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Bioluminescence tomography (BLT) is a promising in vivo molecular imaging tool that
allows non-invasive monitoring of physiological and pathological processes at the cellular
and molecular levels. However, the accuracy of the BLT reconstruction is significantly
affected by the forward modeling errors in the simplified photon propagation model, the
measurement noise in data acquisition, and the inherent ill-posedness of the inverse
problem. In this paper, we present a new multispectral differential strategy (MDS) on the
basis of analyzing the errors generated from the simplification from radiative transfer
equation (RTE) to diffusion approximation and data acquisition of the imaging system.
Through rigorous theoretical analysis, we learn that spectral differential not only can
eliminate the errors caused by the approximation of RTE and imaging system
measurement noise but also can further increase the constraint condition and decrease
the condition number of system matrix for reconstruction compared with traditional
multispectral (TM) reconstruction strategy. In forward simulations, energy differences
and cosine similarity of the measured surface light energy calculated by Monte Carlo
(MC) and diffusion equation (DE) showed that MDS can reduce the systematic errors in the
process of light transmission. In addition, in inverse simulations and in vivo experiments,
the results demonstrated that MDS was able to alleviate the ill-posedness of the inverse
problem of BLT. Thus, the MDS method had superior location accuracy, morphology
recovery capability, and image contrast capability in the source reconstruction as
compared with the TM method and spectral derivative (SD) method. In vivo
experiments verified the practicability and effectiveness of the proposed method.

Keywords: bioluminescence tomography, multispectral, eliminate errors, spectral differential, source reconstruction
1 INTRODUCTION

Bioluminescence imaging (BLI), applied in preclinical molecular imaging of small animals, has
attracted widespread attention in biological and medical research (1). The non-radiation imaging
method has the advantages of fast feedback, high sensitivity, high temporal resolution, and high
specificity, which is often used in molecular, cellular, and gene expression imaging studies to
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facilitate drug development disease research and therapeutic
interventions (2–4). However, BLI can only detect the two-
dimensional body surface information, which is not sufficient
to quantify the activity of tumor cells in the bodies of living
animals. Bioluminescence tomography (BLT) employs three-
dimensional (3D) reconstruction of bioluminescent sources to
more accurately locate and quantify tumors compared with BLI
(5). The basic idea of BLT is to utilize a “forward” model of
light propagation through the tissue to the skin surface, along
with an “inversion” algorithm to reconstruct the underlying
bioluminescence source distribution (6, 7). In the process, the
accuracy of the BLT reconstruction is significantly affected by the
forward modeling errors in the simplified photon propagation
model, the measurement noise in data acquisition, and the
inherent ill-posedness of the inverse problem.

In the propagation process of light from the internal source to
the imaging subject surface, the interaction between light and
biological tissue includes absorption, reflection, scattering,
refraction, and transmission (8). The radiative transfer equation
(RTE) is widely accepted as an accurate model for photon
migration in a turbid medium. Due to the computationally
intensive nature of RTE, the most typical approach is using the
diffusion equation (DE) as the forward model to approximate
RTE (9). DE is basically a special case of the first-order spherical
harmonics approximation to RTE, and it fails to produce accurate
estimates for light propagation in the proximity of the source and
boundaries, which leads to big errors in the reconstructed images.
In several high-order approximate models of RTE, such as SN, PN,
and SPN, the approximation is shown to have improved accuracy
than DE (10). Although the SPN approximation leads to a lower
computational load than either the SN or PN approximation, the
number of unknowns to be solved is still several times larger than
the DE’s. The higher-order approximation is used throughout the
entire domain, bringing a higher computational load. In addition,
hybrid models were studied to improve the modeling accuracy of
photon transmission in biological tissues. Hybrid models based on
radiance were proposed to solve the special problems of the non-
scattering regions (11–13), hybrid Monte Carlo (MC)–diffusion
method (14), hybrid RTE–diffusion approximation method (15),
and hybrid DE– SPN method (16), which have been studied to
solve the problem of light transmission in non-highly scattering
regions and areas close to the source. However, transmission
errors of various models due to RTE approximation are
still inevitable.

For the propagation of light from the imaging subject surface
to the optical detector, in the early research stage, optical
signals were measured through contact configuration based on
optical fiber guides for photon collection. However, such
implementations led to insufficient spatial sampling and field of
view, and poorer resolution and signal-to-noise ratio (17).
Therefore, at present, all BLI systems are based on a non-
contact configuration (7), which makes data collection more
flexible but also has some disadvantages and limitations. It has
been demonstrated that a change in position of the imaging
subject can result in a differently measured signal, and due to
the impact of charge-coupled device (CCD) noise and
Frontiers in Oncology | www.frontiersin.org 2
environmental background noise, the measurement accuracy
of the optical signal is affected. To overcome measurement
noise, a free-space model was used to describe the propagation
of light from the surface of the imaging subject to the CCD.
The contribution of each point on the surface of the imaging
subject to each pixel in the CCD was described by a mapping
matrix, then taking CCD data to be mapped back on the surface
of the imaging subject by inverting this relationship, and
determining true surface fluence values, which were independent
of the position of the imaging subject (18). In addition,
severa methods were adopted to suppress the noise of CCD,
such as the typical median filter and the contourlet transform
based on an efficient two-dimensional multiscale and directional
filter bank (19). Besides, a novel iterative filtering method based
on a “detection-corrosion” strategy was studied for degraded
neutron image denoising (20), and a novel Laplacian of
Gaussian (LoG) filter combined with the median filter was
proposed to remove the gamma white spots (21). Further, graph
convolutional networks and dictionary learning techniques for
hyperspectral can also be used to overcome measurement noise
and improve the accuracy of acquired spectral images (22–24).
Moreover, the importance of the domain geometry and imaging
subject position on the measured bioluminescence fluence was
studied, and an image reconstruction algorithm based on the
spectral derivative (SD) of the measured spectral data was
proposed to overcome the measurement noise from the surface
of the imaging subject to the CCD (7). For the spectral-derivative
method, the ratio of the BLIs at adjacent wavelengths was used as
input data for the source reconstruction, as bioluminescence
at similar wavelengths encounters a near-identical system
response (25).

