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Abstract In melanoma, the lymphocytic infiltrate is a prognostic parameter classified

morphologically into ‘brisk’, ‘non-brisk’ and ‘absent’ entailing a functional association that has

never been proved. Recently, it has been shown that lymphocytic populations can be very

heterogeneous, and that anti-PD-1 immunotherapy supports activated T cells. Here, we

characterize the immune landscape in primary melanoma by high-dimensional single-cell multiplex

analysis in tissue sections (MILAN technique) followed by image analysis, RT-PCR and shotgun

proteomics. We observed that the brisk and non-brisk patterns are heterogeneous functional

categories that can be further sub-classified into active, transitional or exhausted. The classification

of primary melanomas based on the functional paradigm also shows correlation with spontaneous

regression, and an improved prognostic value when compared to that of the brisk classification.

Finally, the main inflammatory cell subpopulations that are present in the microenvironment

associated with activation and exhaustion and their spatial relationships are described using

neighbourhood analysis.

Introduction
The lymphocytic infiltrate in melanoma is a prognostic parameter reported by the pathologist as pat-

terns of tumour-infiltrating lymphocytes (TILs). The ‘brisk’ pattern (diffuse or complete peripheral

TILs infiltration) has a better prognosis compared to the ‘non-brisk’ (tumour areas with TILs alternate

with areas without TILs) or to the ‘absent’ pattern (no TILs or no contact with melanoma cells)

(Clark et al., 1989; Clemente et al., 1996; Mihm et al., 1996). There are multiple pitfalls in the

purely morphological evaluation of TILs (Bosisio and van den Oord, 2017), but the most important

one is that morphology alone cannot determine their activation status. The meaning of the word

‘brisk’ according to the dictionary is ‘active, energetic’, a definition implying a functional connotation

starting from a morphological evaluation. Surprisingly, this functional connotation has never been

proved. The contact between cytotoxic lymphocytes (Tcy) and melanoma does not always lead to

tumor eradication but, due to immune modulation, can also result in Tcy inactivation. These

‘exhausted’ Tcy would still be morphologically present, indistinguishable from active lymphocytes.

Moreover, the morphological (Saltz et al., 2018) and functional (Krieg et al., 2018) side of the
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tumour microenvironment has been separately investigated, but integration of both types of data is

still lacking.

In recent years, several methods for single-cell analysis have been implemented in order to obtain

a high-resolution landscape of the tumour microenvironment (Anon, 2017). According to a recent

review (Binnewies et al., 2018), high resolution means to characterize not only the immune infiltrate

but also to define the spatial distribution of each component within it, which allows one to make

inferences about cell-cell interactions. Nevertheless, most of these methods rely on dissociation of

the cells from fresh material, an impractical option in primary melanomas, nowadays diagnosed at an

early stage, with very limited material, and resulting in loss of the knowledge of the spatial distribu-

tion of each component within the tumor. Moreover, several studies for predictive biomarkers relies

on peripheral blood (Ascierto et al., 2017). Though, the functional status of circulating inflammatory

cells can completely change entering the tumour site (Buggert et al., 2018). Intuitively, it is the

behaviour of the inflammatory cells in the surroundings of the tumour that will make a difference in

terms of prognosis and response to therapy.

Here, we characterize the immune landscape at single cell-level in primary melanoma based on a

panel of 39 immune markers applied on one single tissue section through a high-dimensional multi-

plexing method (Cattoretti et al., 2001; Bolognesi et al., 2017), a RT-PCR expression evaluation

and a shotgun proteomic analysis. This approach allowed us (a) to further categorize the brisk and

non-brisk morphological patterns of TILs into three functional categories; (b) to define the correla-

tion between T-cell activation and spontaneous melanoma regression; (c) to investigate the most

important inflammatory subpopulations involved in TILs exhaustion (Figure 1).

Results

Functional analysis of TILs
We classified each CD8+ cell in the TMA cores as part of a spectrum (‘functional status’) ranging

from ‘active’ (CD69high and/or OX40high) to ‘exhausted’ (TIM3highCD69lowOX40low) (Figure 2A–

D and Supplementary Data 1). We observed that the rotation vector of LAG3 was not aligned to

TIM3. Moreover, very few cells expressed LAG3, therefore this marker had a very small impact on

exhaustion. The assignation of a functional status to each core in the TMA (‘core status’, see

Materials and methods) yielded 17/60 cores defined as active, 23/60 in transition, and 20/60 defined

as exhausted. Core classification allowed the assessment of the heterogeneity of the immune

response in different areas of the melanoma for the same patient. From the 29 patients included in

the analysis, eight patients allowed to sample only a single core due to the size of the melanoma

and could not be included in this analysis. From the 21 remaining patients, 10/21 showed homoge-

neous core statuses: four active, five in transition, and one exhausted; and 11/21 showed heteroge-

neity. Correlation with clinical survival (overall survival, OS) showed that patient classification based

on functional status has an improved prognostic performance (log-rank p.value = 0.079) when com-

pared with the brisk morphological classification (log-rank p.value = 0.36) (Figure 2E). Also repeat-

ing the survival analysis in the SKCM TCGA data set confirmed that the patients in the ‘Active’

group had better prognosis than the patients in the ‘Exhausted’ group (log-rank p-value=0.0082)

validating the results obtained with our dataset (Figure 2—figure supplement 1).

We then checked whether the core status was significantly associated with spontaneous regres-

sion of the tumour, regarded as the result of a successful Tcy immune response, and with other his-

topathological parameters (histological subtype, ulceration, Breslow thickness, mitoses). Late

regression areas indeed showed significant differences in the mean level of activation of the cores as

compared to early regression (p=0.022) and no regression (p=0.031). No significant differences were

instead found between early regression and no regression (Figure 3A,B). Higher levels of activation

were found in Lentigo Maligna Melanoma (p=0.02). However, since only three LMM cores from two

patients were included in our data set, no definite conclusions can be drawn from this data. The

other histopathological prognostic parameters did not show significance (Table 1).

Phenotypic identification
The inflammatory subpopulations were identified using three different unsupervised clustering meth-

ods (KMeans, PhenoGraph, and ClusterX Chen et al., 2016) followed by manual annotation of the
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clusters by an expert pathologist (FMB). The choice of the markers to identify the inflammatory cell

populations is based on our previous review focusing on the melanoma microenvironment

(Bosisio and van den Oord, 2017). Cells were evaluated for consistent cell phenotype as described

in the Materials and methods (Figure 4—figure supplement 1). From the 19 clusters identified, 17

could be associated to specific cell lineages, while the remaining two were discarded. Based on the

inclusion criteria described in the methods, 179,304 out of 242,224 cells (74.02%) were included for

Figure 1. Single-cell analysis scheme. (A) TMA construction, Multiplex-stripping immunofluorescence: 60 cores

were obtained from 29 patients, assembled in a Tissue Micro Array, and analysed using the MILAN technique; the

immunofluorescence images from one round of staining (three markers/round: S100-blue, CD3-red, CD4-green) of

three representative cores from our data set are shown. (B) CD8+ cells were analyzed using image analysis for

functionality using an activation parameter derived from multiple activation and exhaustion markers evaluated at

single-cell resolution; the CD8+ cells are here digitally reconstructed for each of the above standing cores,

preserving their spatial distribution in the tissue section and assigning each of them a color according to the

activation status. (C) All the cell populations in the cores were phenotypically identified using consensus between

three clustering methods and manual annotation from the pathologists; The heatmaps with the levels of

expression of the phenotypic markers per cluster for one of the three clustering methods are shown on the left; on

the right, all the inflammatory cells are assigned a color based on their phenotype and the tissue is digitally

reconstructed for each of the above standing cores, preserving the spatial distribution of each cell. (D) The social

network of the cells was analysed using a permutation test for neighborhood analysis in order to make inferences

on cell-cell interactions. The results of the neighborhood analysis are generated as a heatmap were the type and

the strength of the interaction is expressed with a color code; to simplify the visualization of the interactions, the

different cell types are represented in a circle and connected with lines that clarify the type of relationship

between them.
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Figure 2. Definition of activation and implications in overall survival. A biplot showing the projection of the cells as

well as the rotation vectors of the markers over PC2 and PC3 has been created using only CD8-positive cells and

the four markers relevant for their functional status: CD69, OX40, LAG3, and TIM3. (A). This was the first step to

define a gradient of activation going from the maximum projected value of CD69 (maximum activation) to the

maximum projected value of TIM3 (maximum exhaustion) (B). (C) Z-scores of the original markers over PC2 and

PC3. (D) Visual representation of the inter- and intra-patient heterogeneity, that shows how most of the patients

present a relative homogeneous activation status of the Tcy. Each core is assigned an activation status (‘Active’,

‘Transition’, or ‘Exhausted’). The cores are grouped for each patient, giving an at-a-glance representation of the

heterogeneity of the activation status in different areas of the melanoma in the same patient. (E) The survival

analysis in our data set shows a higher overall survival for brisk patients (left) and for patients with high levels of

Figure 2 continued on next page
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further analysis. Cell phenotypes were further clustered into functional groups using a set of func-

tional markers. The functional clustering resulted in a total number of 47 functional cell populations

(Figure 4A).

