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Abstract

Upon implantation, engineered tissues rely on the supply with oxygen and nutrients 
as well as the drainage of interstitial fluid. This prerequisite still represents one of the 
current challenges in the engineering and regeneration of tissues. Recently, different 
vascularization strategies have been developed. Besides technical approaches like 3D 
printing or laser processing and de-/recelluarization of natural scaffolds, mainly co-cultures 
of endothelial cells (ECs) with supporting cell types are being used. This mini-review 
provides a brief overview of different co-culture systems for the engineering of blood and 
lymphatic microvascular networks.

Necessity for prevascularization

Tissue engineering and regenerative medicine are 
emerging disciplines focusing on the repair and 
regeneration of injured or diseased tissues. Except very few 
tissues like cartilage, epidermis, the cornea and the lens in 
the eye, most of the organs in the human body rely on a 
functional supply with vascular structures to provide the 
cells with oxygen and nutrients on the one side (blood 
vessels) and to drain interstitial fluid back into the venous 
circulation (lymphatic vessels) on the other side. Similar 
to solid tumors, tissues which grow beyond the diffusion 
limit of oxygen (100–200 µm) are in need of blood vessels 
for oxygen and nutrient supply. In the last two decades a 
plethora of approaches have been developed in order to 
engineer vascular structures, both of blood vascular and 
lymphatic nature.

Technical approaches for vascularization

In order to achieve a ‘pre-patterned’ extracellular 
matrix (ECM), technological solutions comprise the 
use of 3D printing in order to establish ‘vascular trees’ 
in biocompatible hydrogels (1) or the decellularization 
of larger vascular structures for instance from the small 
intestine of the pig (2) or from the human placenta (3) 
(Fig. 1). The generated grafts or scaffolds can be reseeded 
with autologous ECs on the inside and supporting cells 
(fibroblasts, smooth muscle cells, etc.) on the outside 
of the tubes. Moreover, microfluidic systems have 
been established integrating a vascular network in pre-
fabricated channels, which turns out to be suitable for 
basic biological studies of cell-cell communication, and 
further might serve as a model system for drug testing. In 
addition, more sophisticated models utilize different cell 
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types to create organoids/mini-organs, resulting in organ-
on-a-chip systems, which rely on functional vasculature 
as well (4). As a rather new process 3D bioprinting has 
also been considered as an approach for successful 
vascularization with a wide range of applicability (5).

Scaffolds for 3D engineering

Based on the necessity for 3D co-culture to engineer 
vasculature, different scaffolds have been used to provide 
the required stability in 3D and allow for angiogenic/
vasculogenic remodeling and thus the formation 
of functional vessels (Fig.  1). For that purpose, both 
synthetic and natural scaffolds have been described. 
Synthetic scaffolds include materials such as poly-l-
lactic acid (PLLA), poly-lactic-co-glycolic acid (PLGA) 
or polycaprolactone fumarate (PCLF) (6, 7, 8) as well as 
self-assembling nanopeptides (9). Their main advantages 
are accessibility, high reproducibility and an eminently 
controllable degradation rate; however, low cell adhesion 
represents the main disadvantage (10). Nevertheless, this 
difficulty can be mastered by binding of cell recognition 
motifs in form of small immobilized peptides such as the 
RGD sequence, which stimulates cell adhesion via integrins 
(11). The most employed natural scaffolds for engineering 
vascular networks are collagens (12, 13) or fibrin matrices 
(14, 15, 16). These types of scaffolds have a high degree 
of biocompatibility and provide superior adhesion sites 
leading to improved growth and differentiation capability 
of the cells (17). Since both types of materials – natural 
and synthetic – can be fine-tuned with high precision, 
they are also utilized to deliver different proangiogenic 
factors such as vascular endothelial growth factor (VEGF) 

for the recruitment of EC (18, 19). Nevertheless, natural 
scaffolds represent the predominant type used due to 
their physiological characteristics resulting in improved 
cellular functions (20).

EC for vascular tissue engineering

Due to their ease in isolation and availability, ECs isolated 
from the human umbilical cord (HUVEC) have become 
the ‘gold standard’ in several areas of vascular biology 
including vascular tissue engineering (21). In addition to 
HUVEC, ECs from microvascular origin (brain, dermis) 
have been successfully employed in 3D co-culture models 
(Table  1). However, these cells cannot be translated 
into clinical settings, making autologous tissue sources 
like fat or peripheral blood more interesting for the use 
of ECs in prevascularization strategies. Thus, cells like 
endothelial colony-forming cells (ECFCs, also described as 
outgrowth endothelial cells (OECs)), induced pluripotent 
stem cell (iPSC)-derived ECs will be able to account for 
organotypic vascular beds (21). Another possibility is 
the direct reprogramming of differentiated human cells, 
such as fibroblast (22, 23) or mature amniotic cells (24) 
making these cells attractive for tissue-specific vascular 
bioengineering.