In addition, in practical biological applications, due to the
scattering effect of light and the limitations of the detected
surface photons, the inverse problem of BLT is limited by its
ill-posedness, which significantly affects the accuracy of the BLT
reconstruction (5, 26). Based on the fundamental feature of BLT,
without the incorporation of effective a priori knowledge on the
source distribution, there would be no hope to determine a
unique solution (27). All possible information on the source
distribution must be utilized to achieve the best possible
reconstruction for BLT, and it is essential to combine
regularization techniques to overcome the ill-posedness when
trying to recover source distribution from noisy measurements.
Most BLT regularization methods, such as Tikhonov
regularization, try to stabilize the problem by achieving a
trade-off between a loss term and an L2-norm regularization
term. However, these methods usually produce smooth solutions
(28). In recent years, more studies focused on sparse
reconstruction algorithms to alleviate the ill-posedness of BLT
(29–31); they were mainly based on the L1-norm regularization,
such as the homotopy method (29), Bayesian sparse based
method (31), and LASSO method (30). These algorithms can
overcome the over-smooth effects of L2-norm methods and
encourage more sparse and stable reconstructed results, which
improved the localization accuracy of the tumor. Further, to
pursue more sparse solutions than L1 regularizer, Lp-norm
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regularization algorithms with (0 < p < 1) were studied, such as
weighted interior-point algorithm (32) and majorization–
minimization algorithm (33). Furthermore, in order to reduce
the ill-posedness of BLT, the multispectral strategy has attracted
remarkable attention. Spectrally resolved measurements consider
the wide emission-spectrum characteristic of bioluminescent
reporters and the diversity of tissue optical properties for
different spectral bands, which can increase the amount of
known boundary data. So a consensus that multispectral
strategy can enhance the uniqueness and stability of BLT
solution has been achieved (34). These studies provide ideas
and a basis for our research.

In order to alleviate the influence of optical transmission
errors, measurement noise, and ill-posedness on BLT
reconstruction accuracy, based on spectral differential theory
and combined with multispectral strategy, a new multispectral
differential strategy (MDS) is presented in this work. MDS
assumes that in the same optical transmission approximation
model, light encounters a near-identical system response at a
similar wavelength, and the errors of the adjacent spectral are
similar. Thus, taking DE as an example, after analyzing the errors
that resulted from diffusion approximation and data acquisition
of the imaging system, MDS is expected to eliminate the
systematic errors of the optical transmission model and
imaging system. Meanwhile, compared with the traditional
multispectral (TM) reconstruction strategy, MDS can increase
the constraint condition of the systemmatrix and alleviate the ill-
posedness of the reconstruction problem. To solve the source
reconstruction problem, Lp regularization reconstruction model
will be established, and a non-convex sparse regularization
algorithm (nCSRA) will be utilized. To verify the feasibility
and applicability of MDS, numerical simulations and in vivo
experiments will be conducted with the TM method and SD
method as comparisons.

The paper is organized as follows. In Section 2, we will analyze
the errors that resulted from DE approximation and data
acquisition of the imaging system, and then the MDS method
and nCSRA framework will be provided. Section 3 will present
some relative experimental designs, the results of numerical
simulations, and in vivo imaging experiments. Finally, some
discussions and conclusions will be made for this paper in
Section 4.
2 METHODS

2.1 Error Analysis of Optical Signal
Acquisition Process
In BLI, for the measurement of emitted light due to an internal
light source, the transmission process of light and the acquisition
technology of optical signal are two key factors that need to be
considered, which significantly affect the accuracy of the BLT
source reconstruction. Next, the optical transmission errors
caused by RTE approximation, and the measurement noise of
photon fluence rate on imaging subject surface caused by CCD
noise, will be analyzed in detail.
Frontiers in Oncology | www.frontiersin.org 3
2.1.1 Errors Caused by the Simplified Photon
Propagation Model
The RTE treats photons as particles that undergo elastic
collisions until they are absorbed or leave the domain, ignoring
the wave nature of light. After removal of the influence of time,
steady-state RTE is of the form

ŝ ·∇f(r, ŝ ) + mtrf(r, ŝ) − ms

Z
4p
Q(ŝ · ŝ′)f(r, ŝ 0)dW 0

− q(r, ŝ) = 0

(1)

whereF(r,s)̂ is the radiance, q(r,s)̂ is the source inside W, and the
kernel Q(ŝ · ŝ 0) is the scattering phase function that describes the
probability that a photon with an initial direction ŝ 0 will have a
direction ŝ after a scattering event (9). ms is the scattering
coefficient, and mtr = ma + ms is the transport coefficient.