Figure 2 continued

activation (right). Most importantly, the functional definition of activation/exhaustion shows improved prognostic

value when compared to the brisk morphological parameter (p.value = 0.075 vs p.value = 0.31 log-rank test).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Validation of the prognostic implications of our activation score in an independent cohort.

Figure supplement 2. qPCR and shotgun proteomics.

Figure supplement 3. Definition of activation.

Figure supplement 4. Definition of Activation in the Core Level (A) and Patient Level (B).

Figure supplement 5. Biplot showing the projection of the Tcy cells over PCs 2 and 3.

Figure 3. Activation status and neighborhood analysis in late, early and no regression. (A) The histogram shows

the distribution of the different cores according to the activation levels of the Tcy. The color code identifies the

presence and the type of regression areas in the cores. The cases with late regression are all in the left part of the

histogram, showing higher levels of activation compared to cores with early regression or without regression. (B)

This can be visualized also as a box plot. The neighborhood analysis for late (C) and early (D) regression shows an

enrichment in immune-stimulating interactions in the first and more interactions leading to immune impairment in

the latter. The thickness of the edge in the network represents the level of interaction between the different cell

types. The colour of the line indicates interactions leading to immune suppression (red), to immune stimulation

(green), to a probably sub-optimal/impaired immune stimulation (orange), no immune implications (blue).
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The most abundant cell population consisted of melanoma cells (41.76%). Most of the melanoma

cells expressed both melanocytic markers Melan A and S-100, while two minor groups of melanoma

cells had loss of expression of one of the two markers. The second most abundant cell type were the

macrophages (‘Macroph’, CD68+CD163+Lysozyme+HLA-DR+, 11.48%), one quarter of them

expressing the immunosuppressive marker TIM3. Epithelial cells represented 8.4% of the population

of our data set. The lymphoid compartment accounted for multiple subpopulations. Tcy (CD3+CD8

+) and T helpers (‘Th’, CD3+CD4+FOXP3-) were the most abundant subtypes, accounting respec-

tively for 11.19% and 10.10% of all the cells, while regulatory T cells (‘Treg’, CD3+CD4+FOXP3+)

represented 2.82% of the cells. We interpreted the last T cell cluster as T follicular helpers (‘Tfh’,

CXCL13+PD1+, 2.57%) even though this cluster did not express the full Tfh phenotype. Within Tcy,

we could identify the active (CD69+OX40+/-, 16,1% of all the lymphocytes), transition (balanced

expression of both exhaustion and expression markers, 29.6%) and exhausted (high expression of

LAG3 and/or TIM3, low/absent CD69 and OX40, 12.8%) functional subgroups. Moreover, we found

a clonally expanding subgroup (6%), and one with low or absent expression of all functional markers,

that we defined as ‘anergic’ (34,9%) but that could represent also naive T cells. Th could also be fur-

ther divided according to their expression of activation and exhaustion markers (28.5% ThCD69+,

considered active, 18.46% ThCD69+TIM3+, considered transitional, and 13.08% ThTIM3+, consid-

ered immunosuppressive). NK cells, as expected in melanoma, were extremely infrequent (0.51%),

and even more infrequent were the B cells (‘BC’, CD20+), that represented 0.12% of the total. The

CD20 negative cells characterized by high expression of IRF4 and Blimp1 (‘PC’, 1,19%) were inter-

preted as plasma cells (Caicedo et al., 2017). Finally, we could identify among the dendritic cell

Table 1. Statistical analysis.

Histopathological parameters were correlated with core status (Active/Transition/Exhausted) using pairwise t-tests with pooled stan-

dard deviation. Several histopathological parameters were correlated to the average level of activation of each core.

Parameter Comparison Statistical test
Multiple testing
correction p value

Brisk Infiltration Brisk vs Non Brisk t test No 0.8453

Brisk Infiltration Brisk vs Brisk In
Non Brisk

pairwise t test Yes 1

Brisk Infiltration Brisk vs Non Brisk
In Non Brisk

pairwise t test Yes 1

Brisk Infiltration Brisk In Non Brisk vs
Non Brisk In Non Brisk

pairwise t test Yes 1

Regression Regression vs
No Regression

t test No 0.6275

Regression Early Regression vs
No Regression

pairwise t test Yes 0.329

Regression Late Regression vs
No Regression

pairwise t test Yes 0.031*

Regression Late Regression vs
Early Regression

pairwise t test Yes 0.022*

Count Lymphocytes Number of Lymphocytes
vs Level of Activation

linear model No 0.3714

Histotype LMM vs NMM pairwise t test Yes 0.027*

Histotype LMM vs SSMM pairwise t test Yes 0.021*

Histotype NMM vs SSMM pairwise t test Yes 0.761

Breslow Thickness Breslow vs Level
of Activation

linear model No 0.9883

Ulceration Positive vs Negative t test No 0.7252

Number of Mitoses More than 6 vs 1 to 6 pairwise t test Yes 1

Number of Mitoses More than 6 vs 0 pairwise t test Yes 1

Number of Mitoses one to 6 vs 0 pairwise t test Yes 1
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group the classical dendritic cells type 1 (‘cDC1’, CD141+CD4+IRF8+, 4.13%), classical dendritic

cells type 2 (‘cDC2’, CD1c+CD4+HLA-DR+, 2.41%), Langerhans cells (‘Lang’, CD1a+Langerin+,

2.13%), and plasmacytoid dendritic cells (‘pDC’, CD123+, 0.33%). In both the two classical dendritic

cell subgroups an immunosuppressive TIM3+ subpopulation was identifiable, while in the pDC

group a small subpopulation was found to express PD-L1. No immunosuppressive subpopulation

was identified among the Langerhans cells. Some subpopulations were statistically significantly dif-

ferent (p-val <0.05) comparing brisk vs non-brisk and active vs transition vs exhausted. Brisk cases

were significantly enriched in BC (p-val = 0.041), TIM3+cDC1 (p-val = 0.024), macrophages (p-

val = 0.043) (including the proliferating subgroup (p-val = 0.034)), NK (p-val = 0.011), anergic Tcy (p-

val = 0.039) and proliferating Tcy (p-val = 0.006) (Figure 4B). Active cores had, together with more

active Tcy (p-val <0.001), higher percentages of Tcy in transition (p-val = 0.030), transition cores

more Th (p-val = 0.057), while exhausted cases had more TIM3+Tregs (p-val = 0.018) and more pro-

liferating melanoma cells (p-val = 0.045) (Figure 4C).

Neighborhood analysis
We applied neighborhood analysis in order to systematically identify social networks of cells and

draw conclusions on actual cell-cell interactions. Macrophages and epithelial cells were in general

most often located in strict proximity to the melanoma cells, without differences among the func-

tional or morphologic categories. Brisk cases showed more Tcy in close proximity to melanoma cells

than non-brisk cases, as expected (Figure 5E). Interestingly, brisk cases had a higher prevalence spe-

cifically of transition and active Tcy in contact with melanoma cells compared with non-brisk cases

(Active/Exhausted ratio: Brisk = 2.108762, Non-Brisk = 1.331195), that instead had relatively more

exhausted and anergic cells in contact with melanoma cells (Active/Anergic ratio: Brisk = 1.743081,

NonBrisk = 0.7704947).

To understand what is the immune context that determines activation and exhaustion, we com-

pared the results of neighbourhood analysis between active (Figure 5A) and exhausted (Figure 5B).

The detection of the interaction of Langerhans cells with the epithelium, identifiable in both func-

tional groups, was considered as positive control and proof of concept for the method. Some other

interactions were present in both functional groups: TIM3+ macrophages and exhausted/transitional

Tcy, CD69+TIM3+Th and transitional Tcy, active Th and anergic Tcy, TIM3+cDC1 and CD69+TIM3

+Th. Cell-cell interactions that were specific for active cases included: active Th and active Tcy, TIM3

+macrophages and CD69+TIM3+Th, NK and Tfh, Tfh and exhausted Tcy, and pDC and Langerhans.

On the other hand, cell-cell interactions specific for exhausted cases included: CD69+TIM3+Th and

anergic Tcy, anergic Tcy and active Th, anergic Tcy and BC expressing INFgamma, CD69+TIM3+Th

and TIM3+cDC2, TIM3+macrophages and transition Tcy, NK and PD-L1+pDC, and the different sub-

types of Tfh and cDC1. Considering the brisk and non-brisk classification, instead, we could first of

all observe that the neighborhood analysis profile of the brisk cases was very similar to that of active

cases. Moreover, non-brisk cases showed more cell-cell interactions linked with immune suppression.