Different sources of supporting cell types

Initially, fibroblasts were utilized as supporting cell 
types for capillary formation in co-culture with ECs (16, 
25). Later, also mesenchymal stromal/stem cells (MSCs) 
mainly from bone marrow (14, 26) and adipose tissue  

Figure 1
Overview of different vascularization strategies. 
Functional blood and lymphatic microvasculature 
can be achieved by co-culturing of endothelial 
and supporting cells from different origins. 
Natural or synthetic scaffolds are generated from 
different materials to provide a 3D structure. 
Furthermore, technical approaches such as 3D 
printing or decellularization aid in the fabrication 
of these structures.
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(14, 17, 27) were used to provide ECs with the cues 
for vascular network formation (Table  1). These 
microcapillaries show characteristics of mature 
vessels, such as pericyte coverage or cell-cell junctions 
and are capable of blood perfusion when implanted 
subcutaneously in animal models (12, 28), therefore 
suggesting functionality of these tissue-engineered 
constructs. Moreover, a number of studies investigated 
the complex interplay with the ECM. Different proteases 
like plasmin or matrix metalloproteinases (16) have 
been shown to be key players in the morphogenesis and 
the remodeling of their 3D environment. In addition, 
these microcapillary structures can produce their own 
ECM consisting of perlecan, collagen IV and laminin 
(14). Interestingly, the analysis of biomechanical 
properties of the ECM revealed local stiffness to be quite 
heterogeneous (29).

The advent of lymphatic networks

Despite its presence and importance in nearly all organs 
with blood vasculature, the lymphatic system only 
recently became the research focus in vascular tissue 
engineering. Due to this neglect, lymphatic vascular 
markers like VEGFR3, PODOPLANIN, LYVE-1 and PROX-1 
have only been cloned and functionally characterized 
years after respective markers on blood vascular cells 
(30). Consequently, the engineering of these structures 
lags behind. The group of Melody Swartz was among the 
first who took up this topic and integrated lymphatic ECs 

in 3D matrices to build lymphatic capillaries (31). Later 
on the Reichmann group (32) used ECs from the human 
dermis (comprising both, blood and lymphatic ECs – BEC/
LEC) and integrated them in a fibrin matrix together with 
supporting cells (fibroblasts). Interestingly, the results 
show separate vascular network formation. Moreover, 
these vascular structures turned out to be biologically 
functional, as evidenced in a mouse skin model (32). 
In addition, our group has shown lymphatic and blood 
capillary morphogenesis in fibrin, when MSCs from fat 
tissue were co-integrated in the 3D matrix (33). Recently, 
the group of Anja Boos described vascular tube formation 
of LECs when cultured in conditions, where the MSC 
secretome, but not the MSC themselves were in contact 
with the LECs (34). Taken together, the importance of 
engineering of lymphatic microcapillaries is increasingly 
recognized, but still at the beginning.

Future directions of co-cultures and outlook

Based on the current knowledge on co-cultures for ex 
vivo vascular tissue engineering, many other aspects are 
currently discussed. For example, the spatio-temporal 
distribution of gradients which are necessary for vascular 
network formation can be monitored by microfluidic 
approaches (50). Furthermore, vascularization of multi-
organ-chips is studied among others by the groups of 
Donald Ingber (51), Ali Khademhosseini (52) and Uwe 
Marx (4, 53). Moreover, the emerging role of extracellular 
vesicles (comprising ecto- and exosomes) in the cell-cell 

Table 1 Cell types used in co-culture models for microvascular network formation.

Endothelial cell type Supporting cell type Reference

ECFC MSC (from different sources) (12, 15, 35)
Fibroblast (36)

HUVEC Fibroblast (8, 16, 37, 38)
MSC (from different sources) (4, 8, 14, 26, 27, 37)
Human embryonic stem cells/iPSC-fibroblast (25)
Osteoblast (13, 39)
Smooth muscle cells (40, 41)
Human brain vascular pericytes (41)
Human embryonic stem cell-derived pericytes (42)

iPSC-EC Fibroblast (16, 43)
iPSC-EC, cardiac tissue EC, pulmonary artery EC MSC (adipose derived) (27)
LEC Fibroblast (32, 44)
LEC, BEC ASC (33)
Microvascular EC Fibroblast (32, 45, 46)

Dental pulp stem cells (45)
Outgrowth EC Osteoblast (39, 47)

MSC (17, 48, 49)

Endothelial cells and supporting cell types from different tissue sources mediate the formation of vascular structures.
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communication of ECs and supporting cell types will 
become of interest in the future. Our understanding of 
microcapillary morphogenesis in engineered vascular 
networks has constantly increased over the last two 
decades. Ex vivo engineered blood and lymphatic 
microcapillary structures will be of utmost importance 
in nearly every tissue engineering approach to provide 
larger constructs with the necessary oxygen and nutrient 
supply on the one hand, but also the lymphatic drainage 
system on the other hand. Integrating organotypic vessels 
into tissue-specific organoids will further pave the way 
to transplantable tissues suitable for tissue repair and 
regeneration.
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