Due to the computationally intensive nature of RTE, the
typical approach is using DE as the forward model to
approximate RTE. In order to get the DE, which is the first-
order approximate model of RTE, take the radiance spherical
harmonic expansion as (35)

f(r, ŝ) =o
l

∞
o
m=−1

l

2l + 1
4p

� �1
2

yl,m(r)Yl,m(ŝ) (2)

where the normalization factor ((2l + 1)/4p)1/2 is introduced for
convenience. We used the Associated Legendre polynomials, and
we expand f(r, ŝ ) to first-order (8)

f1(r, ŝ) =
1
4p

F(r) +
3
4p

J(r) · ŝ (3)

We have

f(r, ŝ ) = f1(r, ŝ ) + Df
f(r, ŝ′) = f1(r, ŝ 0) + Df0

�
(4)

We operate on Eq. (1) by
Z
4p
( · )dW and

Z
4p
ŝ( · )dW and

make use of the relations in them to arrive at (8)

−∇ ·½D∇F(r)� − 3∇ D
Z
4p

ŝ(ŝ ·∇(Df))dW

+ 3∇ Dms

Z
4p

Z
4p

ŝ ½Q ŝ · ŝ
0� �
(Df0)dW 0�dW

+maФ(r) − ms

Z
4p

½
Z
4p

Q ŝ · ŝ 0
� �

Df0dW 0�dW − q(r) = 0

(5)

where photon density F(r) =
Z
4p

f(r, ŝ )dW, and D = 1
3(ma+ms ′ )

is

diffusion coefficient. In the study of BLT, the light source can be
regarded as isotropic, q(r) = 4pq(r, ŝ ).

The well-known steady-state DE is

−∇ · ½D∇F(r)� + maF(r) − q(r) = 0 (6)
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The finite element method (FEM) is chosen to solve the DE,
and the FE approximation of the DE is of the form

AS = Fm (7)

where A represents the system matrix whose construction is
influenced by the DE approximation, S is the power density of
the light source, andFm is the measurable photon fluence rate on
boundary nodes.

In order to analyze the error of constructing A, the
approximation from Eq. (5) to steady-state DE Eq. (6) due to
radiance with only first-order spherical harmonic expansion,
and the optical transmission error terms caused by DE
approximation can be expressed as

EA = −3D∇
Z
4p

ŝ(ŝ ·∇(Df))dW + 3Dms∇
Z
4p

Z
4p

ŝ ½Q ŝ · ŝ 0
� �

(DФ0)dW 0�dW − ms

Z
4p

½
Z
4p

Q ŝ · ŝ 0
� �

Df0dW 0�dW

(8)

In order to reduce the error caused by diffusion
approximation, the spectral differential is adopted. In Eq. (8),
ms and D are dependent on the given wavelength, for wavelength
l, and Eq. (8) can be expressed as

EAl = −3Dl∇
Z
4p

ŝ (ŝ ·∇(Df))dW + 3Dlmsl∇
Z
4p

Z
4p

ŝ ½Q ŝ · ŝ0
� �

(Df0)dW 0�dW − msl

Z
4p

½
Z
4p

Q ŝ · ŝ 0
� �

Df0dW 0�dW

(9)

(9)

Assuming that there are two wavelengths, lj and lk, the
difference between the spectra is used to operate the transmission
error corresponding to the two wavelengths,

EAdiffe = EAlj − EAlk = 3(− D
lj
+ D

lk
)∇

Z
4p

ŝ(ŝ ·∇(Df))dW

+3(D
lj
mslj − D

lk
mslk )∇

Z
4p

Z
4p

ŝ ½Q ŝ · ŝ 0
� �

(DФ0)dW 0�dW − (mslj − mslk )
Z
4p

½
Z
4p

Q ŝ · ŝ 0
� �

DФ0dW 0�dW

(10)

In general, for similar emission wavelengths in biological tissues,
the optical parameters are similar, that is (Dlj − Dlk) ≪ Dlj(k),
(mslj − mslk ) ≪ mslj (k)

, and (Dljmslj − Dlkmslk) ≪ Dlj(k)mslj(k) , so

EAdiffe
≪ EAlj

or EAlk
(11)

2.1.2 Measurement Noise
For the photon fluence rate F on the imaging subject surface
obtained by CCD, there are inevitable errors caused by CCD
noise. The main types of noise are as follows: discrete and
incomplete sampling errors of CCD (s), photon noise (p),
readout noise (r), and dark current noise (d) (36).
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The measured signal on the imaging subject surface can be
expressed as

F = M + s + Ot (12)

where M is the actual optical signal and the rest of the items are
measurement noise. i relates to the Gaussian width of the
imaging light spot, and different emission wavelengths produce
different width light spots, so s depends on the wavelength of
emitting light. Ot=p+r+d caused by the CCD itself, which is
wavelength independent.

For the test data at the wavelength l, the measurement signal
is expressed as

Фl = Ml + sl +Ot|{z}
EФl

(13)

where EFl
is the measurement noise.

The difference between the corresponding measurement
noise of the two spectra with the wavelengths of lj and lk is
calculated as

EFdiffe
= EFlj

− EFlk
= s

lj
− s

lk
(14)

Only the difference of discrete and incomplete sampling
errors of CCD needs to be considered, and for similar emission
wavelengths, there is (slj − slk ) ≪ slj(k) + Ot; that is,

EFdiffe
≪ EFlj

or EFlk
(15)

Eq. (11) and Eq. (15) indicate that introducing the difference
of data between each measured wavelength can reduce optical
transmission system errors and measurement noise.

