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Substrate specificity of bacterial endoribonuclease toxins
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Bacterial endoribonuclease toxins belong to a protein family 
that inhibits bacterial growth by degrading mRNA or rRNA se-
quences. The toxin genes are organized in pairs with its cog-
nate antitoxins in the chromosome and thus the activities of the 
toxins are antagonized by antitoxin proteins or RNAs during 
active translation. In response to a variety of cellular stresses, 
the endoribonuclease toxins appear to be released from anti-
toxin molecules via proteolytic cleavage of antitoxin proteins 
or preferential degradation of antitoxin RNAs and cleave a di-
verse range of mRNA or rRNA sequences in a sequence-speci-
fic or codon-specific manner, resulting in various biological phe-
nomena such as antibiotic tolerance and persister cell forma-
tion. Given that substrate specificity of each endoribonuclease 
toxin is determined by its structure and the composition of active 
site residues, we summarize the biology, structure, and substrate 
specificity of the updated bacterial endoribonuclease toxins. 
[BMB Reports 2020; 53(12): 611-621]

INTRODUCTION

Bacteria grow in constantly changing environments that often 
limit growth or threaten their survival. To adapt or survive in 
such fluctuating environments, bacteria need to slow down 
their growth rate by multiple ways including redistribution of 
metabolic pathways and nutrient transport, shutdown of trans-
lation, or alteration of gene expression of components involved 
in translation, replication of the genome, and division of the 
cell walls (1). The ability to adapt to unfavorable environments 
is largely dependent on how bacteria quickly respond to en-
vironmental stimuli and modulate gene expression to adjust 
the bacterium’s growth in a newly given environment.

Toxin-antitoxin systems are one of such genetic elements 
that directly regulate bacterial growth in response to a variety 
of cellular stresses including nutrient limitation, SOS response, 
heat shock, bacteriophage infection, and antibiotic treatment 

(2, 3). Toxin-antitoxin systems consist of two genes encoding 
the toxin and its cognate antitoxin, respectively. Toxin proteins 
arrest bacterial growth by inhibiting DNA gyrase, degrading 
messenger RNAs, or modifying the ribosomal components, 
most of which disrupt translation process (4-15). Considering 
that translation is the most energy-demanding process and global 
translation efficiency is one of the major limiting factors for 
bacterial growth rate (16, 17), it is not surprising that the toxins 
are predominantly involved in inhibiting protein synthesis. 
Among these toxins, the majority of toxin proteins are endo-
ribonucleases degrading mRNAs (2, 3, 18, 19). The endoribonu-
clease toxins recognize and cleave defined mRNA sequences 
depending on its structures and residues at the active sites (20). 
In this review, we summarize the current understanding of 
bacterial endoribonuclease toxins focusing on the substrate 
specificity of the toxins and underlying mechanisms. 

Classification of toxin-antitoxin systems
Toxin-antitoxin systems are classified into six different types 
depending on how the antitoxin recognizes and antagonizes 
the toxin protein (3). For example, in type I toxin-antitoxin sys-
tem, the antitoxins are antisense RNAs that bind to the trans-
lation initiation regions of the toxin genes and inhibit transla-
tion of the toxin mRNAs. By contrast, type II antitoxins are 
proteins and inhibit toxin’s activity by directly binding to the 
toxin proteins with different molecular ratios (toxin : antitoxin 
ratio of 2 : 2, or 4 : 2) (18). Type III antitoxins are similar to 
type I antitoxins in a sense that they are small noncoding 
RNAs. However, unlike type I antitoxins, type III antitoxin 
RNAs directly bind to the toxin proteins and inhibit the toxin’s 
activity instead of blocking translation of the toxin genes by 
base-pairing (Fig. 1). 

Type II ribosome-dependent endoribonucleases
RelB-RelE: RelB-RelE is one of the most well-studied toxin- 
antitoxin operons encoding a toxin RelE and an antitoxin RelB. 
Expression of the relBE operon is induced by amino acid and 
glucose starvation (21) and the activation is mediated by Lon 
protease degrading RelB antitoxin, which also acts as a re-
pressor of the relBE operon (22). The autorepressor activity of 
RelE is largely dependent on the molecular ratio between RelE 
and RelB. At a low RelE:RelB ratio, the RelE-RelB complex 
binds to the promoter and represses relBE expression, but at a 
high RelE:RelB ratio, RelE is released from the complex, fur-
ther increasing relBE expression by removing the RelE-RelB 
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Fig. 1. Bacterial endoribonuclease toxins in the toxin-antitoxin systems. The types of toxin-antitoxin systems are determined by how antitoxins 
antagonize the endoribonuclease toxins. In type I toxin-antitoxin systems, antitoxins are antisense RNAs and inhibit toxin translation by base- 
pairing. In type II toxin-antitoxin systems, antitoxins are proteins that directly bind to toxin and neutralize toxin’s endoribonuclease activity. Anti-
toxin alone or toxin-antitoxin complex also binds to the promoter region and represses expression of the toxin-antitoxin operon. In type III toxin- 
antitoxin systems, antitoxins are small noncoding RNAs that are transcribed as longer transcripts and then processed by the cognate endo-
ribonuclease toxin into 34-36 nt sRNAs. The processed sRNAs bind to the toxin protein and inhibit toxin’s endoribonuclease activity.

