrast, when the N-WASPH208D mutant was used in combina-

tion with Toca-1 or Toca-1MGD383-385IST the tubule/vesicle

phenotype was absent (Fig. 6B). Thus Cdc42 interaction with N-

WASP is essential for complex formation and for tubule/vesicle

formation.

Since it was not possible to use N-WASPH208D to examine the

role of Cdc42-N-WASP interaction in membrane tubulation,

vesicle formation or motility, we turned to other approaches. This

included the use of proteins that bind to active Cdc42 and block its

function GBD (GTPase binding domain) and CRIB (Cdc42 and

Rac interacting binding site), dominant active (Cdc42G12V) and

negative (Cdc42T17N) versions of Cdc42, respectively, and the

exchange of N-WASPH208D into complexes of Toca-1/N-

WASP. Cdc42 mutants (V12 and N17) and CRIB domains are

widely used to study the function of this protein as well as other

members of Rho family. It should be noted that the specificity of

these proteins is not absolute. For instance, Cdc42N17 may target

exchange factors that also activate Rac and Rho. The CRIB

domain we use is derived from WASP and has high specificity for

Cdc42, unlike the CRIB domain from PAK which binds Cdc42

and Rac equally well. Nevertheless, the WASP CRIB domain may

have effects on Rac pathways at high concentration. In the present

work, to address this specificity issue, we combine the use of Cdc42

mutants and CRIB protein with Cdc42 binding dead point

mutations of N-WASP and Toca-1. CRIB and GBD are small 50–

60 mer residue polypeptides derived from PAK and WASP

proteins that bind to Cdc42-GTP specifically and inhibit signaling.

Interestingly, both CRIB and GBD significantly reduced tubula-

tion, vesicle formation and motility (Fig. 7B). Most dramatically

affected by CRIB and GBD was vesicle motility. CRIB also

affected the distribution of vesicles in cells as examined by confocal

Z-sectioning of cells (Fig. S5). In control cells vesicles were found

throughout the cell. In CRIB cells the number of vesicles were

substantially reduced and only found in areas near the coverslip.

We interpret these results to suggest that vesicle formation/

motility requires Cdc42.

Next we used Cdc42G12V/T17N to explore the role of Cdc42-

N-WASP interaction in the tubule/vesicle phenotype. Cells

expressing Toca-1/N-WASP with Cdc42T17N had a null

phenotype while most cells with Cdc42G12V possessed tubules

but no vesicles (Fig. 7C, a). The tubules found in Cdc42G12V

expressing cells were non-dynamic (Fig. 7C, b). To examine the

role of Cdc42 interaction with N-WASP further we decided to try

and exchange mutant GFP-N-WASPH208D into cells that had

the Toca-1/N-WASP phenotype (Fig. 7C, c). We were able to

follow the exchange by looking for GFP in the tubules/vesicles.

GFP-N-WASPH208D inhibited tubule formation and vesicle

motility (Fig. 7C, c). Taken together, these data suggest that

Cdc42 interaction with N-WASP is a key event in the formation of

the Cdc42-N-WASP-Toca-1 trimer complex which subsequently

plays a role in three distinct steps of endocytosis; tubulation, vesicle

formation and motility.

The above data suggest that Cdc42 may regulate endocytosis.

To test this idea in a more physiological context we followed Rab5

membranes using GFP-Rab5. As shown in Table 3, the Rab5

vesicle motility was reduced in the presence of Cdc42G12V or

Cdc42T17N, supporting a role for Cdc42 in early endosomal

trafficking.

Discussion

BAR domains were first identified in metazoan proteins BIN/

Amphiphysin and yeast proteins (Rvs161/Rvs167; reduced

viability upon starvation) prior to functional attributes of

membrane remodeling being associated with the domain.

Currently there are three distinct families of BAR domains;

classical-BAR, F-BAR (e.g. Fes/CIP4) and I-BAR (e.g. IRSp53).