2.2 Multispectral Differential Strategy
The factors affecting the source reconstruction results have been
analyzed, and the data difference between each measured
wavelength can be used to reduce errors. Next, based on the
DE model, the multispectral differential is further applied in the
source reconstruction.

The imaging problem is known to be non-unique, and A in
Eq. (7) is ill-posed. In order to reduce its ill-posedness, the
multispectral hybrid method has been proposed. For example,
assuming that there are measurements of four wavelengths, these
system matrices are combined to obtain the following equations:

h1Al1

h2Al2

h3Al3

h4Al4

2
666664

3
777775 · S =

Фm
l1

Фm
l2

Фm
l3

Фm
l4

2
666664

3
777775 (16)

AmultiS = Fm
multi (17)

where Aln is the system matrix at a given wavelength ln, and
Amulti is their combinatorial system matrix.Fm

ln is the measurable
photon fluence rate (on the surface) at the same wavelength,
Fm

multi is the combinatorial photon fluence rate, and hn is the ratio
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of each spectral energy to the total. In this way, the combinatorial
system matrix is used to partly solve the ill-posed problem.

Different from the multispectral hybrid method using data at
each given wavelength, multispectral differential utilizes the
difference of data between each measured wavelength. Eq. (16)
can be transformed as

h1Al1 − h2Al2

h1Al1 − h3Al3

h1Al1 − h4Al4

h2Al2 − h3Al3

h2Al2 − h4Al4

h3Al3 − h4Al4

2
666666666664

3
777777777775
· S =

Фm
l1 − Фm

l2

Фm
l1 − Фm

l3

Фm
l1 − Фm

l4

Фm
l2 − Фm

l3

Фm
l2 − Фm

l4

Фm
l3 − Фm

l4

2
666666666664

3
777777777775

(18)

AdiffeS = Fm
diffe (19)

where Adiffe and Fm
diffe are a combination of differential system

matrices and differential photon fluence rates, respectively. It can
be seen by comparing Eq. (16) and Eq. (18) that the multispectral
differential can increase the constraint condition for inverse
reconstruction compared with the TM reconstruction strategy.
Thus, it has reduced the system errors and measurement noise to
alleviate the ill-posedness of the source reconstruction.

2.3 Non-Convex Sparse Regularization
Algorithm Framework
Considering the sparse distribution of light sources in organisms
and the serious shortage of surface measurement based on
compressed sensing theory, Lp regularization is adopted to
transform the reconstruction model of Eq. (19) into the
following minimization problem:

min
S

1
2

AdiffeS −Fm
  diffe

		 		2
2+t Sk kpp, 0 < P < 1 (20)

where ‖ S ‖p = (Sn
i=1jSijp)1=p represents the Lp quasi-norm and

t > 0 is a regularization parameter. Because the Lp-norm
regularization is a non-convex and no-smooth optimization, an
nCSRA (37) is utilized to solve this problem. It is converted to a
weighted L1-norm regularization:
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St+1 = min
S

1
2

AdiffeS −Fm
  diffe

		 		2
2+o

i=1

n
l1 Sij j (21)

where li =
zi

jXt
i j1−p

, zi is the ith element of regularization
parameter z.

Then Eq. (21) as L1-norm regularization problem can be
solved by the iterative shrinkage-thresholding algorithm (ISTA)
(38). ISTA is based on the shrinkage function: shrink(a, z) =max
(a –z, 0)*sign(z). With a sufficiently small step size x, the
analytical solution of Eq. (21) can be derived as

St+1i = shrink((St + 2xAT (Ф − AS))i, xli)

x < 1=jjATA j2j

(
(22)
3 EXPERIMENTS AND RESULTS

In this section, the digital mouse simulations and in vivo
experiments were designed to evaluate the performance of MDS
in BLT reconstruction. All programs were run on a computer with
an Intel® Core™ i7-6700 CPU (3.40 GHz) and 16-GB RAM.

3.1 Numerical Simulation Setup
Numerical forward simulations and inverse reconstructions both
used a digital mouse model with a height of 35 mm, and only the
torso section of the mouse was investigated, including the muscle,
heart, liver, lungs, stomach, and kidneys, as shown in Figure 1A.
Four wavelengths of 610, 630, 650, and 670 nm were used in
simulations, and the specific optical parameters at each wavelength
are listed in Table 1. The optical properties were calculated using the
formula summarized in (39). In single-source simulations, a sphere
with a radius of 1 mmwas positioned at coordinates (18 mm, 8 mm,
14.8 mm), as shown in Figure 1B. In the dual-source simulations,
two spheres with a radius of 1mmpositioned at coordinates (15mm,
7 mm, 15.8 mm) and (22 mm, 7 mm, 15.8 mm) are shown in
Figure 1C. In forward simulations, a discretized tetrahedral mesh
with 20, 263 nodes and 106, 656 tetrahedral elements was used for
the single-source simulations, while a mesh in dual-source
simulations had 19, 890 nodes and 104, 619 tetrahedral elements.
In the reconstruction, a mesh with 10,139 nodes and 51,841
tetrahedral elements was used as shown in Figure 1D.
A B DC