complex from the operator (23).
RelE is a representative endoribonuclease toxin among bacte-

rial toxin-antitoxin systems. RelE specifically cleaves ribosome- 
bound mRNAs and has no activity on free mRNAs in vitro. 
RelE induces cleavage of mRNAs between the second and 
third nucleotides of UAA/UAG stop codons or several sense 
codons (Py-Pu-G) in the ribosomal A-site (Table 1) (5, 24, 25). 
RelE has a bacteriostatic effect on growth by quickly inducing 
cleavage of mRNAs, shutting down translation. The ribosome 
stalled by RelE can be recycled via tmRNA-mediated trans- 
translation (26-28). The ribosome-bound RelE structure analysis 
revealed that RelE occupies the A-site and tightly interacts with 
16S rRNA. RelE binding induces conformational change of mRNA 
of the A site, resulting in RNA hydrolysis between codon posi-
tions 2 and 3. The RelE-mediated mRNA cleavage requires the 
interaction between RelE Tyr87 and the base of the second 
nucleotide in mRNA codon (Fig. 2A) and the interaction be-
tween the bases of the third nucleotide in mRNA codon and 
C1054 of 16S rRNA (25). These requirements explain why the 
RelE-mediated mRNA cleavage is ribosome-dependent.
YefM-YoeB: YoeB is a toxin that belongs to a RelE superfamily 
(29). Unlike other RelE superfamily toxins that are typically mono-
meric, YoeB toxin binds to the ribosome as homodimer (30). 
However, the engineered YoeB monomer still retained ribosome- 
dependent ribonuclease activity despite being unstable during 
thermal stress (31), suggesting that dimer formation is dispens-
able for its function but required for its thermal stability. YoeB 
binds to the 30S subunit of the ribosome and cleaves mRNAs 
in the A-site (31). A crystal structure of YoeB dimer: 70S sub-

unit showed that one of the YoeB subunits exhibits a close 
contact with 16S rRNA, 23S rRNA, and mRNA in the A-site 
whereas the other YoeB subunit is loosely associated with the 
30S subunit (31), again supporting that dimer formation is not 
essential for ribonuclease activity.

Similarly to RelE, YoeB toxin has a broad codon specificity. 
It cleaves mRNAs between positions 2 and 3 in the UAA stop 
codon and AAU Asn codon and after the third base of AAA 
Lys codon (20, 31, 32). It was also reported that YoeB toxin 
also cleaves between the second and third bases of AAA Lys, 
CUG Leu, and GCG Ala codons (Table 1) (29). Given that 
most of mRNA cleavage sites are located close to the AUG 
initiation codon, it was suggested that YoeB inhibits translation 
initiation (20). Structural analyses showed that the second nu-
cleotide of mRNA codon in the A-site specifically interacts with 
YoeB Lys49, while the first and third nucleotides of mRNA 
codon lack such base-specific interactions (Fig. 2B) (30, 31), 
which explain the wide range of codon specificity of YoeB.
YafN-YafO: YafN-YafO is a toxin-antitoxin system discovered 
by a bioinformatics analysis in E. coli (8). Genetic organization 
of yafN-yafO is unique in that the yafN-yafO genes are a part 
of dinB-yafN-yafO-yafP operon and are transcribed from two 
promoters, where one promoter is located upstream of the dinB 
gene and the other promoter is upstream of the yafN antitoxin 
gene (33). The dinB gene encodes an enzyme required for error- 
prone DNA repair in SOS response and transcription of the 
dinB gene is induced by DNA damaging agents such as mito-
mycin C from the upstream promoter of the dinB-yafN-yafO-yafP 
operon (8, 33), suggesting a physiological role of YafO in SOS 
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Table 1. Substrate specificity of bacterial endoribonuclease toxins

TA operon Protein/RNA TA Signals/Regulators Recognition sequence Reference

Type II ribosome-dependent endoribonuclease toxin
  relB-relE RelE Toxin Amino acid or glucose starvation / 

Lon protease (E. coli)
cleaves mRNA at UA↓G, UA↓A stop 

codons, and CA↓G Gln sense codon in 
the ribosomal A site (E. coli)