Structural studies have revealed common elements of the BAR

domain which includes dimerization modules that possess

curvature and positively charged surfaces [11]. The role of BAR

domains in membrane tubulation has opened-up the investigation

of how membranes are remodeled during cellular processes.

Recent work on the Toca family, FBP17, CIP4 and Toca-1,

suggest a role for these proteins in endocytosis [13–15]. The

presence of a SH3 domain in FBP17, CIP4 and Toca-1 that binds

N-WASP provides a link to the actin machinery through the

Arp2/3 complex. A third domain (HR1) of these proteins is the

Cdc42 binding site. Unlike, FBP17 and CIP4, Toca-1 alone did

not induce membrane tubulation. We found that expression of

Toca-1 with N-WASP together was required to induce formation

of membrane tubules and vesicles. The tubules and vesicles

generated by Toca-1/N-WASP were dynamic, positive for Rab5,

PIP2, and clathrin. Toca-1/N-WASP affected uptake of transferrin

but not of cholera toxin B or of dextran. Previous work has shown

that knockdown of all three Toca family proteins, FBP17, CIP4

and Toca-1, is required to inhibit endocytosis significantly [15]

providing evidence for redundancy within the protein family. The

colocalization marker and uptake data presented here suggest that

the Toca-1/N-WASP complex is associated with clathrin-mediat-

ed endocytosis.

Actin polymerization plays a role in membrane
deformation and scission events

The N-WASP DWA mutant expressed with Toca-1 gave null

phenotype suggesting that the N-WASP-Arp2/3 mediated actin

polymerization plays an essential role in Toca-1-N-WASP induced

tubule and vesicle formation. Data generated using Cyt. D also

support a role for actin polymerization in membrane tubulation

and vesicle formation - scission. Interestingly, an elegant study by

Romer et al. showed that actin polymerization played an essential

role in membrane scission events associated with membrane

tubule invaginations generated by Shiga toxin [28].

Membrane tubulation
We have shown that mutation of the F-BAR domain eliminates

tubules and the N-WASP WA domain leads to a null phenotype.