FIGURE 1 | The numerical simulations setup. (A) The mouse model with six organs. (B, C) Model of single source and dual sources. (D) The mesh used for reconstruction.
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3.2 In Vivo Experiment Setup
To further assess the performance of MDS, an in vivo BLT
experiment was performed. The animal experiment was
conducted under the approval of the Animal Ethics Committee
of the Northwest University of China (No. NWU-AWC-
20210901M). A female BALB/c nude mouse (4–5 weeks old)
was used to establish a source implanted mouse model. After the
mouse was anesthetized with pentobarbital (50 mg/kg, 0.1 ml, IP
injection), a transversal incision was made in the abdomen. A
plastic tube filled with about 20 ml of luminescent solution was
implanted in the abdomen of the nude mouse. The luminescent
solution was extracted from a luminescent light stick. After
the incision was sutured, the mouse was taped on the rotation
stage for imaging. The entire surgical procedure lasted
approximately 10 min.

During the data collection, bioluminescent images and CT data
were collected by the BLT/Micro-CT dual-mode system developed
by our laboratory (40). The optical images were captured by the
EMCCD camera (iXon Ultra, Andor, Northern Ireland, UK) with
bandpass filters measuring 610, 630, 650, and 670 nm. The cooling
temperature of the EMCCD camera was 80°C, which could
effectively reduce the thermal noise. The software “Solis
Acquisition and Analysis Software” was used for data collection.
Photographic images and bioluminescent light distribution images
with exposure times of each wavelength were set to 0.75 and 30 s,
respectively. During the luminescence imaging, the system was
enclosed within a light-tight environment to avoid outside light.
After the optical measurement data were obtained, the mouse was
kept motionless and scanned by a micro-focus cone beam X-ray
source (L9181-02, Hamamatsu Photonics, Hamamatsu Japan). In
X-ray scanning, the X-ray source voltage and power were set as
90 kV and 27 W, respectively. With the use of an X-ray flat-panel
detector (C7942CA-22, Hamamatsu Photonics, Hamamatsu
Japan) for high-resolution CT imaging, a total of 600 X-ray
projections were obtained with an interval of 0.6°, and each
projection had an integrating time of 0.5 s; then the 3D
anatomical structures were segmented from the CT data.

3.3 Quantitative Evaluation Index
Firstly, energy difference and cosine similarity were measured as
quantitative evaluation indexes in forward simulations to analyze
the model errors caused by DE. The surface bioluminescence
distributions obtained by MC eXtreme (MCX) (41) are used as
the standard for comparison. The energy difference in the
measured data that were compared are calculated as follows:
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difference =
FMClj(k)

−FDElj(k)




 


 Specific spectrum


 FMClj
−FMClk




 


 − FDElj
−FDElk




 





 Spectral differential

8><
>:

(23)

It can be used to calculate the energy difference of surface
light distributions obtained by MC and DE at the same
wavelength, and the energy difference of differential data
between each measured wavelength, which are obtained by MC
and DE.

Cosine similarity is also used to evaluate the differences in
surface light distributions:

Simalarity = cos (q) =
A · B
Ak k Bk k

=
Sn
l=1 Al � Blffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sn
l=1(Al)

2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
l=1(Bl)

2
q (24)

where Al and Bl represent the components of the vectors A and B,
which are compared, respectively. The closer the cosine gets to 1,
the closer the two vectors are.

Besides, the condition number is a measure of the sensitivity
of the solution to the linear system AS= Fm to the error or
uncertainty in Fm. To verify whether the MDS can further
increase the constraint condition and decrease the condition
number of the system matrix for reconstruction, we calculate the
condition number corresponding to the combinatorial system
matrix A of three multispectral strategies.

cond(A) = Ak k · A−1
		 		 (25)

A problem with a lower condition number is said to be well-
posed, and vice versa.

To quantitatively analyze the performance of MDS in the
reconstruction, several common indicators are used, such as
location error (LE), Dice coefficient, contrast-to-noise ratio
(CNR), and Time.

LE represents the location deflection between the
reconstructed light source and the actual light source:

LE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − x0)

2 + (y − y0)
2 + (z − z0)

2
q

(26)

where (x, y, z) and (x0, y0, z0) are the coordinates of
reconstruction energy weighted center point and the real
source center, respectively.
TABLE 1 | Optical parameters of the mouse tissues at different wavelengths.

Tissue 610 nm 630 nm 650 nm 670 nm

ma (mm−1) ms (mm−1) ma (mm−1) ms (mm−1) ma (mm−1) ms (mm−1) ma (mm−1) ms (mm−1)

Muscle 0.2971 5.5902 0.1605 5.1041 0.1164 4.6735 0.0870 4.2907
Heart 0.2015 7.3484 0.1085 7.0171 0.0786 6.7104 0.0588 6.4258
Stomach 0.0384 19.6728 0.0207 19.0667 0.0150 18.4973 0.0114 17.9615
Liver 1.2086 7.4826 0.6505 7.2334 0.4708 6.9999 0.3815 6.7807
Kidneys 0.2258 18.5421 0.1216 17.6605 0.0881 16.8465 0.0660 16.0929
Lungs 0.6687 38.0785 0.3622 37.4330 0.2630 36.8181 0.1964 36.2314
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Dice coefficient is used to evaluate shape recovery, which
denotes similarity of the reconstructed sources regions X and the
actual sources regions Y:

Dice =
2 X ∩ Yj j
Xj j + Yj j (27)

CNR is used to evaluate image contrast, which can be
calculated, as follows:

CNR =
mROI − mBCKj j

(wROIs 2
ROI + wBCKs 2

BCK )
1=2

(28)

where the subscripts ROI and BCK denote the target and
background regions of the imaged object, respectively; and m,
w, and s represent the mean intensity value, weighting factor,
and variance, respectively.
3.4 Numerical Simulations
3.4.1 Forward Simulations
At first, a group of forward simulations was taken to analyze the
errors involved in the whole optical transmission process and to
demonstrate that the MDS can eliminate the errors to a
certain extent.
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In a single-source case, the surface bioluminescence
distributions at wavelengths of 610, 630, 650, and 670 nm
generated with the MC method are shown in Figure 2A. For
comparison, the surface bioluminescence distributions
calculated by the DE model at different wavelengths are shown
in Figure 2B. Similarly, Figures 2C, D show the surface
bioluminescence distributions for dual-source cases calculated
by MC and DE, respectively. In Figures 2A–D, for both MC and
DE, the longer the wavelength, the more intense the surface light
distribution, since the longer wavelength results in reduced tissue
scattering effect and enhanced light penetration. By comparing
the surface light distributions of MC and DE at the same
wavelength in Figures 2A, B, we also find that the differences
are obvious at 610- and 630-nm wavelengths, while they are
relatively small at 650- and 670-nm wavelengths. Similar results
can be seen in Figures 2C, D. This is because the liver is a tissue
with high absorption characteristics at 610 and 630 nm, and the
DE model in this case is not a proper choice, which led to a
large error.

The energy differences of MC and DE at each wavelength in
single- and dual-source models are shown in Figures 3A, C,
respectively; and the average energy differences are shown in
Figures 3B, D, respectively. Light energy for all the surface nodes
was calculated. For ease of analysis, 1,500 of these nodes (501 to
A

B

D

C

FIGURE 2 | Results of forward simulations. (A, B) The bioluminescence distributions on the surface in single-source simulations by MC and DE methods at
wavelengths of 610, 630, 650, and 670 nm. (C, D) The surface distributions in dual-source models by MC and DE methods at wavelengths of 610, 630, 650, and
670 nm. MC, Monte Carlo; DE, diffusion equation.
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2000) with obvious and concentrated energy differences were
taken as the sampling points. Obviously, shorter wavelengths
correspond to larger energy differences, and with the increase
of wavelength, the energy difference tends to decrease. To
demonstrate the effect of MDS on energy difference elimination,
the differences of data between each measured wavelength were
utilized. According to Eq. (23), any combination of two
wavelengths was used; the six groups of energy differences after
differential of single-source model and dual-source model are
shown in Figures 3E, G, respectively; and the averages of the
corresponding six groups energy differences are shown in
Figures 3F, H. Compared with those in Figure 3A, the energy
differences in Figure 3E decrease on the whole. As shown in
Figure 3F, the average energy difference after the differential
process is obviously less than that in Figure 3B. For the double-
source model, the energy differences in Figure 3G decreased as
compared with Figure 3C, and the average energy difference after
differential in Figure 3H is obviously less than that in Figure 3D
as well.

The cosine similarity of surface light energy obtained by MC
and DE at the same wavelength was calculated, as shown in
Table 2, which comes to the same conclusion as the energy
differences in Figures 3A, C; i.e., a smaller energy difference
corresponds to a cosine similarity closer to 1. The cosine
similarities were calculated by the difference of data between
each measured wavelength obtained by MC and DE, as also
shown in Table 2. Compared with the cosine similarity of the
specific spectrum, the cosine similarity value of spectral
differential is closer to 1; Mean ± SD also indicates that the
errors of spectral differential are smaller and the results are
more stable.
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A quantitative comparison of the energy differences and
cosine similarity shows that MDS can reduce the systematic
error in forward simulations.

3.4.2 Inverse Simulations
To verify the feasibility and applicability of MDS in the
reconstruction of the light source, inverse simulations were
performed. The bioluminescence distributions on the surface
were simulated with MC at the wavelengths of 610, 630, 650, and
670 nm. The TM method and SD method were used
for comparison.

(1) Single-Source Case
Figure 4 compares the reconstruction performance of the three
methods in the single-source reconstruction. The red sphere in
the 3D views and the red circle in the sectional images label the
actual position of the real source, while the green irregular shapes
are the reconstructed sources. It can be found that the TM
method is reconstructed with a big deviation from the real
source, and the TM method and SD method are reconstructed
with poor morphology recovery capability and result in artifacts
around the real source. In contrast, the MDS method achieves a
better overlap with the real source. Figure 4D shows energy plots
along the cut aligned with the x-axis that crosses the sectional
images. The results show that the position and shape of the
source reconstructed by the MDS method are in good agreement
with the real source as compared with the other methods.
Table 3 shows the quantitative analysis of these results. The
MDS method obtained the lowest condition number, the
smallest LE, the best Dice, and CNR among the three
approaches. These results indicate that the MDS method
A B D

E F G H

C

FIGURE 3 | Energy differences of forward simulations. (A, C) The energy differences of MC and DE at the same wavelength in the single-source model and dual-
source model. (B, D) Average of the corresponding four groups energy differences in (A, C). (E, G) The energy differences after differential in single-source model
and dual-source model. (F, H) Average of the corresponding six groups of energy differences in (E, G). MC, Monte Carlo; DE, diffusion equation.
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performs better in the target location, shape recovery, and image
contrast than the other methods in this set of experiments. The
time consumption of the source reconstruction by the MDS
method is the lowest, and it saved 54.6% and 94.2% of the time as
compared with the SD method and TM method, respectively.