Nevertheless, both categories were not totally overlapping with the active and exhausted plots, but

rather presented a mixture of immune-stimulating and immune-suppressive interactions present

either in the active of exhausted plots (eg: CD69+TIM3+Th interaction with anergic Tcy, common

between brisk and exhausted, or the active Th toward the active Tcy present both in the active and

non-brisk group). This data confirmed us once again that the morphological categories are function-

ally heterogeneous (Figure 5C,D).

Finally, we also compared neighbourhood analysis between cores with early and late regression.

In late regression, a network of activating interactions between active Tcy and active Th was Present.

Few immune suppressing interactions could be observed, in particular between Treg-CD69+TIM3

+Th-Exhausted Tcy (Figure 3C). In early regression, the interactions between active Th and active

Tcy disappeared in this group, to leave space to aggregates of B cells located in strict proximity

with anergic, proliferating and active T cells and probably stimulated by TIM3+cDC2, counterbalanc-

ing the effect of the immune stimulation between cDC1 and active Th (Figure 3D).

qPCR and shotgun proteomics
Since our TMA is composed exclusively of primary melanomas, one may object that in a metastatic

setting, cases with mainly active TILs may not be detected, maybe because the immune system of
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the patient is failing in keeping control of the tumor. Or maybe, in the metastatic setting, to see a

diffuse TILs infiltrate in a metastatic nodule would have been possibly correlated with real activation

and not with exhaustion, and only morphological evaluation could be enough to evaluate the activa-

tion status of the TILs. Since immunotherapy is generally administered only if the patient develops

metastasis (even if since very recently adjuvant immunotherapy is starting to be introduced in the

clinic), to confirm the existence of the same functional subcategories in metastatic melanoma sam-

ples, we perform qPCR followed by proteomics on microdissected TILs, comparing melanoma

metastasis that we classified as brisk (if diffusely infiltrated by TILs) and non-brisk (if only partially

infiltrated by TILs), using an ‘absent’ case (metastasis without TILs) and a ‘tumoral melanosis’ (com-

plete melanoma regression with persistence of melanin-loaded macrophages) case as controls. Fur-

thermore, we could measure directly the levels of expression of IFNg, the best indicator of CD8+

activation, for which no suitable antibody exists for FFPE material. 4/8 melanomas with a brisk TILs

pattern, and 3/7 with non-brisk TILs pattern proved active, confirming that we could subclassify from

a functional point of view also metastatic lesions (Figure 2—figure supplement 2). To correlate the

gene expression measured by qPCR with the actual protein expression, we performed a proteomic

analysis on the microdissected material in three representative cases, that is one with high IFNg

expression (‘IFNg-high’), one with the high LAG3 and no IFNg expression (‘LAG3-high’), and one

with none of the four markers strongly expressed (‘none’). The results showed a higher number of

proteins identified in the ‘IFNg-high’ sample (324) compared to ‘LAG3-high’ (93) and ‘none’ (134),

with almost two thirds of them (210/324) not shared with the other two samples and enriched in pro-

teins involved in different inflammatory pathways (innate immunity, TNFR1 signalling pathway, FAS

signalling pathway, T cell receptor and Fc-epsilon receptor signalling pathway), including the inter-

feron gamma-mediated signaling pathway. As we minimized the difference in the number of micro-

dissected cells in each sample, these observations could only be explained by a higher production of

pro-inflammatory proteins in the ‘IFNg-high’ sample.

Discussion
The fact that not all brisk infiltrates have a good prognosis (Saltz et al., 2018; Thorsson et al.,

2018), that TILs populations can be very heterogeneous (Bernsen et al., 2004; Pao et al., 2018)

and that anti-PD-1 immunotherapy was found to support functionally activated T cells (Krieg et al.,

2018) urged a thoughtful investigation of the functional status of the TILs. Since the molecules that

mediate exhaustion are expressed upon activation in order to prevent the hyperactivity of the

immune system (Wherry, 2011), to investigate the activation status of lymphocytes the simultaneous

expression of several molecules must be evaluated at a single-cell level and at once, as a panel

(Weixler et al., 2015). Moreover, the assessment of the interactions between cells requires preser-

vation of the tissue architecture. Our study is the first to assess up to 40 markers on tissue sections

at single cell resolution without losing their spatial distribution. We obtained by high-dimensional

in situ immunotyping a snapshot of the co-expression patterns of activation and inhibition markers in

tissue sections. OX40 was strongly correlated with Ki-67 and PD-1, confirming its role in sustaining

Tcy clonal expansion (Huang et al., 2015). We didn’t instead find correlation between LAG3 and

TIM3. This could be due to the fact that LAG3 is expressed very early and only transiently during T

cell activation (Andrews et al., 2017). Persistent T cell activation with sustained expression of LAG3

together with other exhaustion markers (e.g. PD-L1) results in T cell dysfunction (Andrews et al.,

2017). LAG3+Tregs have been shown to suppress DC maturation (Spranger et al., 2016).

We could observe that both brisk and non-brisk cases can harbour predominantly exhausted

TILs or predominantly active TILs; therefore, with the morphological classification (brisk – non

brisk – absent), a complementary functional classification (active – transitional - exhausted) co-

exists. The importance of going beyond the morphologic classification of TILs was previously

raised by others, who claimed that a functional analysis could help in the application of a better

immunoscore for therapeutic prediction (Pao et al., 2018). Only a minority (15%) of patients

presented with all active cores, and 30% of patients presented with at least one active core,

whereas the great majority of the patients presented with only exhausted or transition areas at

the moment in which the melanoma was removed. Since the percentage of patients that obtains

a durable response with single agent checkpoint inhibition therapy (Ribas and Flaherty, 2015;

Ribas et al., 2016; Robert et al., 2015) lies between 15% and 30%, and since Krieg et al.
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(2018) reported that anti-PD-1 immunotherapy supports functionally activated T cells, it is

tempting to speculate that the ‘mostly active’ TILs cases could correspond to the responders to

immunotherapy, while the ‘mostly exhausted’ cases could benefit instead from combination

approaches with immunotherapy and other type of therapies in order to rescue the exhausted T

cells. Therefore, adding the functional evaluation could definitely improve the predictive value of

the morphological TILs patterns in melanoma. Since spontaneous melanoma regression, present

in only 10–35% of the melanomas, is considered to be the end-results of the melanoma-eliminat-

ing capacities of active TILs, we also studied the association of activation of TILs with early and

late regression (Botella-Estrada et al., 2014). Our data showed a clear-cut association of activa-

tion of TILs with late regression areas, indirectly proving the functional meaning of an active

infiltrate. We have to consider that the number of early (8) and late (5) regression areas is

Figure 4. Distribution of the immune cells’ subgroups and significant differences in the morphological and

functional TILs categories. The percentage of cells for each inflammatory subpopulation across all the cores is

showed in (A). The 17 phenotypic clusters are on the upper side of the graph, while at the bottom each of them is

subdivided in the respective functional subclusters. BC = B cells; cDC1 = classical dendritic cells type 1;

cDC2 = classical dendritic cells type 2; Epith = epithelial cells; PC = plasma cells; Lang = Langerhans cells;

LV = lymph vessels; Macroph = macrophages; pDC = plasmocytoid dendritic cells; S-M+=S100+MelanA-

melanoma cells; S+M-=S100-MelanA+=melanoma cells; S+M+=S100+MelanA+ melanoma cells; Tcy = cytotoxic T

cells; Tfh = T follicular helpers; Th = T helpers; Treg = regulatory T cells; suffix: ‘prolif’=proliferating,

IFNg = interferon gamma. (B) Significant differences (p.value <0.05) in cell percentages between brisk and non-

brisk categories (Wilcoxon rank sum test). (C) Significant differences (p.value <0.05) in cell percentages across the

functional groups: Active, Transition, Exhausted (Kruskal-Wallis rank sum test).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Phenotype Identification.
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Figure 5. Neighborhood analysis in the morphological and functional TILs categories. The result of the

neighborhood analysis for active (A), exhausted (B), brisk (C), and non-brisk (D) cases represented as cellular social

networks. The thickness of the edge in the network represents the level of interaction between the different cell

types. The colour of the line indicates interactions leading to immune suppression (red), to immune stimulation

(green), to a probably sub-optimal/impaired immune stimulation (orange), no immune implications (blue). The

brisk and active plots display a lot of similairies; nevertheless, the brisk and non brisk categories are not exactly

overlapping with the active and exhausted plots, suggesting them to be the result of cases with activation and

cases with exhaustion pooled together under the morphological labels. (E) The histogram shows the alternative

approach of neighbourhood analysis tailored to explore specifically the interactions regarding melanoma cells. We

observed that the main inflammatory cells subtypes in contact with melanoma cells are macrophages and (as

expected) epithelial cells, both in brisk and non-brisk cases, followed by Tcy with active and in transition Tcy in

brisk cases and proliferating and anergic Tcy in non-brisk cases. Other small differences between brisk and non-

brisk cases are more TIM3+ cDC1, cDC2 and TIM3+ macrophages in contact with melanoma cells in brisk cases.
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significantly smaller than the number of no regression areas (33). Thus, a larger cohort may be

needed to validate these results. However, first of all, considering the sign of the reported dif-

ferences (late regression more active than early regression and no regression) we do think that

the reported results are coherent with the real biology. Early regression is a controversial entity

among pathologists: in spite of the criteria mentioned above, there is no agreement about the

fact that it should represent a real regression phase or rather a very pronounced brisk infiltrate.