Thus the tubule phenotype we observe relies on the activity of

these domains in combination and is therefore distinct from that

observed with Shigella toxin [29]. FRET analysis revealed that

Cdc42 interacted with N-WASP and Toca-1 on tubules. The

Toca-1MGD383-385IST mutant is not able to bind Cdc42 and

with N-WASP induced tubules that were dramatically shorter that

wild-type protein. We interpret this data as evidence that Cdc42

AP-FRET analysis of mRFP-Toca-1/GFP-dynamin2. (B) mRFP-Toca-1, GFP-N-WASP and HA-dynamin transfections were carried as before (see figure 1
legend for details) and either dynamin1 WT (upper panel) or dynamin1-K44A (dominant negative) cDNA (lower panel). Three images for each
combination is shown; Toca-1, N-WASP and merge (red – Toca-1; green – N-WASP). Single GFP/mRFP images are in black and white. Bar = 10 mm. For
statistical analysis numbers are averages +/2 S. D., with n = 8–10, from 2–3 experiments.
doi:10.1371/journal.pone.0012153.g005
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Figure 6. Cdc42, Toca-1 and N-WASP interactions and phenotypes. (A) Cells were transfected Toca-1, N-WASP and Cdc42G12V and allowed
to express for 36 hours as described in the Material and methods section. To perform AP-FRET Cdc42G12V was GFP labeled and the other cDNA
labeled with mRFP. The third cDNA encoded (myc or HA tagged) non-fluorescent protein. Cells with either tubules or vesicles were then chosen and
AP-FRET performed on the ROI. (a) Cdc42-Toca-1 interaction (panels 1–3 tubules, panels 4–6 vesicles). (b) Cdc42-N-WASP interaction (panels 1–3
tubules, panels 4–6 vesicles). (c) A statistical analysis of the AP-FRET data. Traces on the right of the images represent intensity values of GFP and
mRFP during pre and post bleach. (B) AP-FRET analysis of interactions between Toca-1 and N-WASP mutants. Cells were transfected with cDNAs
endcoding GFP and mRFP fusions and allowed to express for 36 hr as described in the Material and methods. (a) Top two panels show single
transfections, either Toca-1-MGD383-385IST mutant alone or N-WASPH208D mutant alone. The subsequent 9 panels show, in groups of three; Toca-
1MGD383-385-IST/N-WASP (panels 1–3), Toca-1/N-WASPH208D (panels 4–6) and Toca-1MGD383-385IST/N-WASPH208D (panels 7–9). Left panels
show Toca-1 and mutants, middle panels show N-WASP and mutants and right panels show merged images. (b) A statistical analysis of the AP-FRET
experiments with associated phenotypes. Bar = 10 mm. (C) Effect Toca-1/N-WASP and Toca-1/N-WASPDWA combinations on F-actin as stained by
phalloidin. (a) Cells were transfected with cDNAs encoding GFP-N-WASP and mRFP-Toca-1 fusions or (b) mRFP-Toca-1/GFP-N-WASPDWA as described
in the Material and methods. F-actin was visualized with phalloidin. In (a) first series of three images is a cell with tubules. Second series of three
shows a cell with vesicles. (b) First series of three images shows signals from Toca1, N-WASPDWA and then the merge. Second series of three shows
N-WASPDWA, F-actin and then the merge. Bar = 10 mm. For statistical analysis numbers are averages +/2 S. D., with n = 7–10, from 2–3 experiments.
doi:10.1371/journal.pone.0012153.g006
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Figure 7. Effect of Toca-1MGD383-385IST and Cdc42 modulation on Toca-1/N-WASP phenotypes. (A). Cells were transfected with cDNA
encoding the Cdc42 binding mutant of Toca-1MGD383-385IST with N-WASP as described in the Material and methods. Cell phenotypes of Toca-1
MGD383-385IST with N-WASP were analyzed for (a) tubulation, (b) vesicle number and (c) vesicle motility. (B). Cells were transfected with cDNA
encoding Toca-1/N-WASP, CRIB or GBD domains and effects on (a) tubulation, (b) vesicle number or (c) vesicle motility. (C). Cells were transfected
with Toca-1/N-WASP/Cdc42 combinations and allowed to express for 36 hours as described in the Material and methods. (a) Effect of Cdc42G12V or
Cdc42T17N on the Toca-1/N-WASP phenotype. (b) FRAP analysis of the protein dynamics of Cdc42G12V/Toca-1/N-WASP transfected cells. (c) Effect of
N-WASPH208D exchange into Toca-1/N-WASP induced structures. Left panel – Toca-1 image, middle panel – N-WASPH208D image, right panel –
merge of the two images. Bar charts show statistical analysis of effects N-WASPH208D exchange into the Toca-1/N-WASP complex on tubulation and
on vesicle motility. The methods for measuring tubule index and vesicle motility are described in the Material and methods section. Bar = 10 mm. For
statistical analysis numbers are averages +/2 S. D., with n = 6–10, from 2–3 experiments.
doi:10.1371/journal.pone.0012153.g007
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interaction with Toca-1 regulates but is not essential for F-BAR

domain activity. In contrast, the N-WASP mutants, H208D and

DWA, expressed with Toca-1 did not give a phenotype. This result

suggests that Cdc42 interaction with N-WASP, and N-WASP with

Arp2/3, are essential for F-BAR domain activity and membrane

remodeling. This is supported by the result obtained with

exchange of N-WASP by N-WASPH208D which resulted in a

reduced number of tubules. FRET data showed that the N-

WASPH08D mutant did not form a complex with Toca-1 and this

may be the reason for the null phenotype. In contrast, the N-

WASPDWA mutant did form a complex with Toca-1 but still had

a null phenotype. From the protein-protein interaction-phenotype

correlations we hypothesize that Cdc42-interaction with N-WASP

is critical to ‘‘open’’ the N-WASP and expose the polyproline rich

and WA domains, which then bind Toca-1 SH3 domain and the

Arp2/3 complex, respectively. Binding of N-WASP polyproline

rich domain by Toca-1 SH3 domain may reveal its F-BAR

domain allowing it to couple membrane tubulation with actin

polymerization via Arp2/3 complex.