(5, 21, 25)
RelB Antitoxin

  yefM-yoeB YefM Antitoxin Lon protease overexpression UA↓A (stop), AAA↓ (Lys), 
AA↓U (Asn), AA↓A (Lys), 
CU↓G (Leu), GC↓G (Ala)

Cleaves 3 nt downstream of 
the AUG initiation codon

(20, 29, 31, 32)

YoeB Toxin

  yafN-yafO YafN Antitoxin Amino acid or glucose starvation 
(yafN promoter), UV irradiation, 
SOS response (dinB promoter)

Cleaves 11-13 nt downstream of 
the AUG initiation codon

(8, 34)
YafO Toxin

  dinJ-yafQ DinJ Antitoxin Biofilm formation, SOS response / 
LexA repressor

AA↓A (Lys) A/G (36, 38)
YafQ Toxin

  higB-higA HigB Toxin Amino acid starvation Cleaves an adenosine-rich codon 
including AAA (Lys), ACA (Thr)

(8, 40-42)
HigA Antitoxin

  prlF-yhaV YhaV Toxin Unknown Cleavage mostly occurs between codons 
but also occurs within codons 
(between the second and third bases in 
codons) with a low frequency

(45)
PrIF Antitoxin

Type II ribosome-independent endoribonuclease toxin
  mazE-mazF MazE Antitoxin Amino acid starvation, 

phage P1 infection (E. coli) 
development / 
MrpC (Myxococcus xanthus), 
nutrition starvation, antibiotics 
(Mycobacterium tuberculosis) 

↓ACA (E. coli), U↓ACAU (B. subtilis), 
(G/A)U↓UGC (Myxococcus xanthus), 
U↓ACA (Deinococcus radiodurans), 
U↓ACAU (Staphylococcus aureus)

(6, 50-54, 92)
MazF Toxin

  chpBI-chpBK ChpBI Antitoxin Unknown ↓ACY or A↓CY (Y: A, U, G) (57)
ChpBK Toxin

  pemI-pemK PemI Antitoxin Unknown U↓AH or UA↓H (H: A, U, C) (60)
PemK Toxin

  mqsR-mqsA MqsR Toxin Amino acid or glucose starvation Mostly ↓GCU or G↓CU (8, 62)
MqsA Antitoxin

  hicA-hicB HicA Toxin Sxy competence factor and 
CRP-cAMP

No specific cleavage site in mRNAs
A↓AAC sequences in tmRNA

(7, 69)
HicB Antitoxin

Type I endoribonuclease toxin
  symER SymE (protein) Toxin SOS response Not determined yet (70)

SymR (RNA) Antitoxin
Type III endoribonuclease toxin
  antiQ-abiQ AbiQ Toxin Phage infection (Lactococcal lactis) Adenine-rich region within the antiQ 

RNA sequence between 
26th and 27thadenines (A↓AAA) in 
the 35 nt-antiQ RNA (Lactococcal lactis)

(71, 74)
antiQ Antitoxin

  toxI-toxN ToxN (protein) Toxin Phage infection 
(Pectobacterium atrosepticum)

AA↓AU (Pectobacterium atrosepticum)
A↓AAAA (Bacillus thuringiensis)

(75, 76)
ToxI (RNA) Antitoxin

response.
Like RelE, YafO toxin has endoribonuclease activity when it 

is bound to ribosome (34). YafO binds to the 50S subunit in 
the 70S ribosome and induces mRNA cleavage. However, 
unlike RelE and YoeB that cleave mRNAs at the A-site, YafO 
cleaves mRNAs 11 to 13 nucleotides downstream of the AUG 
start codon (34). The cleavage location corresponds to the 3’ 

end of mRNAs that are protected by the 70S ribosome initia-
tion complex (34), indicating that YafO is a ribosome-associated 
endonuclease inducing mRNA cleavage outside of the ribo-
some. Interestingly, YafO-mediated mRNA cleavage requires 
ribosome binding but not translation per se because mRNA 
cleavage occurred even without initiator tRNAf

Met and the 
introduction of nonsense mutation of the second codon did 
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Fig. 2. Type II ribosome-dependent endoribonuclease toxins. Structures of type II ribosome-dependent endoribonuclease toxins. Amino acid sequen-
ces for the toxin protein structures were from Escherichia coli strain K-12 and Proteus vulgaris (for HigB). Amino acid residues involved in gene-
ral base/acid are indicated in light blue and key residues required for mRNA cleavage are indicated in yellow. (A) RelE monomer (PDB ID: 
3KIX). (B) YoeB monomer (PDB ID: 6N90). (C) YafQ monomer (PDB ID: 4Q2U). (D) HigB monomer (PDB ID: 5IFG). (E) YhaV monomer (PDB ID: 
2KHE). For comparison, RNase Sa from Streptomyces aureofaciens (F) and RNase T1 from Aspergillus oryzae (G) were used. (F) RNase Sa mono-
mer (PDB ID: 1NLI). (G) RNase T1 monomer (PBD ID: 1I0V).