(2) Dual-Source Case
To further verify the multi-source resolution performance of the
MDS method, dual-source numerical simulation experiments
were carried out for the reconstruction. Figures 5A–C show the
3D views of the reconstructed results of each method and their
sectional images. As the results show, the three methods all
accurately located the two light sources, and the MDS method
has a lower error in positioning and shape recovery as compared
with the TM method and SD method. Figure 5D shows energy
plots along the cut aligned with the x-axis that crosses the
sectional images. The results further verify that the position
and shape of the source reconstructed by the MDS method are in
good agreement with the real source. The quantitative analysis in
Table 4 confirmed our observation; the MDS method achieved
the lowest condition number, the smallest LE, the best Dice, and
CNR among the three approaches. The results demonstrate that
the MDS method has superior location accuracy, morphology
recovery capability, and image contrast capability in dual-source
Frontiers in Oncology | www.frontiersin.org 9
reconstruction. Simultaneously, it has more advantages in time
cost in this set of experiments, which saved 23.0% of source
reconstruction time as compared with the SD method and
reduced 92.0% of that as compared with the TM method.
3.5 In Vivo Experiments
In a practical BLT system, bioluminescence is a broad spectrum,
which can be divided into several wavelength ranges. In Eq. (16)
and Eq. (18), for a given wavelength ln, the ratio of each spectral
energy to the total energy hn needs to be obtained. Figure 6A
shows the luminescence images of luminescent solution at
various wavelengths captured by the EMCCD with bandpass
filters with different wavelengths. The mean value and variance
of luminescence energy of each wavelength were calculated, as
shown in Figure 6B, which were regarded as the energy
contribution of the internal light source S at each wavelength
in the in vivo experiments. Figure 6C shows the surface light
distributions corresponding to each wavelength in in
vivo experiments.

Figure 7 shows the reconstructed results of in vivo
experiments performed with the TM, SD, and MDS methods.
The 3D views of the reconstructed results are displayed in the
first column, while the real source and reconstructed source
A B DC

FIGURE 4 | Reconstructed results of the single-source numerical simulations. 3D views of the reconstructed results and corresponding sectional images at Z =
14.8 mm obtained by the (A) TM, (B) SD, and (C) MDS. (D) Energy plots along the cut aligned with the x-axis that crosses the sectional images. The cut locations
are indicated by the yellow lines in (A–C). TM, traditional multispectral; SD, spectral derivative; MDS, multispectral differential strategy.
TABLE 2 | The cosine similarity of surface light energy obtained by MC and DE at the same wavelength and the cosine similarity were calculated by the difference of
data between each measured wavelength obtained by MC and DE.

Single-source model Dual-source model

Specific
spectrum

Cosine
similarity

Spectral
differential

Cosine
similarity

Specific
spectrum

Cosine
similarity

Spectral
differential

Cosine
similarity

610 0.9270 610–630 0.9730 610 0.9545 610–630 0.9791
630 0.9789 610–650 0.9891 630 0.9758 610–650 0.9842
650 0.9889 610–670 0.9898 650 0.9824 610–670 0.9874
670 0.9896 630–650 0.9887 670 0.9863 630–650 0.9869

630–670 0.9894 630–670 0.9893
650–670 0.9899 650–670 0.9893

Mean ± SD 0.9711 ± 0.0298 Mean ± SD 0.9867 ± 0.0067 Mean ± SD 0.9747 ± 0.0142 Mean ± SD 0.9860 ± 0.0039
Feb
ruary 2022 | Volume 1
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positions are represented by red regions and green irregular
shapes, respectively. Corresponding sectional images are
determined according to the central position of the true source
as shown in the next sequence, where the comparison of these
with CT results is shown, and the irregularly shaped red circle in
the CT sectional images labels the actual position of the real
source. The TM method and SD method with poor morphology
recovery capability and result in artifacts around the real source
and the SD method caused a big deviation from the real source.
The MDS method has a lower error in positioning and shape
recovery than TM and SD, and the reconstructed source in
Figure 7C is the closest to the real source in sagittal, coronal, and
transverse plane images. The quantitative analysis of the
reconstructed source is recorded in Table 5. The MDS method
achieves the lowest condition number, the smallest LE, the best
Dice, and CNR among the three approaches. The results
Frontiers in Oncology | www.frontiersin.org 10
demonstrate that the MDS method performs better in the
target location, morphology recovery, and image contrast than
the TM method and SD method. In addition, it has more
advantages in time cost in this set of experiments, which saved
30.5% of source reconstruction time as compared with the SD
method and reduced 78.1% of that as compared with the
TM method.
4 DISCUSSION AND CONCLUSIONS

In previous studies, multispectral reconstruction has attracted
remarkable attention since multispectral data can reduce the ill-
posedness of BLT and enhance the stability of reconstruction
(34). Based on these studies, a new MDS method was proposed
for BLT. Rather than directly using bioluminescence images
A B DC

FIGURE 5 | Reconstructed results of the dual-source numerical simulations. 3D views of the reconstructed results and corresponding sectional images at Z =
15.8 mm obtained by the (A) TM, (B) SD, and (C) MDS. (D) Energy plots along the cut aligned with the x-axis that crosses the sectional images. The cut locations
are indicated by the yellow lines in panels (A–C). TM, traditional multispectral; SD, spectral derivative; MDS, multispectral differential strategy.
TABLE 3 | Quantitative results of different methods in single-source reconstruction.