In this view, the dense inflammatory infiltrate in early regression may actually lead to late regres-

sion or may not, getting exhausted and disappearing without having actually a tangible anti-

tumoral result. In agreement with this controversy, our data shows not only that early regression

it is a very heterogeneous group displaying a great variability in activation levels (Figure 3A),

but also that overall it has lower activation levels then late exhaustion (Figure 3B). Moreover,

this data seems to be supported by neighborhood analysis. In late regression, a network of

activating interactions between active Tcy and active Th was prevalent over few immune sup-

pressing interactions (Figure 3C), while in early regression the dense infiltrate contains a more

complex network of interactions with many of them contributing to immune impairment and,

therefore, to the detected lower levels of activation (Figure 3D).

We obtained a functional picture of the inflammatory landscape in brisk versus non-brisk cases

and in active/transition/exhausted TILs microenvironments. A previous study already casted some

doubts on the significance of the brisk pattern, as they found no evidence of clonally expanded TILs

in some cases with a brisk infiltrate (Pao et al., 2018), and hypothesized that clonally expanded T

cells might represent not only cytotoxic cells but also regulatory cells. We indeed found not only

immune stimulating cells such as proliferating and anergic Tcy, cDC1, and NK significantly increased

in brisk cases, but also immune suppressive cells such as BC and macrophages. Active and

exhausted cases were instead functionally coherent categories. An active microenvironment was

enriched for active Tcy, while an exhausted microenvironment was enriched not only with Treg, pos-

sible origin of the exhaustion, but also with proliferating melanoma cells, possible effect of the lack

of immune control over the neoplasia.

A slight increase in Treg between active and exhausted cases may not be able alone to justify the

shift from an active to an exhausted microenvironment. To this end, adding the spatial information

and making inferences about the interactions between the cells in the tissue using neighborhood

analysis could represent a better way to investigate this dynamic. In this way, we could identify the

most important differences that could explain the transition from an active to an exhausted environ-

ment. In active cases, it was possible to identify a stronger spatial association between active Th and

active Tcy, while the same association was weaker in transition cases and disappeared in exhausted

ones. In general, there was a decrease of interactions between the Th compartment and the active

Tcy from active to exhausted cases. This could be explained observing the peculiar interactions with

the other cell types in each of the functional states. In active cases, TIM3+ macrophages interacted

with CD69+TIM3+ Th, as well as cDC1 expressing TIM3 interacted with TIM3+ Treg, possibly limit-

ing their suppressive effect on the Tcy. In transition cases instead TIM3+ cDC1 are interacting only

with CD69+TIM3+ Th and transitional Tcy, their block on Treg is removed and the Treg population

is globally inhibiting all the Th subpopulation, probably reducing the strength of activation of the

Tcy compartment. In fact, in active and exhausted cases the active Th are seen more often in contact

with transitional Tcy, that are also the direct target of Tregs, while CD69+TIM3+ Th are in direct con-

nection with exhausted Tcy. Starting from the transitional status, we see the appearance of interac-

tions between BC expressing INFg-related molecules and CD69+TIM3+ Th and anergic Tcy, and

between TIM3+ cDC2 and CD69+TIM3+ Th, confirming the immune suppressive role of this cell

types. The presence of a shift of interaction of the active Th toward anergic Tcy observed in the

exhausted cases may be a rescue mechanism, meant to induce new active Tcy starting from anergic/

naı̈ve Tcy but possibly contrasted by the effects of the surrounding immunosuppressive cells. Finally,

in active cases, there is a strong interaction between TIM3+ macrophages and exhausted/transitional

Tcy along all the statuses, confirming their prominent role in keeping the exhaustion in the tumoral

microenvironment. Even if it may look like non-brisk cases have more activating interactions than

brisk cases, the overall neighborhood analysis profile of brisk cases is very similar to the one of the

active cases. Therefore, from our analysis emerges that the good prognosis of the brisk cases may

be due to the fact that brisk cases have a profile of cell-cell interaction very similar to the one of

active cases, witnessing that brisk cases and the fact that in brisk cases the melanoma cells are more
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in contact specifically with active/transition Tcy than in non-brisk cases, that instead have more

exhausted and anergic cells in contact with melanoma cells (as shown by the alternative neighbor-

hood analysis method).

There are not many papers focusing on the activation status of the TILs in melanoma using a

single-cell proteomics technique with spatial resolution. There are papers investigating the acti-

vation status of TILs at single-cell level in other tumors, such as non-small-cell lung cancer

(Guo et al., 2018) or breast cancer (Chung et al., 2017). Though, these works use single-cell

RNA sequencing, a non-spatial non-proteomics technique, to characterize exhaustion, losing the

possibility to investigate the social network in which these exhausted cells are embedded. Some

of these works show results that are similar to ours. For example, Guo et al. analyze, like us,

treatment-naive patients and identifies a pre-exhausted T cell population that, similarly to our

active/transition T cells, confer a better prognosis to patients when in bigger proportion in com-

parison to exhausted T cells. In the field of melanoma, Tirosh et al. (2016) gave a description

of the immune landscape, limited to metastatic melanoma, and investigated the activation status

of the T cells using single-cell RNAseq. In particular, they defined a 28-genes core exhaustion

signature but also observed tumor-specific exhaustion signatures, hypothesizing that they could

be the result of different previous treatments. This is indeed one of the limits of working with

metastatic melanoma, not regarding instead our study, based on precedently untreated primary

melanomas. Moreover, they identified T cells, B cells, macrophages, endothelial cells, and fibro-

blasts and assessed cell-cell interactions searching for genes expressed by a certain inflammatory

cell type known to influence another cell type, finding that fibroblasts and macrophages

expressed genes, mainly complement factors genes, correlated with T cell infiltration and with

immune modulation of T cells. A similar approach within the same scope, that is to overcome

the loss of information about the spatial distribution of the cells and infer cell-cell interactions, is

presented by Kumar et al. (2018). This work does not specifically deal with exhaustion but

rather to a prediction for cell-cell communication based on scRNAseq-defined receptor/ligand

expression. Despite the elegance of the approach, the mere presence of appropriate receptor/

ligand pairs may not predict actual interaction in tissue; this is shown for example by the variety

of the molecules used in a tissue-restricted fashion to phagocytize circulating particles by identi-

cal cell types (monocytes-macrophages) (A-Gonzalez et al., 2017). Talking about the limitations

of their study, the authors themselves point out that “Several factors may lead to the identifica-

tion of false positives [...] The level of transcripts does not necessarily correlate to protein

expression for any gene [...] because scRNA-seq does not preserve spatial information, identified

interactions in which the receptor and the ligand are membrane-bound may not occur when the

corresponding cell types are not spatially co-localized in a tumor [...] approaches such as multi-

plexed immunofluorescence imaging or imaging mass cytometry can validate that membrane-

bound interaction components are spatially co-localized. [...] Our methods provide a screening

approach to identify potential ligand-receptor interactions that occur in a tumor microenviron-

ment”. As suggested here by the authors, our method have overcome these limitations, even

though limited itself by the preselection of the markers included in our panel. Furthermore, the

unique ability of the in situ analysis of cell interactions we can provide with our approach may

yield a true representation of the network, producing unexpected results such as the mutual

avoidance of receptor-ligand bearing T cells and macrophages in uterine leiomyosarcomas

(Manzoni et al., 2020). Finally, a number of recent papers investigates the immune microenvi-

ronment focusing on response to therapy rather than prognosis and survival as main outcome.

Sade-Feldman et al. (2018) identify two major CD8+ cell states, one with increased expression

of genes linked to memory, activation and cell survival and one with enrichment in genes linked

to cell exhaustion. A higher amount of memory/active cells at the baseline was found in res-

ponders to checkpoint inhibition, while exhausted CD8+ T cells were more abundant in non-res-

ponders. Also in their data set, TIM3, together with CD39, marked stronger than other genes

the state of exhaustion of the CD8+ T cells. Active cytotoxic T cells as a hallmark for response

to checkpoint inhibitor therapy were also found by Riaz et al. (2017), whose work showed not

only an increased number of TILs, NK and M1 macrophages in responders as a consequence of

Nivolumab administration, but also enhancement of cytolytic pathways genes, possibly a

bystander for cytotoxic T cell activation. Going beyond single-cell analyses, Prat et al. (2017).

uses a bulk digital mRNA expression method to define 12 signatures associated with response
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and progression-free survival in different types of cancer, including melanoma. Among these sig-

natures, T cell activation (both CD4 and CD8) and IFN activation are included. Ayers et al.