not abolish mRNA cleavage (34).
DinJ-YafQ: DinJ-YafQ is another RelBE superfamily toxin-anti-
toxin system found in E. coli (35). YafQ toxin binds to the 50S 
subunit of the 70S ribosome and induces mRNA cleavage (36, 
37). The mRNA cleavage sites of the ribosome-bound YafQ are 
specific to AAA Lys codon followed by purine (A or G) in vivo 
(36), exhibiting a narrow range of codon specificity among 
RelE superfamily toxins. Interestingly, purified YafQ has ribo-
nuclease activity without ribosome in vitro and cleaves mRNA 
with lower specificity (36). This is unique given that other 
RelE-type toxins do not exhibit ribonuclease activity when 
purified in vitro. Such ribonuclease activity on free mRNAs 
could be due to that YafQ retains several aromatic residues 
(His50, His87, and Phe91) required for mRNA cleavage (Fig. 
2C). Because these aromatic residues are conserved in other 
RNases including RNase T1 and RNase Sa2 but lacking in 
other RelE-type toxins (36), it explains in vitro ribonuclease 
activity of the purified YafQ on free mRNAs. His50 and His87 
residues of YafQ are required for mRNA cleavage but dis-
pensable for ribosome binding (36, 37). A physiological role of 
the dinJ-yafQ TA system was suggested that the dinJ-yafQ TA 
system is involved in cell death during biofilm formation (38).
HigA-HigB: HigB (The host inhibition of growth B) is a RelE- 
family endoribonuclease toxin that was originally found in the 
temperature-sensitive Rts1 plasmid of Proteus vulgaris (39). The 
higBA locus was involved in antibiotic resistance and mainte-
nance of the Rts1 plasmid by post-segregation killing (39). The 
higBA-harboring Rts1 plasmid was initially isolated from a 
Proteus clinical isolate that was associated with urinary infec-
tion and other chromosomally-encoded higBA homologues 
were also found in several pathogenic bacteria including patho-
genic E. coli, but not E. coli K-12 strain (19). Unlike other toxin 

genes that lie downstream of the antitoxin genes, the organi-
zation of the higBA operon is unusual in that the higB toxin 
gene precedes the higA antitoxin gene (39).

HigB toxin is a ribosome-dependent RelE-family ribonuclease 
and cleaves mRNAs between the second and third bases at 
adenosine-rich codons. Interestingly, although HigB preferen-
tially cleaves AAA Lys and ACA Thr codons, HigB cleaves 
basically any codon containing adenosine (40). An explana-
tion for the unique selectivity of adenosine was provided by 
structural analyses of HigB toxin bound to AAA or ACA codons 
in the A-site of the 70S ribosome (41, 42). HigB does not have 
a specific interaction with the first position in the codon that 
allows any nucleotide to be recognized. HigB preferentially 
interacts with A or C at the second position in the codon, thus 
A or C being the most effective nucleotide for HigB-mediated 
mRNA cleavage. At the third position, HigB interacts with 
C1054 in the 16S rRNA to form an adenosine-specific pocket 
to accommodate adenosine most efficiently. The HigB Asn71 
residue is critical to determine the adenosine specificity of the 
third position (Fig. 2D) (41). Additionally, His54, Asp90, Tyr91, 
and His92 residues in the HigB toxin were determined to be 
critical for the endoribonuclease activity of HigB toxin (Fig. 
2D) (42).
PrlF-YhaV: PrlF-YhaV is a toxin-antitoxin system found by a 
bioinformatics analysis in E. coli (43, 44). The prlF-yhaV operon 
encodes PrlF, an antitoxin similar to AbrB transcription factor 
in B. subtilis and YhaV, a RelE-superfamily toxin, respectively 
(43, 44). PrlF-YhaV forms an unusual heterohexameric complex 
(PrlF2-YhaV4) in vitro that could further form a hexameric 
dimer (PrlF2-YhaV4)2 cooperatively when the PrlF-YhaV complex 
binds to the palindromic DNA sequence of the promoter up-
stream of the prlF gene (44). YhaV toxin has a ribosome-depen-
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dent endoribonuclease activity. YhaV binds to the 50S subunit 
in the 70S ribosome and cleaves mRNAs in a frame-dependent 
manner (45). The YhaV-mediated mRNA cleavage mostly occurs 
between codons but also occurs between the second and third 
bases in codons with a low frequency (45).

The prlF (protein localization locus F) gene was originally 
identified as a suppressor locus for defects of protein translo-
cation (46). The prlF1 allele turned out to have an insertion 
mutation near the 3’ end of the prlF gene that causes pre-
mature termination and derepresses prlF expression due to loss 
of DNA binding ability. And the elevated PrlF levels appeared 
to increase Lon protease activity by a yet unknown mechanism 
because the suppressive effect of the prlF1 allele is mediated 
by an elevated activity of Lon protease (46).