Vesicle formation
Since vesicle number was unaffected by the Toca-1MGD383-

385IST mutation, Cdc42 interaction with Toca-1 is not important

for vesicle formation. As the N-WASPH208D mutant had a null

phenotype we could not use this mutant to investigate the role of

Cdc42 interaction with N-WASP in vesicle formation or motility.

To address the role of the Cdc42–N-WASP interaction in vesicle

formation and motility we used a number of modulators of the

Cdc42 pathway. Firstly, CRIB and GBD reduced vesicle number

significantly and affected the distribution of vesicles within the cell.

Secondly, in cells expressing high levels of Cdc42G12V or

Cdc42T17N with Toca-1/N-WASP no vesicles were seen. This

result suggests that cycling of active/inactive Cdc42 is important

for N-WASP function in vesicle formation.

Vesicle motility
FRET analysis revealed that Cdc42 interacted with N-WASP

but not Toca-1 on vesicles. The vesicles generated by Toca-1/N-

WASP were motile and possessed an actin tail in the shape of a

comet reminiscent of bacterial/viral motility in mammalian cells.

Toca-1-dynamin coexpression generated non-motile vesicles

suggesting N-WASP was critical for motility. Toca-1MGD383-

385IST or the F-BAR domain mutants did not affect vesicle

motility significantly. In contrast, the addition of either GBD or

CRIB to Toca-1/N-WASP cells eliminated vesicle motility. Lastly,

exchange of N-WASPH208D into vesicles inhibited their motility.

CRIB domain microinjection into cells immediately inhibited

vesicle motility (data not shown). Thus Cdc42 interaction with N-

WASP and not Toca-1 is essential for vesicle motility. As found in

vitro, Toca-1 interaction with N-WASP may be required to activate

actin polymerization in vivo, to drive vesicle motility. Further work

is necessary to investigate the role of Toca-1 in controlling N-

WASP actin polymerization activity, in vivo, during vesicle

movement.

The results presented here show that Cdc42 regulates the

coupling of BAR domain activity with actin dynamics as a means to

remodel membranes may represent a general mechanism used in

the formation of structures such as filopodia, podosomes, T-tubules

and membrane vesicles [11]. There are close similarities between

the filopodia generating ability of the I-BAR domain protein

IRSp53 [22,30,31] and the membrane vesicle generating ability of

Toca-1. Both have Cdc42 binding sites and N-WASP binding sites.

In the case of IRSp53 mediated filopodia formation its SH3 domain

interacts with a number of proteins involved in actin dynamics;

Mena [32] Eps8 [33] as well as N-WASP [22]. For Toca-1, its SH3

domain seems to be specific for N-WASP but there is no reason why

other proteins involved in actin dynamics could not bind it.

Implications for endocytosis
Work on CIP4 and FBP17 suggests that these proteins play a

role in endocytosis that is redundant with Toca-1 [15]. During the

preparation of this manuscript, Fricke et. al., [34] reported the role

of the Drosophila CIP4 homolog in morphological pathways

associated with bristle formation. Their phenotypic observations

with regards to membrane tubules and vesicles are largely similar

to those presented here. In the present study we have focused on

the role of Cdc42 in formation of a trimer complex with Toca-1/

N-WASP and regulation of its activity. Our protein-protein

interaction with phenotype correlations suggests that Cdc42

interaction with N-WASP is a critical first step to the formation

of the Cdc42-N-WASP-Toca-1 trimer complex. The function of

this trimer complex is to couple F-BAR domain activity with actin

polymerization to give dynamic membrane tubulation and the

formation of motile vesicles. Cdc42-Toca-1 interactions affect

tubule length and therefore F-BAR domain activity. Thus Cdc42

activity may regulate endocytic trafficking pathways by controlling

the formation and activity of N-WASP-Toca-1 complex.