Methods Reconstructed source center
(mm)

Cond
(A)

LE
(mm)

Dice CNR T (s)

TM (18.05, 8.85, 14.08) 5.26e
+11

1.111 0.22 3.09 394.49

SD (17.75, 8.83, 14.67) 5.85e
+11

0.881 0.55 4.84 50.82

MDS (18.58, 8.11, 14.19) 7.97e+9 0.855 0.56 5.74 23.07
February 2022 | V
olume 12 | Article
LE, location error; CNR, contrast-to-noise ratio; TM, traditional multispectral; SD, spectral derivative; MDS, multispectral differential strategy.
TABLE 4 | Quantitative results of different methods in dual-source reconstruction.

Methods Reconstructed source center(mm) Cond (A) LE (mm) Dice CNR T (s)

TM (21.80, 8.04, 15.95)
(15.73, 8.47, 15.75).

6.79e+11 1.07
1.64

0.37 2.17 726.34

SD (22.07, 8.05, 15.60)
(14.93, 7.74, 16.32)

7.48e+11 1.07
0.91

0.52 3.45 75.41

MDS (22.60, 7.20, 15.84)
(15.59, 7.51, 15.70)

3.42e+11 0.63
0.78

0.59 3.79 58.06
LE, location error; CNR, contrast-to-noise ratio; TM, traditional multispectral; SD, spectral derivative; MDS, multispectral differential strategy.
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A

B

C

FIGURE 6 | (A) The luminescence images of luminescent solution at various wavelengths. (B) Their mean value and variance. (C) The surface light distributions
corresponding to each emission wavelength in in vivo experiments.
A

B

C

FIGURE 7 | Reconstruction results of in vivo experiments. 3D views of the reconstructed results and corresponding sectional images obtained by (A) the TM,
(B) SD, and (C) MDS. TM, traditional multispectral; SD, spectral derivative; MDS, multispectral differential strategy.
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acquired at several wavelengths, the spectral difference between
the measured data at similar wavelengths is used to further
improve BLT quality. Considering that light at similar
wavelengths encounters a near-identical system response, we
used the MDS to reduce the errors that resulted from using the
DE model and data acquisition of the imaging system.

The effectiveness of the MDS in reducing optical transmission
errors was analyzed with the forward simulations. Based on the
surface light distributions calculated by MC and DE at the same
wavelength, we made a quantitative analysis of energy differences
and the cosine similarity between the MC data and the DE data.
The changes of the indexes show that using MDS can reduce the
errors in the process of light transmission in both the single-
source model and dual-source model.

Inverse simulations were performed to verify the feasibility
and applicability of the MDS in BLT reconstruction. The
bioluminescence distributions on the surface were simulated
with MC at wavelengths of 610, 630, 650, and 670 nm as the
measured data. Condition numbers of the system matrix
constructed by each method were calculated and compared.
Compared to the TM method and SD method, MDS had the
lowest condition number, which means that the ill-posedness has
been partially alleviated. Thus, the MDS method obtained
superior location accuracy, morphology recovery capability,
and image contrast capability in the source reconstruction. The
in vivo experiments further verify the performance of the MDS in
a practical BLT system. The MDS method achieved the smallest
LE, the best Dice, and CNR with the smallest time cost among
the three approaches.

It needs to be emphasized that in this work, in the acquisition
of in vivo multispectral data, the imaging object was kept
motionless, so the interference from the change in position of
the imaging object on the imaging quality does not exist. In
previous studies, a consensus that multispectral data can increase
the amount of known boundary measurements and effectively
reduce the ill-posedness of the inverse problem has been
achieved, although in the acquisition of multispectral data, the
influence of time on light signal is universal (34, 42, 43).
Moreover, our proposed method can alleviate the noise
introduced in the long-time collection of the bioluminescent
light signal. In the next study, a multispectral camera with a filter
wheel consisting of optical bandpass filters will be used to reduce
the acquisition time of multispectral data, and the time-resolved
in vivo signal will be quantified for having accurate input data
for reconstruction.

In conclusion, a new MDS was presented to reduce system
errors and improve reconstruction accuracy. Simulations and in
vivo experiments demonstrated that it performed better in the
Frontiers in Oncology | www.frontiersin.org 12
target location, morphology recovery, and image contrast as
compared to the TM method and SD method. This method
has a view to provide a more reliable reference for the later
research on BLT.
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TABLE 5 | Quantitative results of in vivo experiments.

Methods Reconstructed source center (mm) Cond (A) LE (mm) Dice CNR T (s)

TM (49.04, 34.42, 48.36) 1.15e+11 0.938 0.36 4.25 228.37
SD (49.52, 32.96, 47.24) 5.87e+7 1.210 0.17 3.11 71.92
MDS (50.03, 33.90, 48.06) 1.14e+7 0.344 0.70 9.45 49.96
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LE, location error; CNR, contrast-to-noise ratio; TM, traditional multispectral; SD, spectral derivative; MDS, multispectral differential strategy.
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