Type II ribosome-independent endoribonucleases
MazE-MazF: MazE-MazF is a toxin-antitoxin system that is well 
conserved in bacteria and also one of the most-studied exam-
ples among bacterial toxin-antitoxin systems. In E. coli, the 
mazE-mazF operon is located immediately downstream of the 
relA gene required for stringent response (47). MazE antitoxin binds 
to MazF toxin as a heterohexameric complex (MazF2-MazE2-MazF2) 
and neutralizes MazF toxin activity (18). Under stress conditions, 
the MazE antitoxin is degraded by ClpAP protease and releases 
MazF toxin (47). The released MazF toxin has a sequence- 
specific endoribonuclease activity and cleaves upstream of 
ACA sequences in E. coli (4). Given that the ACA sequences 
are distributed in most of genes, MazF cleaves mRNAs glo-
bally and decreases protein synthesis. Among cellular cleavage 
sites, MazF also cleaves the 3’ end of 16S rRNA including 
anti-Shine-Dalgarno sequence (48). Thus, it has been proposed 
that MazF-induced 16S rRNA cleavage creates a specialized 
ribosome lacking the anti-Shine-Dalgarno sequence and allows 
to translate leaderless mRNAs (48). However, a recent study 
argued against this idea and suggested that MazF affects 
biogenesis and maturation of rRNAs and ribosomal proteins 
instead of creating ribosome heterogeneity (49).

The RNA substrate specificity of MazF toxin varies in differ-
ent species. E. coli MazF cleaves upstream of ACA sites (4), 
whereas Bacillus subtilis MazF cleaves between U and A of the 
UACAU recognition sequences (50). Similarly, Deinococcus 
radiodurans cleaves between U and A of the UACA sequences 
(51). Interestingly, in Myxococcus xanthus, a bacterium that 
undergoes a multicellular development, MazF cleaves mRNAs 
between two Us of the (G/A)UUGC recognition sequences and 
the MazF-mediated mRNA cleavage is involved in develop-
mental programmed cell death (52). In addition to bacterial 
multicellular development, diverse biological functions of MazF 
were reported. It includes virulence in Mycobacterium tuberculosis 
(53), defense against bacteriophage infection (54), and persister 
cell formation in E. coli (55).
ChpBI-ChpBK: ChpBI-ChpBK is the second MazEF (ChpA)-type 
toxin-antitoxin system in the E. coli chromosome (56). It was 
originally identified as one of two chromosomal homologues 

(chpA and chpB) of the pemIK locus required for stable 
plasmid maintenance. Similar to MazEF, the chpBI gene encodes 
an antitoxin and the chpBK gene encodes a toxin (56). ChpBK 
toxin also has a sequence-specific endoribonuclease activity but 
the recognition motif is more ambiguous than MazF’s because 
it cleaves mRNA at either the 5’ or 3’ side of the A nucleotide 
in the ACY recognition sequences where Y could be one of A, 
U, or G nucleotides (57). Unlike MazF that exhibits a com-
plete inhibition, ChpBK induction inhibits protein synthesis to 
approximately 40% compared to uninduced control (57).
PemI-PemK: PemI-PemK is a plasmid-encoded toxin-antitoxin 
system in E. coli that is required for stable maintenance of plas-
mid R100 (58, 59). PemK toxin inhibits protein synthesis by 
cleaving mRNAs while PemI antitoxin neutralizes PemK to 
resume protein synthesis (60). PemK toxin is yet another sequen-
ce-specific endoribonuclease that cleaves mRNA at the 5’ or 3’ 
side of the A nucleotide in the UAH recognition sequences 
where H could be one of C, A, or U nucleotides (60).
MqsR-MqsA: The mqsR-mqsA (ygiU-ygiT) operon encodes 
MqsR toxin and MqsA antitoxin protein. The organization of 
the mqsR-mqsA (ygiU-ygiT) operon is non-canonical in a sense 
that the mqsR toxin gene precedes the mqsA antitoxin gene 
(61, 62). In addition to an MqsA-autorepressible promoter 
upstream of the mqsR toxin gene, the mqsA antitoxin gene has 
two additional constitutive promoters in the coding region of 
the mqsR toxin gene, allowing to uncouple transcription of the 
mqsR and mqsA genes (63). The MqsR toxin was originally iden-
tified as a motility quorum-sensing regulator because an mqsR 
insertional mutant exhibited a decreased autoinducer 2-mediated 
biofilm formation and reduced motility (64), both of which 
were controversial (63). In addition to motility and quorum 
sensing, the biological function of MqsR toxin was also sug-
gested to be involved in persister cell formation (65). 