(2017). used the same bulk digital mRNA expression platform to develop a predictive ‘inter-

feron-gamma’ gene signature, and observed that tumors with low signature scores characterized

non-responders.

Figure 6. Complete digitalization of a core and practical example of a possible downstream analysis. Anti-

clockwise: (1) images for the markers stained with the MILAN multiplexing technique (for this work 39 markers, but

we reached in our laboratory an output of around 100 markers per single section) are acquired and composite

images with some selected markers can be prepared. (2) All the markers are used to phenotypically identify all the

cell subtypes present in the tissue and the tissue is digitally reconstructed. (3) Studies of the functional status of

these cells can be done, for example we could localize exhausted and active cells in the tissue. (4) With

neighborhood analysis, it is possible to identify the cells that are in proximity with each other more than chance

can suggest, inferring possible interactions between these cell types (in the image, two cells identified as

‘neighbors’ are encircled in red).
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Because our melanoma dataset includes only primary melanoma collected before the era of

immunotherapy (2005–2010) and only one patient was treated with immune-checkpoint based ther-

apy, we can not directly correlate our T-cell activation signature with response to therapy and con-

firm these assumptions using our dataset. Moreover, even if we have highlighted with qPCR and

shotgun proteomics that also metastasis can be classified as active and exhausted, it is not clear

whether the tumor microenvironment of the primary melanoma is representative for the tumoral

microenvironment once metastasized. We are currently prospectively collecting and investigating

with the method proposed in this paper a cohort of immunotherapy-treated patients with paired

biopsies (primary melanoma, pre-treatment and on-treatment samples at a later stage). A lot of pre-

dictive biomarkers for immunotherapy are now being proposed in literature, but it is becoming

more and more clear that rather than reducing the number of parameters to obtain a prediction, a

combination of different biomarkers will be needed to achieve the goal of personalized therapy. In

the author’s vision, the functional status of cytotoxic T cells (activation versus exhaustion) could be

easily implemented in clinical practice using one of the fast multiplexing methods available on the

market and a software that could automatize and speed up this type of analysis. The activation sta-

tus of the TILs can be combined to other histopathological and immunological parameters (Breslow,

TILs patterns, PD-L1 expression, spatial relationship of these exhausted and activated T cells to the

tumor, . . .) and could therefore potentially play an important role in predicting overall survival and

response to immune checkpoint therapy.

In conclusion, in this paper, we have shown that the activation status of the TILs does not neces-

sarily parallel the morphological categories, and that within a single melanoma, the inflammatory

response may vary considerably. The classification of primary melanomas based on the functional

paradigm had an improved prognostic value when compared to the brisk classification. We hypothe-

size that the general good prognosis of melanomas with a brisk pattern of TILs could be based on

the fact that the Tcy that are in contact with the melanoma cells at the moment that the melanoma

is excised are still active, and consequently the melanoma is still under immune control. We have

shown a bioinformatic pipeline that, starting from common immunofluorescence stainings, can trans-

form the tissue into a digitized image, which represents the starting point for multiple deeper levels

of analysis (Figure 6). In this study, we have also described the main interactions between the inflam-

matory subpopulations in an active, transition and exhausted environment, interactions that should

be taken into consideration when assessing the response to immunotherapy and that will ultimately

lead to the identification of functional inflammatory microenvironments that may benefit from per-

sonalized combined therapy protocols.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference

Identifiers
(RRID_AB)

Additional
information
(dilution)

Antibody CD4 rabbit
monoclonal EPR6855

Abcam 1 mg/ml

Antibody HLA-DR mouse
monoclonal
IgG2b SPM288

Abcam AB_1125217 1 mg/ml

Antibody TAP2 mouse IgG1
monoclonal TAP2.17

Abcam 1 mg/ml

Antibody CD141 rabbit
monoclonal EPR4051

Abcam AB_2201805 1 mg/ml

Antibody MYC rabbit
monoclonal EP121

Sigma Aldrich 1 mg/ml

Antibody FOXP3 mouse
monoclonal
IgG1 236A/E7

Abcam AB_445284 1 mg/ml

Antibody MX1 Rabbit polyclonal Abcam AB_10678925 1 mg/ml

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference

Identifiers
(RRID_AB)

Additional
information
(dilution)

Antibody LAG3 mouse
monoclonal IgG1 11E3

Abcam AB_776102 1 mg/ml

Antibody PD-L1 rabbit
monoclonal 28–8

Abcam/Epitomics AB_2687878 1 mg/ml

Antibody CD1a rabbit
monoclonal EP3622

Abcam/Epitomics AB_626957 1 mg/ml

Antibody CD123 mouse
monoclonal IgG2b
NCL-L-CD123

Leica-Microystem/Novocastra AB_10555271 1 mg/ml

Antibody Phospho-Stat1
rabbit monoclonal 58D6

Cell Signaling AB_561284 1 mg/ml

Antibody CD20 mouse
monoclonal IgG2a L26

Dako AB_782024 1 mg/ml

Antibody CD1a mouse
monoclonal IgG1 O10

Dako 1 mg/ml

Antibody CD1c mouse
monoclonal IgG1 2D4

Dako AB_2623049 1 mg/ml

Antibody PRDM1 rat
monoclonal 6D3

Dako AB_ 1 mg/ml

Antibody S100AB rabbit polyclonal Dako 1 mg/ml

Antibody CD56 mouse
monoclonal
IgG1 123C3.D5

Neomarkers AB_627127 1 mg/ml

Antibody Ki-67 mouse
monoclonal
IgG2a UMAB107

Origene AB_2629145 2 mg/ml

Antibody Lysozyme rabbit polyclonal Origene AB_1004766 1 mg/ml

Antibody PD-1 mouse
monoclonal
IgG2a UMAB197

Origene AB_2629198 1 mg/ml

Antibody TIM3 goat polyclonal R and D AB_355235 1 mg/ml

Antibody CXCL13 mouse
monoclonal
IgG1 53610

R and D AB_2086049 1 mg/ml

Antibody OX40 mouse
monoclonal
IgG1 Ber-ACT35

Santa Cruz AB_626897 1 mg/ml

Antibody IRF4 goat
monoclonal M-17

Santa Cruz AB_2127145 1 mg/ml

Antibody cMAF rabbit
monoclonal M-153

Santa Cruz AB_638562 1 mg/ml

Antibody BCL6 rabbit
monoclonal N3

SCBT AB_1158074 1 mg/ml

Antibody CD16 mouse
monoclonal IgG2a 2H7

SCBT AB_563508 1 mg/ml

Antibody CD68 mouse
monoclonal IgG3 PGM1

Thermo Fisher AB_10979558 1 mg/ml

Antibody p16 mouse
monoclonal IgG2a JC8

SCBT AB_785018 1 mg/ml

Antibody MelanA rabbit
monoclonal A19-P

NovusBio AB_1987285 1 mg/ml

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference

Identifiers
(RRID_AB)

Additional
information
(dilution)

Antibody Podoplanin rat
monoclonal
IgG2a NZ-1.2

Sigma Aldrich AB_10920577 1 mg/ml

Antibody CD69 rabbit polyclonal Sigma Aldrich AB_2681157 1 mg/ml

Antibody CD3 rabbit polyclonal Sigma Aldrich AB_2335677 1 mg/ml

Antibody GBP1 rat
monoclonal 4D10

Sigma Aldrich AB_828964 1 mg/ml

Antibody Langerin
rabbit polyclonal

Sigma Aldrich AB_1078453 1 mg/ml

Antibody IRF8 rabbit polyclonal Sigma Aldrich AB_1851904 1 mg/ml

Antibody CD8 rabbit
monoclonal SP16

Thermo Fisher AB_627211 1 mg/ml

Antibody CD138 mouse
monoclonal IgG1 MI-15

Thermo Fisher AB_10987019 1 mg/ml

Sample description
Twenty-nine invasive primary cutaneous melanomas from the Department of Pathology of the Uni-

versity Hospitals Leuven (KU Leuven), Belgium, were classified based on the H and E staining accord-

ing to the pattern of the inflammatory infiltrate into brisk (six cases) and non-brisk (23 cases).

According to their subtype, 24 superficial spreading melanomas, three nodular melanomas, and two

lentigo maligna melanoma were included. Ethical approval was obtained from the Ethical Commit-

tee/IRB OG032 of the University Hospital of Leuven. After the approval, the study was identified

with the number S57266. According to the Clinical Trial regalement no informed consent was

needed due to the use of post-diagnostic left-over material. The patients’ characteristics are

resumed in Supplementary file 6. All the patients in our cohort were diagnosed between

2005 and 2010, before the era of immunotherapy (both in metastatic and adjuvant setting). Because

only primary melanomas were included, all the patients received only surgery (broad excision) as

first-line therapy. We did not find any significant differences between the ‘Active’ and ‘Exhausted’

groups according to age (t-test p.value = 0.6776382), gender (chisq-test p.value = 0.5814) or tumor

location (chisq-test p.value = 0.1531). Given the relatively small number of patients included in the

analysis and since none of the parameters seems to be related with patient activation, these factors

were not accounted for the model in a multivariate analysis.