Supporting Information

Table S1 Mutants and descriptions. Mutants’ name, location of

the mutations and functions.

Found at: doi:10.1371/journal.pone.0012153.s001 (0.04 MB

DOC)

Figure S1 Toca-1/N-WASP induces tubules and vesicles in

Hela, N1E115 and COS7 cells. mRFP-Toca-1 and GFP-N-WASP

were transfected into Hela cells (A), N1E115 cells (B) and COS7

cells (C). Confocal images were shown in the sequence of mRFP-

Toca-1, GFP-N-WASP and merged. Vesicles are shown in a-c in

panel A, d-f in panel B and a-c in Panel C. Tubules are shown in

d-i in Panel A, a-c in Panel B and a-c in Panel C. Bar = 10 mm.

Found at: doi:10.1371/journal.pone.0012153.s002 (4.04 MB TIF)

Figure S2 Tubules induced by Toca-1 and N-WASP colocalised

with PMT. Cells were transfected with YFP-PMT (A) or YFP-

PMT together with mRFP-Toca-1 and HA-N-WASP (B) and left

to express for 36 hr as described in the Material and methods

section. The cells were examined by confocal microscopy. The

images in panel B were shown in the sequence of PMT, Toca-1

and merge. The zoomed images of the boxed area were shown

below respective image. Bar = 10 mm.

Found at: doi:10.1371/journal.pone.0012153.s003 (2.62 MB TIF)

Figure S3 Vesicles or tubules induced by Toca-1 and N-WASP

colocalize with Rab5, Rab7, clathrin, actin and PH domain

Table 3. Effect of Cdc42 on the motility of Rab5 vesicles.

Condition Control Cdc42G12V Cdc42T17N

Rab5 vesicle motility
(mm/sec)

0.10860.077 0.07260.043 0.07260.036

CHO cells were transfected with GFP-Rab5 alone, GFP-Rab5 and Cdc42G12V, or
GFP-Rab5 and Cdc42T17N. The timelapse acquisition was performed 24 hr post
transfection. The motility of vesicles was tracked using metamorph software as
described in Material and methods. For statistical analysis numbers are mean +/
2 S. D., with n = 6–10, from 2 experiments. Experimental data were analyzed by
Student’s t-test (p,0.001).
doi:10.1371/journal.pone.0012153.t003
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probes, but not caveolin. (A) CHO cells were transfected with

mRFP-Toca-1 and HA-N-WASP followed with antibody (Rab5,

Rab7 or Lamp-1) staining. Vesicles or tubules induced by Toca-1

and N-WASP were analyzed for colocalization by intensity tracing

through the vesicle/tubules. First two panels following intensity

tracing are the actual vesicles/tubules that were examined. The

schematic of the vesicles (third panel) shows the intensity line.

Intensity analysis was carried out as described under ‘‘Materials

and Methods.’’ Intensity tracings in other panels (B–E) are done

similarly as that of panel A. Bar = 10 mm (B) CHO cells transfected

with mRFP-Toca-1, HA-N-WASP and GFP-actin were fixed and

examined with confocal microscopy. The Upper panel shows the

cell with vesicles and the lower panel shows the cell with tubules.

left panel-Toca-1, middle panel-actin, right panel-merge.