MqsR toxin turned out to be a ribosome-independent endo-
ribonuclease in E. coli (62). It cleaves mRNA preferentially at 
the 5’ or 3’ side of G nucleotide in GCU recognition sequences 
both in vivo and in vitro (8, 62). Interestingly, a structural analysis 
suggested that MqsR toxin is similar to ribosome-dependent 
RelE-type toxin rather than ribosome-independent MazF toxin 
because it has a common RNase fold and the location of cri-
tical residues (Lys56, Gln68, Tyr81, and Lys 96; Fig. 3E) is well 
overlapped with RelE toxin (66). The discrepancy between 
structural prediction and cleavage site determination remains 
to be solved. In MqsR-MqsA complex, MqsA antitoxin dimer 
binds to two MqsR toxins (MqsR-MqsA2-MqsR) and antago-
nizes MqsR toxin (66). 
HicA-HicB: The hicA-hicB operon was identified in the pilus 
gene cluster of Haemophilus influenzae and named as hic 
(Haemophilus influenza contiguous) loci (67). Using bioinfor-
matics analysis, it was later suggested that the hicA-hicB operon 
encodes a toxin-antitoxin system and is distributed widely in 
bacteria and archaea (68). The hicA-hicB operon is a non-cano-
nical toxin-antitoxin system in that the hicA toxin gene pre-
cedes the hicB antitoxin gene, similar to higBA and mqsRA 
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Fig. 3. Type II ribosome-independent endoribonuclease toxins and type III endoribonuclease toxins. Structures of type II ribosome-independent 
endoribonuclease toxins (A-E) and type III endoribonuclease toxins (F-H). Amino acid sequences for the toxin protein structures were from 
Escherichia coli strain K-12 unless otherwise indicated. (A) MazF monomer (PDB ID: 1UB4). Hydrophilic residues required for interacting 
with a substrate are indicated in olive green. Pro-30 is required for determining substrate specificity (green) and Trp-14 is also involved in 
substrate specificity (blue). (B) ChpBK monomer (PDB ID: 1M1F). (C) PemK monomer (PDB ID: 1M1F) of Staphylococcus aureus. (D) HicA 
monomer (PDB ID: 4P78). Two residues required for HicA activity are indicated in green. (E) MqsR monomer (PDB ID: 3HI2). MqsR 
toxin is the only member of RelE superfamily that has a ribosome-independent endoribonuclease activity. Four key residues are indicated 
in green. (F) ToxN monomer of Pectobacterium atrosepticum (PDB ID: 2XD0). Six residues required for ToxNPa’s activity are indicated in 
blue. (G) ToxN monomer of Bacillus thuringiensis (PDB ID: 4ATO). Six key residues are also indicated in pink. (H) AbiQ monomer of 
Lactococcus lactis (PDB ID: 4GLK). Seven key residues are indicated in pale violet.

operons (7). Moreover, the hicA gene encodes a relatively 
short polypeptide (58 aa in E. coli) with a predicted dsRNA- 
binding fold. The hicB gene encodes a hybrid antitoxin with a 
partial RNase H-fold at the N-terminus and a DNA-binding 
domain at the C-terminus (7, 68). The operon structure is also 
unique because it has an additional HicB-independent promoter 
that is regulated by both Sxy competence factor and 
CRP-cAMP in E. coli (69).

Interestingly, HicA toxin cleaves mRNAs with no sequence 
specificity (7). Because HicA also cleaves tmRNA at specific 
AAAC sequences (A^AAC), HicA toxin appeared to be a ribo-
some-independent endoribonuclease (7). However, the detailed 
mechanism of RNA recognition by HicA toxin needs to be 
elaborated.

Type I endoribonuclease toxin
SymR-SymE: SymR-SymE belongs to type I toxin-antitoxin 
system because SymR is an RNA acting as a 77 nucleotide- 
long antisense RNA to the symE toxin gene. The SymR anti-
sense RNA is transcribed from the translation initiation region 
of the symE toxin gene and thus inhibits synthesis of SymE 
toxin in cis (70). Because the symE toxin gene (originally yjiW) 
is induced by SOS response, it was renamed as SymE (SOS- 
induced yjiW gene with similarity to MazE) toxin and the 

associated antisense RNA (RyjC) was named as SymR (Symbiotic 
RNA). 

SymE toxin appeared to have a ribosome-independent 
ribonuclease activity given that most of the tested mRNAs 
were cleaved upon SymE induction (70). However, the specific 
cleavage sites of SymE toxin have yet to be determined. The 
predicted structure of SymE toxin is unique in a sense that it is 
similar to AbrB superfamily, a protein fold typically observed 
in antitoxins such as MazE (70). It would be interesting to 
understand how the antitoxin-folded SymE toxin recognizes 
and cleaves RNA substrates.