TMA construction
Tissue Micro Arrays (TMAs) were constructed with the GALILEO CK4500 (Isenet Srl, Milan, Italy). For

each patient, one to five representative regions of interest were sampled according to the size of

the specimen and the morphological heterogeneity both of the melanoma and the infiltrate distribu-

tion. According to the morphological TILs pattern, we sampled brisk areas (i.e. six brisk areas in mel-

anomas with brisk TILs pattern, termed ‘brisk in brisk’ and 10 brisk areas in melanomas with non-

brisk TILs pattern, termed ‘brisk in non-brisk’) and non-brisk areas (i.e. 15 non-brisk areas in non-

brisk melanomas, termed ‘non-brisk in non-brisk’); in addition, areas showing ‘early regression’ (7),”

late regression’ (5) and ‘no regression’ (17) according to current morphological criteria (Botella-

Estrada et al., 2014) were sampled. Eight morphological criteria were used to define regression: (1)

Small or large areas with a decrease or an absence of melanoma cells in the dermal component of

the tumor (2) Fibrosis (3) Inflammatory infiltrate (4) Melanophages (5) Neovascularization (7) Epider-

mal flattening (8) Colloid bodies (apoptosis of keratinocytes/melanocytes). Early regression was

defined by small foci of melanoma disappearance (criterion1) and some fibrosis (criterion 2) but with

a very dense inflammatory infiltrate (criterion 3) with any combination of the other criteria. Late

regression was defined in presence of medium-to-large areas of melanoma disappearance substi-

tuted by very evident fibrosis (criterion 1 and 2) with any combination of the other criteria. After

processing, cutting and staining of the TMA blocks, a total of 60 cores were available for analysis.
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Multiplex-stripping immunofluorescence
The multiplex staining was performed according to the MILAN protocol (Cattoretti et al., 2001)

previously published (Bolognesi et al., 2017). It entails multiple rounds of indirect immunofluores-

cent staining, imaging and antibody removal via a detergent and a reducing agent. Unconjugated

Table 2. Multiplex antibody panel description.

Protein Concentration Species Clone Company RRID_AB:

CD4 1 mg/ml rabbit Mab EPR6855 Abcam N/A

HLA-DR 1 mg/ml mouse IgG2b SPM288 Abcam 1125217

TAP2 1 mg/ml mouse IgG1 TAP2.17 Abcam N/A

CD141 1 mg/ml rabbit Mab EPR4051 Abcam 2201805

MYC 1 mg/ml rabbit Mab EP121 Sigma Aldrich N/A

FOXP3 1 mg/ml mouse IgG1 236A/E7 Abcam 445284

MX1 1 mg/ml Rabbit Abcam 10678925

LAG3 1 mg/ml mouse IgG1 11E3 Abcam 776102

PD-L1 1 mg/ml rabbit Mab 28–8 Abcam/Epitomics 2687878

CD1a 1 mg/ml Rb mAb EP3622 Abcam/Epitomics 626957

CD123 1 mg/ml mouse IgG2b NCL-L-CD123 Leica-Microystem/Novocastra 10555271

Phospho-Stat1 1 mg/ml rabbit Mab 58D6 Cell Signaling 561284

CD20 1 mg/ml mouse IgG2a L26 Dako 782024

CD1a 1 mg/ml mouse IgG1 O10 Dako N/A

CD1c 1 mg/ml mouse IgG1 2D4 Dako 2623049

PRDM1 1 mg/ml rat 6D3 Dako 628168

S100AB 1 mg/ml rabbit Dako N/A

CD56 1 mg/ml mouse IgG1 123C3.D5 Neomarkers 627127

Ki-67 2 mg/ml mouse IgG2a UMAB107 Origene 2629145

Lysozyme 1 mg/ml rabbit Origene 1004766

PD-1 1 mg/ml mouse IgG2a UMAB197 Origene 2629198

TIM3 1 mg/ml goat R and D 355235

CXCL13 1 mg/ml mouse IgG1 53610 R and D 2086049

OX40 1 mg/ml mouse IgG1 Ber-ACT35 Santa Cruz 626897

IRF4 1 mg/ml goat M-17 Santa Cruz 2127145

cMAF 1 mg/ml rabbit M-153 Santa Cruz 638562

BCL6 1 mg/ml rabbit N3 SCBT 1158074

CD16 1 mg/ml mouse IgG2a 2H7 SCBT 563508

CD68 1 mg/ml mouse IgG3 PGM1 Thermo Fisher 10979558

p16 1 mg/ml mouse IgG2a JC8 SCBT 785018

MelanA 1 mg/ml rabbit Mab A19-P NovusBio 1987285

podoplanin 1 mg/ml rat IgG2a NZ-1.2 Sigma Aldrich 10920577

CD69 1 mg/ml rabbit Sigma Aldrich 2681157

CD3 1 mg/ml rabbit Sigma Aldrich 2335677

GBP1 1 mg/ml rat 4D10 Sigma Aldrich 828964

Langerin 1 mg/ml rabbit Sigma Aldrich 1078453

IRF8 1 mg/ml rabbit Sigma Aldrich 1851904

CD8 1 mg/ml rabbit Mab SP16 Thermo Fisher 627211

CD138 1 mg/ml mouse IgG1 MI-15 Thermo Fisher 10987019

Bosisio et al. eLife 2020;9:e53008. DOI: https://doi.org/10.7554/eLife.53008 17 of 28

Research article Cancer Biology

https://scicrunch.org/resolver/AB_1125217
https://scicrunch.org/resolver/AB_2201805
https://scicrunch.org/resolver/AB_445284
https://scicrunch.org/resolver/AB_10678925
https://scicrunch.org/resolver/AB_776102
https://scicrunch.org/resolver/AB_2687878
https://scicrunch.org/resolver/AB_626957
https://scicrunch.org/resolver/AB_10555271
https://scicrunch.org/resolver/AB_561284
https://scicrunch.org/resolver/AB_782024
https://scicrunch.org/resolver/AB_2623049
https://scicrunch.org/resolver/AB_628168
https://scicrunch.org/resolver/AB_627127
https://scicrunch.org/resolver/AB_2629145
https://scicrunch.org/resolver/AB_1004766
https://scicrunch.org/resolver/AB_2629198
https://scicrunch.org/resolver/AB_355235
https://scicrunch.org/resolver/AB_2086049
https://scicrunch.org/resolver/AB_626897
https://scicrunch.org/resolver/AB_2127145
https://scicrunch.org/resolver/AB_638562
https://scicrunch.org/resolver/AB_1158074
https://scicrunch.org/resolver/AB_563508
https://scicrunch.org/resolver/AB_10979558
https://scicrunch.org/resolver/AB_785018
https://scicrunch.org/resolver/AB_1987285
https://scicrunch.org/resolver/AB_10920577
https://scicrunch.org/resolver/AB_2681157
https://scicrunch.org/resolver/AB_2335677
https://scicrunch.org/resolver/AB_828964
https://scicrunch.org/resolver/AB_1078453
https://scicrunch.org/resolver/AB_1851904
https://scicrunch.org/resolver/AB_627211
https://scicrunch.org/resolver/AB_10987019
https://doi.org/10.7554/eLife.53008


primary antibodies (see Table 2) are used, without the need of prioritizing any specific stain, there is

no cell or tissue loss over >30 staining and stripping cycles (Manzoni M, et al. The adaptive and

innate immune cell landscape of uterine leiomyosarcomas. Scientific Report, submitted), stained sec-

tions can be stored for additional subsequent experiments. In our previous publication, it is shown

that the variation for repeated staining on different sections averages 3.1% (range 0–12.3%).

Repeated staining while multiplexing (10 rounds) is usually less than 15% with some exceptions (e.g

keratin 19). The range of variation after 30 cycles is even less than 15% and, most important, no new

pixels are added or lost. In addition, we have found that only about 2–3% of all antibodies used are

made unreactive just after a single stripping session. In conclusion, we believe that the MILAN proto-

col allows to safely detect most antigens surviving routine processing, even after 30 cycles, with vari-

ation in intensity within the variance of the technique itself.