Bar = 10 mm (C) CHO cells transfected with mRFP-Toca-1 and

GFP-clathrin (a), or mRFP-Toca-1, HA-N-WASP and GFP-

clathrin (b and c) were fixed and examined with confocal

microscopy. left panel -Toca-1, middle panel-clathrin, right

panel-merge. Bar = 10 mm (D) CHO cells transfected with Myc-

Toca-1, GFP-N-WASP and RFP-caveolin were fixed and

examined with confocal microscopy. left panel -N-WASP, middle

panel-caveolin, right panel-merge. Bar = 10 mm (E) CHO cells

were transfected with mRFP-Toca-1, HA-N-WASP and CFP-

PLCd-PH (a), mRFP-Toca-1, HA-N-WASP and CFP-Akt-PH (b

and c), mRFP-Toca-1, HA-N-WASP and GFP-BTK-PH (d and

e). The cells were fixed and imaged with confocal microscopy

24 hrs after transfection. left panel-Toca-1, middle panel-individ-

ual PH domain probe, right panel-merge. Bar = 10 mm.

Found at: doi:10.1371/journal.pone.0012153.s004 (2.40 MB TIF)

Figure S4 Uptake assays of endocytic markers by Toca-1 and N-

WASP expressing cells. Cells were transfected with Toca-1 and N-

WASP and left to express the proteins for 24–36 hr. Markers for

uptake pathways were then added and uptake monitored for

10 min for transferrin (A and B) and 30 min for dextran and

cholera toxin B (C). The cells were then washed, fixed and

examined by confocal microscopy. Bar = 10 mm.

Found at: doi:10.1371/journal.pone.0012153.s005 (2.81 MB TIF)

Figure S5 Effect of CRIB domain on Toca-1/N-WASP

phenotype. Cells were transfected with mRFP-Toca-1 and GFP-

N-WASP cDNA with and without CRIB cDNA and left to express

mRFP/GFP for 36 hr as described in the Material and methods

section. Cells were then selected based on Toca-1 mRFP

fluorescence intensity and scored for (A) tubule length and (B)

vesicle number per cell. In addition, (C) for each cell a Z-stack of

approx 28 sections (0.3 mm per section) was acquired and vesicle

number per section measured. In (A) and (B) each point represents

an individual cell. In (C) the vesicle number is an average +/2 S.

D., with n = 4 from 2–3 experiments.

Found at: doi:10.1371/journal.pone.0012153.s006 (0.36 MB TIF)

Movie S1 Toca-1/N-WASP vesicle dynamics. CHO cells were

transfected with cDNA encoding mRFP-Toca-1 and GFP-N-

WASP. After 24 hr, the time-lapse acquisition was performed on

an inverted Olympus FV1000 confocal microscope at 10 sec

interval for 4 min. Image acquisition in the mRFP and GFP

channels was done sequentially. Bar = 10 mm.

Found at: doi:10.1371/journal.pone.0012153.s007 (4.20 MB

MOV)

Movie S2 mRFP-Toca-1/GFP-N-WASP induced tubule/vesicle

transitions with TIRFM. CHO cells were transfected with cDNA

encoding mRFP-Toca-1 and GFP-N-WASP. After 24 hr, the

time-lapse acquisition was performed on an inverted Olympus

FV1000 TIRF microscope at 10 sec interval for 60 min. The

penetration depth was approx 100 nm from the coverslip. Image

acquisition in the mRFP and GFP channels was taken sequen-

tially. Bar = 10 mm.

Found at: doi:10.1371/journal.pone.0012153.s008 (5.22 MB

MOV)

Movie S3 mRFP-Toca-1/HA-N-WASP/GFP-actin induced

vesicle motility. CHO cells were transfected with cDNA encoding

mRFP-Toca-1, HA-N-WASP and GFP-actin. After 24 hr, the

time-lapse acquisition was performed on an inverted Olympus

FV1000 confocal microscope at 2.3 sec interval for ,2 min.

Image acquisition in the mRFP and GFP channels was done

sequentially. Bar = 10 mm.

Found at: doi:10.1371/journal.pone.0012153.s009 (10.07 MB

MOV)
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