Type III endoribonuclease toxins
AbiQ-antiQ: AbiQ was discovered as a phage resistance system 
that causes abortive infection in Lactobacillus lactis (71). Abor-
tive infection is one of phage defense systems whereby a phage- 
infected bacteria commits suicide to prevent the spread of 
bacteriophage among bacterial populations (72). The abiQ gene 
was isolated from the plasmid pRSQ900 and encodes a 192 aa 
protein similar to ToxN type III toxin from Pectobacterium 
atrosepticum (71). The abiQ gene is preceded by a 35 nt-tan-
dem direct repeat (2.8 times) and a subsequent rho-indepen-
dent transcription terminator. This 5’ UTR region is transcribed 
and processed as 35-nt noncoding RNAs (antiQ), which direct-
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ly bind to AbiQ as a triangular heterohexamer (AbiQ3 : antiQ3) 
and neutralize AbiQ toxin (73).

AbiQ toxin has a sequence-dependent endoribonuclease 
activity that cleaves an adenine-rich sequence within the antiQ 
sequence. It specifically cleaves between 26th and 27th ade-
nines in the A-rich sequence of the 35-nt antiQ sequence 
(A^AAA) (74), whose ribonucleolytic activity seemed to be 
associated with phage resistance mechanism. 
ToxI-ToxN: ToxI-ToxN was initially discovered as a bicistronic 
operon in a cryptic plasmid from the plant pathogen Pecto-
bacterium atrosepticum (previously known as Erwinia carotovora) 
(75). Based on a similarity with AbiQ toxin from Lactobacillus 
lactis (71), ToxN was suggested as a toxin involved in abortive 
infection (Abi). Indeed, the toxI-toxN operon turned out to 
encode a toxin-antitoxin system that exhibits phage resistance 
in the presence of a functional ToxN protein. The toxI gene 
encodes an RNA antitoxin and consists of 5.5 identical repeats 
of a 36 nt sequence followed by a Rho-independent transcrip-
tional terminator sequence that allows only 10% of read-through 
transcripts. The presence of a Rho-independent transcription 
terminator between the toxI and toxN genes appeared to main-
tain the ratio of ToxI : ToxN at approximately 10 : 1. Similar to 
AbiQ, ToxN toxin has a MazF-type sequence-specific endoribo-
nuclease activity and processes ToxI transcripts into 36 nt 
RNAs (76). The processed ToxI RNAs are folded into pseudok-
not structures, bind to ToxN toxin, and neutralize endoribo-
nuclease activity by forming an interconnected heterohexa-
meric complex (ToxN3 : ToxI3) (77). When ToxN toxins are 
released from ToxI RNAs, ToxN is likely to cleave other 
mRNAs resulting in a bacteriostatic effect (75). The mRNA 
cleavage sites for ToxN were mapped at AA^AU sequences 
using 5’ RACE analysis (76). 

In another plasmid-encoded ToxIN from Bacillus thuringiensis, 
ToxN cleaves mRNA at different recognition sequences (pre-
ferentially A^AAAA)(76) as well as ToxI RNAs. ToxN also 
processes 2.9 repeats of 34 nt-containing ToxI antitoxin RNA 
into the 34-nt noncoding RNAs and forms a heterohexameric 
complex with the processed ToxI RNAs (ToxN3 : ToxI3).

DISCUSSION

Here we summarized the bacterial toxins with endoribonuclease 
activity. The toxin components are organized in pairs with its 
cognate antitoxin components. For example, type II toxin-anti-
toxin systems consist of toxins and its cognate antitoxin pro-
teins that are organized as bicistronic operons. The expression 
of the bicistronic operon is mostly repressed by the antitoxin 
protein, which has a DNA-binding domain for auto-repressor 
activity and a toxin-binding domain for neutralizing the toxin’s 
activity. Stress conditions including amino acid starvation 
promote the differential degradation of the labile antitoxins by 
Lon or ClpAP proteases (78), and the removal of antitoxins 
results in an increase in the expression of the toxin-antitoxin 
operon (Fig. 1). The molecular ratio between toxin and anti-

toxin proteins appears to be tightly regulated because most of 
the antitoxin and toxin genes are bicistronic and translationally 
coupled. Generally, the antitoxin gene precedes the toxin 
gene, which is also likely to ensure an appropriate molecular 
ratio between toxin and antitoxin proteins. However, the hicAB, 
higBA, and mqsRA operons have a reverse arrangement, 
whereby the toxin genes (hicA, higB, and mqsR) precede its 
cognate antitoxin genes (hicB, higA, and mqsA) (7, 62, 79). 
Moreover, the mqsRA operon has an additional promoter 
within the mqsR gene uncoupling transcription of the mqsR 
and mqsA genes (63). However, the biological significance of 
the reverse arrangement or transcriptional uncoupling is current-
ly unclear. Similarly to most type II toxin-antitoxin systems, 
type III toxin-antitoxin systems are transcribed as single tran-
scripts and then antitoxin RNAs are processed as mature 
sRNAs (34-36 nt) by the type III ribonuclease toxin. Because 
the antitoxin genes have a tandem array of 34 nt or 36 
nt-repeat sequences, it seems to guarantee a proper molecular 
ratio between the processed antitoxin sRNAs and type III 
ribonuclease toxins (75, 80).