Image pre-processing
Fiji/ImageJ (version 1.51 u) were used to pre-process the images (File format: from. ndpi to.tif 8/16

bit, grayscale). Registration was done through the Turboreg and MultiStackReg plugins, by aligning

the DAPI channels of different rounds of staining, saving the coordinates of the registration as Land-

marks and applying the landmarks of the transformation to the other channels. Registration was fol-

lowed by autofluorescence subtraction (Image process fi subtract), previously acquired in a

dedicated channel, for FITC, TRITc and Pacific Orange. A macro was written in Fiji/ImageJ and used

for the TMA segmentation into single images. Cell segmentation, mask creation, and single-cell

measurements were done with a custom pipeline using CellProfiler (version 2014-07-23T17:45:00

6c2d896). Quality Control (QC) over the Mean Fluorescence Intensity (MFI) values was performed

using feature and sample selection. In short, those cells that did not have expression in at least three

markers, and those markers that were not expressed in at least 1% of the samples were removed.

MFIs were further normalized to Z-scores as recommended in Caicedo JC, et al (Caicedo et al.,

2017). Z-scores were trimmed between �5 and +5 to avoid a strong influence of any possible out-

liers in the downstream analysis. The correlation between the different markers was calculated using

Pearson’s correlation coefficient.

Functional analysis of TILs
We selected two activation (CD69, OX40) and two exhaustion (TIM3, LAG3) markers after literature

review and preliminary testing of the antibody performance on control FFPE under the conditions of

the multiplex protocol. The expression levels of these markers were measured selectively on CD8+

lymphocytes using a first mask focused only on CD8+ cells. Principal Component Analysis (PCA) was

applied over the expression values to evaluate the functional structure of the data and to assign an

activation value in the [�1, 1] range to each cell

(Supplementary Information 1, Figure 2—figure

supplement 3, Animation 1, Animation 2).

Briefly, principal components (PCs) 2 and 3 were

used as the rotation matrix revealed that PC1

contained all the markers in the same direction

(same sign). The point of maximum activation

(Activation = 1), was defined where the pro-

jected value of CD69 (marker of activation) over

PCs 2 and 3 was at the maximum while the point

of maximum exhaustion (Activation = �1) where

the projected value of TIM3 (marker of exhaus-

tion) over PCs 2 and 3 was at the maximum (Fig-

ure 2). The gradient of transition was defined

between the previously defined points and the

centroid of the projected dataset. Pairwise

t-tests with pooled standard deviation (sd) were

used to find significant differences in the level of

activation of the images regarding multiple his-

topathologic parameters (brisk/non-brisk

Animation 1. 3D scatter plot with PC1, PC2 and PC3.

Animated in order to see the pyramidal shape of the

3D structure (rotating around the PC2 axis).

https://elifesciences.org/articles/53008#video1
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infiltrate, regression, number of lymphocytes,

ulceration, Breslow thickness, mitoses, subtype

of melanoma). For this purpose, the activation

level of each image was represented by the

mean of its cells while the intrinsic degree of het-

erogeneity was captured by the sd. Continuous

values of the histopathological parameters were

fitted using linear models instead. P-values were

adjusted for multiple comparisons using the

holm method. A cut-off of 0.05 was used as sig-

nificance threshold for the adjusted p-values.

Cores were further classified into: ‘Active’, ‘Tran-

sition’, and ‘Exhausted’ (from now on, indicating

the core status) using one-tailed t-tests compar-

ing the distribution of the activation values in a

specific image versus the background distribu-

tion (combination of all images). P-values were

adjusted using the False Discovery Rate (FDR)

method. A cut-off value of 0.001 over the

adjusted p-values was used as classification

threshold. In order to obtain patient-specific

read-outs, instead of combining scores from

multiple cores, we pooled together all the cells from all the cores for each patient, and repeated the

same that we did for the cores (to compare the distribution of cells for a specific patient against the

background distribution). This classified each patient into one of the three categories (‘Active’, ‘Tran-

sition’, and ‘Exhausted’) (Figure 2—figure supplement 4). In order to evaluate the robustness of

our patient classifications, we reclassified each patient 100 times using different sampling sizes (from

10 to 1000 cells, every 10). This resampling analysis confirmed that our classification of patients into

‘Active’/”Exhausted’ is very robust, requiring a relatively small number of cells to classify each

patient reliably. We evaluated for every patient the minimum number of cells required to obtain the

same significant classification in at least 95% of the simulations. The average value across all patients

is 180 cells for active cases, and 174 for exhausted cases. Some cases, (patients 2, 3, 8, 12, 15, 18,

and 21) required as little as 30 cells to obtain the same significant classification in at least 95% of the

simulations. Only three cases (7, 9, and 17) required a relatively large number of cells (>360,~2 times

the average) to obtain a significant classification in at least 95% of the simulations. We acknowledge

that some patients classified as ‘Transition’ could have been identified as ‘Active’/”Exhausted’ would

the number of identified Tcells had been bigger.For the survival analysis, the functional status of

each patient was represented by the average level of activation of its cells and dichotomized into

active (average level of activation >0) and exhausted (average level of activation < = 0). In order to

validate the survival results from Figure 2E in another dataset, we obtained clinical and bulk RNA

sequencing (RNA-seq) data from The Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-

SKCM) dataset using the TCGA2STAT R package (https://academic.oup.com/bioinformatics/article/

32/6/952/1744407). This dataset includes 460 patients from stages I-IV with 20501 genes annotated

(HGNC format). However, our melanoma dataset includes only primary melanomas: most of the

patients are stage I or II according to the 8th edition of the AJCC melanoma staging system. There

is only one stage IIIC due to in-transit metastases at diagnosis and one stage IV due to primary

metastases. Therefore, from the TCGA-SKCM dataset we included only those patients belonging to

stages I and II for further analysis. For the deconvolution of bulk RNA-seq data, we used Cibersort

(Chen et al., 2018). Cibersort offers a 22 immune cell gene signature (LM22) that includes CD8+ T

cells but does not separate them into ‘Active’ and ‘Exhausted’. Therefore, in order to build these

gene signatures, we first obtained the single-cell RNAseq data from Tirosh et al (https://science.sci-

encemag.org/content/352/6282/189/tab-figures-data) present in the Gene Expression Omnibus

(GEO) dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72056). This dataset

included 4645 cells from 19 tumors, each annotated with 23684 gene IDs (HGNC format). 1389

tumoral cells were removed leading to a dataset composed by 3256 cells with the following annota-

tion: Bcells (512), CAF (56), Endothelial (62), Macrophages (119), NK (51), Tcells (2040), and unknown

Animation 2. 3D scatter plot with PC1, PC2 and PC3.

Animated in order to see the pyramidal shape of the

3D structure (rotating around the PC1 axis).

https://elifesciences.org/articles/53008#video2
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(416). For every cell, we first calculated a distance value (Spearman correlation) to each gene signa-

ture from the ones included in the LM22 dataset from Cibersort. For each cell, the highest correla-

tion was selected as the predicted cell type. Cells with a maximum correlation coefficient smaller

than 0.25 (764) were removed from further analysis, leaving a total of 2492. Supplementary file 1

shows the contingency matrix between the cell label given by Tirosh and the predicted cell type

using Cibersort’s profiles. Based on these profiles, we identified 908 CD8+ T cells in Tirosh dataset.

We isolated those cells and ran our cell activation level analysis splitting them into 496 ‘Active’ (Acti-

vation >0) and 412 ‘Exhausted’ (Activation < = 0) CD8+ Tcells. In the proteomic level, our activation

score used the expression of CD69, OX40, LAG3, and TIM3 markers on CD8 positive (CD8+) cells.

The transcription factors encoding for these proteins found in the TCGA-SKCM dataset are summar-

ised in Supplementary file 2. Then we built a ‘T.cells.CD8.Active’ and ‘T.cells.CD8.Exhausted’ pro-

file using the average expression level of all the cells identified as Active/Exhausted using only the

six genes included in Supplementary file 2 obtaining the profiles specified in Supplementary file 3.

We ran Cibersort in the TCGA-SKCM dataset, using the expression profiles in Supplementary File X3

and obtained the relative number of Active and Exhausted CD8+ T cells in each patient

(Supplementary file 4). We labeled a patient as Active if the percentage of Active CD8+ T cells was

bigger or equal to the number of Exhausted CD8+ T cells and exhausted otherwise.