Toxin-antitoxin systems are expressed in response to diverse 
cellular stresses, including nutrient starvation, stringent response, 
or exposure to acidic pH (8). In type II toxin-antitoxin systems, 
these stress conditions preferentially degrade antitoxin proteins 
by Lon or ClpAP proteases, leading to expression of the toxin 
genes. In addition to the multiple stress response-mediated 
antitoxin degradation, SOS response is also suggested to be an 
inducing signal for several ribonuclease toxin operons include-
ing the yafN-yafO, dinJ-yafQ, and symE-symR operons. The SOS 
response-mediated expression of the yafN-yafO and dinJ-yafQ 
operons is unique in a sense that they have an additional 
promoter along with the one regulated by the cognate anti-
toxins (33, 36). The yafN-yafO is a part of the SOS-responsive 
dinB-yafN-yafO-yafP operon, suggesting YafO’s additional role 
in SOS response (33). The dinJ-yafQ operon has binding sites 
for both DinJ-YafQ complex and LexA SOS response repressor 
(36). The SymE toxin in the symE-symR type I toxin-antitoxin 
operon has a LexA-binding site at its promoter region, suggest-
ing its role in SOS response (70). Given that SymE toxins are 
degraded by Lon protease, the symE-symR type I toxin-antito-
xin system is subject to multiple layers of regulation including 
SymR antitoxin RNA-mediated translational inhibition, SOS re-
sponse-mediated symE induction, and Lon protease-mediated 
SymE proteolysis (70). 

Ribonuclease toxins cleave mRNAs with a diverse range of 
substrate specificity. RelE ribonuclease toxin requires ribosome 
to cleave mRNAs and it cleaves mRNA in a codon-dependent 
manner but with loose codon specificity (5, 25). YafQ ribo-
nuclease toxin is also ribosome-associated but cleaves mRNAs 
at mostly AAA Lys codon, showing narrow substrate specificity 
(36, 37, 41). As an opposite extreme, MazF ribonuclease toxin 
does not require ribosome and cleaves mRNAs in a codon- 
independent and sequence-dependent manner (4, 6). Consi-
dering such diverse substrate specificity, it is not surprising that 
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the overall sequence similarity of endoribonuclease toxins is 
low. However, these endoribonuclease toxins have a strikingly 
similar protein structure depending on toxin types, which 
raises a question about the factors determining its substrate 
specificity. Type II endoribonuclease toxins have a common 
microbial RNase protein fold similar to RNase T1 and RNase 
Sa2 (Fig. 2) (81-84). SymE type I toxin has a protein fold similar 
to MazF endoribonuclease (70). Type III endoribonuclease toxins, 
ToxN and AbiQ, are also homologs of MazF endoribonuclease 
toxin with additional residues for antitoxin RNA binding (76). 
And ToxN and AbiQ toxins are structurally similar to each 
other and superimposable (73, 75, 76). Interestingly, the active 
site residues of the endoribonuclease toxins are highly variable 
and thus the amino acid compositions within the active sites 
appear to determine the substrate specificity. For example, 
RelE toxin lacks residues required for ribonuclease activity that 
were found in RNase T1. Instead, 16S rRNA C1054 with the 
ribosome provides a base required for recognition of specific 
mRNA codons and its ribonuclease activity (25). By contrast, 
YafQ ribonuclease toxin harbors active site residues for recog-
nizing mRNAs similar to RNase T1, explaining the ribonu-
clease activity of the purified YafQ toxin in vitro (37). YafQ 
toxin also retains a patch of basic residues for ribosome binding, 
being a ribosome-associated ribonuclease toxin (37). 

The biological roles of endoribonuclease toxins were sug-
gested to inhibit bacterial growth in response to multiple 
stressful conditions such as nutrient starvation, SOS response, 
and bacteriophage infection (2, 3). Such inhibition of bacterial 
growth contributes to antibiotic tolerance, persister cell forma-
tion, biofilm, colonization in the host, and abortive infection 
(65, 85-89), some of which are controversial (63, 90, 91). To 
understand the biological role of the endoribonuclease toxins 
and the underlying mechanisms, mRNA substrate specificity of 
each toxin needs to be determined in the context of the bacte-
rium’s niche and physiology.
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