Predicted cell type B cells
Cancer Associated
Fibroblasts Macrophages Natural Killer T cells Unknown

B cells memory 262 0 0 0 0 36

B cells naive 117 0 0 0 0 8

Dendritic cells activated 0 0 0 0 0 2

Dendritic cells resting 0 0 1 0 0 1

Eosinophils 0 0 0 0 0 1

Macrophages M0 0 0 4 0 0 1

Macrophages M1 0 0 6 0 0 0

Macrophages M2 0 0 43 0 0 3

Mast cells activated 0 0 0 0 0 1

Mast cells resting 0 0 0 0 0 1

Monocytes 0 0 50 0 0 11

Neutrophils 0 0 0 0 0 3

NK cells activated 1 0 0 33 14 19

NK cells resting 1 0 0 15 2 5

Plasma cells 1 0 0 0 0 1

T cells CD4
memory activated

0 0 0 0 113 3

T cells CD4
memory resting

0 0 0 0 405 24

T cells CD4 naive 0 0 0 0 70 28

T cells CD8 0 0 0 2 869 37

T cells follicular helper 0 1 0 0 267 16

T cells gamma delta 0 0 0 0 2 1

T cells regulatory Tregs 0 0 0 0 11 0

Phenotypic identification
To evaluate the cell subpopulations, a second mask based on the DAPI nuclear staining contour

expanded by five pixels was created. A two-tier approach was followed for the identification of cell

subpopulations: phenotypic and functional. The phenotypic identification was conducted by apply-

ing three different clustering methods: PhenoGraph, ClusterX, and K-means, over the phenotypic

markers: CD3, CD20, CD4, HLA-DR, Bcl6, CD16, CD68, CD56, CD141, CD1a, CD1c, Blimp1,
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Langerin, Lysozyme, Podoplanin, FOXP3, S100AB, IRF4, IRF8, CD1a, CXCL13, CD8, CD138, CD123,

PD-1, and MelanA. PhenoGraph and ClusterX were implemented using the cytofkit package from R

(Chen et al., 2016). Clusters were represented by a vector containing the mean of each marker and

were used to further associate them to a cell subpopulation using prior knowledge. For a phenotype

to be assigned to a cell, at least two clustering methods should agree on their predicted phenotype.

Prior to functional identification, PCA was repeated over the Tcy cells (CD8+) using CD69, OX40,

LAG3, and TIM3 markers in order to confirm that with the new mask, the same dataset with the

same structure as with the CD8+ mask could be retrieved (Figure 2—figure supplement 5). The

functional identification was conducted by applying PhenoGraph over the functional markers: CD69,

Ki-67, TAP2, GBP1, MYC, p16, MX1, OX40, c-Maf, PD-L1, LAG3, TIM3, and Phospho-Stat1 (with the

exception of Tcy cells for which we used a personalized panel consisting of: CD8, CD69, OX40,

LAG3, TIM3, PD-1, and Ki-67). Clusters were represented, associated to cell subpopulations, and

evaluated for stability as described for the phenotypic identification. Significant differences in the

cellular composition of the cores based on activation status were identified using Kruskal-Wallis rank

sum test. The same approach was repeated for the brisk infiltrate histopathologic parameter using

Mann-Whitney test.

Neighborhood analysis
An unbiased quantitative analysis of cell-cell interactions was performed using an adaptation of the

algorithm described in Schapiro et al. (2017) for neighbourhood analysis to systematically identify

social networks of cells and to better understand the tissue microenvironment. Our adaptation also

uses a kernel-based approach (radius = 30 px) to define the neighbourhood of a cell and a permuta-

tion test (N = 1000) to compare the number of neighbouring cells of each phenotype in a given

image to the randomized case. This allows the assignment of a significance value to a cell-cell inter-

action representative of the spatial organization of the cells. Significance values were further classi-

fied into avoidance (�1), non-significant (0), and proximity (1) using a significance threshold of 0.001

(more significant that all the random cases). Interactions across images were integrated according to

Equation 1:

Pi;j ¼

PM
k¼1

ci;j;k �
ffiffiffiffiffiffiffiffiffi

Ni;j;k

p� �

PM
k¼1

ffiffiffiffiffiffiffiffiffi

Ni;j;k

p� � (1)

where Ci,j,k is the significance value (�1, 0, or 1) of the interaction between cell types i and j for

image k, and Ni,j,k is the geometric average of the number of cells of type i and j for image k. Cell-

cell interactions were considered strong if they were significant in at least 75% of the N-adjusted

cases (abs(P)>0.75), moderate if 50%, (0.5 < abs(P)<=0.75), weak if 25% (0.25 < abs(P)<=0.5), and

non-significant otherwise (abs(P)<=0.25). A comparative analysis of the above described method

was performed for the different core statuses as well as for the different brisk infiltrate cases

(Figure 5).

Even though neighborhood analysis allows evaluation of cell-cell interactions, the mathematical

model applied is limited in cases where there are dominant cell types that grow in nests, with cells

packed next to each other. Therefore, for melanoma cells, we evaluated the closest neighbors by

counting the number of cells of each subpopulation (apart from melanoma cells) that were in their

neighborhood and divided the amount by the geometric average of the number of melanoma cells

and the number of cells of the specific population across all the cores in which the specific popula-

tion appears. This analysis was repeated for the different brisk and activation cases.

Laser microdissection
18 fresh frozen melanoma metastases with different types of TILs patterns (nine brisk, seven non

brisk, 1 absent and one tumoral melanosis) were collected in the Department of Pathology of the

University Hospitals Leuven (KU Leuven), Belgium. 10 micrometre-thick sections were cut from each

fresh frozen block and put on a film slide (Zeiss, Oberkochen, Germany). Sections were stained with

crystal violet. Areas with dense TILs infiltrate were microdissected with the Leica DM6000 B laser

microdissection device (Leica, Wetzlar, Germany). A calculation was made in order to microdissect

the same surface in all the samples in order to minimize differences between the samples (around

10,000 lymphocytes/sample).
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qPCR of laser microdissected samples
RNA extraction was done with RNeasy Plus Micro Kit (Qiagen) according to the protocol. cDNA ret-

rotranscription followed by an amplification step was done with Ovation Pico SL WTA System V2

(Nugen) according to protocol. Primers for Interferon gamma (INFg, forward ‘TGTTACTGCCAG-

GACCCA’ and reverse ‘TTCTGTCACTCTCCTCTTTCCA’), TIM3 (forward ‘CTACTACTTACAAGGTCC

TCAGAA’ and reverse ‘TCCTGAGCACCACGTTG’), LAG3 (forward ‘CACCTCCTGCTGTTTCTCA’

and reverse ‘TTGGTCGCCACTGTCTTC’), CD40-L (forward ‘GAAGGTTGGACAAGATAGAAGATG’

and reverse ‘GGATAAGGATCTTTCTCCTGTGTT’), CD45 (forward ‘GCTACTGGAAACCTGAAGTGA’

and reverse ‘CACAGATTTCCTGGTCTCCAT’), Beta2microglobulin (forward ‘ACAGCCCAAGATAG

TTAAGTG’ and reverse ‘ATCTTCAAACCTCCATGATGC’), HPRT (forward ‘ATAAGCCAGACTTTG

TTGGA’ and reverse ‘CTCAACTTGAACTCTCATCTTAGG’) were designed with Perl Primer and

tested in our laboratory. 96-wells plates were loaded with Fast SYBR Green Master Mix, the primers

and the samples in the recommended proportions, and analysed with the 7900 HT Fast Real-Time

PCR system (Applied Biosystems). The log fold change (logFC) of the expression values toward the

expression value of CD45 were calculated. If the log(IFNg/CD45) was positive, the sample was classi-

fied as positive. On the other hand, exhaustion was defined by expression of LAG3 and/or TIM3

with lack of IFNg and CD40L expression.

Shotgun proteomics of laser microdissected samples
The materials used for the shotgun proteomics analysis were: Trifluoroacetic acid, MS grade porcine

trypsin, DTT (dithiothreitol), IAA (Iodoacetamide), ABC (Ammonium Bicarbonate), HPLC grade

water, acetonitrile (ACN), were from Sigma-Aldrich (Sigma-Aldrich Chemie GmbH, Buchs, Switzer-

land). All solutions for Mass Spectrometry (MS) analysis were prepared using HPLC-grade. LCM col-

lected material corresponding to about 104 cells for each sample group was re-suspended in 90 ml

of bidistilled water and immediately stored at �80˚C. For the bottom-up MS analysis, all the samples

were processed and trypsinized. Briefly, thawed cells were submitted to a second lysis adding 60 ml

of 0.25% w/v RapiGest surfactant (RG, Waters Corporation) in 125 mM ammonium bicarbonate

(ABC) and sonicated for 10 min. Samples were then centrifuged at 14 000 � g for 10 min. About

140 ml of supernatants were collected, transferred in a new tube and quantified using bicinchoninic

acid assay (Pierce -Thermo Fisher Scientific). After 5 min denaturation (95˚C), proteins were reduced

with 50 mM DTT in 50 mM ABC at room temperature and alkylated with 100 mM IAA in 50 mM

ABC (30 min incubation in dark). Digestion of samples was performed overnight at 37˚C using 2 mg

of MS grade trypsin. RG surfactant were removed using an acid precipitation with TFA at a final con-

centration of 0.5% v/v. Samples were then spun down for 10 min at 14,000 x g and supernatants col-

lected for MS analysis. Peptide mixtures were desalted and concentrated using Ziptip m-C8 pipette

tips (Millipore Corp, Bedford, MA). An equal volume of eluted digests was injected at least three

times for each sample into Ultimate 3000 RSLCnano (ThermoScientific, Sunnyvale, CA) coupled

online with Impact HD UHR-QqToF (Bruker Daltonics, Germany). In details, samples were concen-

trated onto a pre-column (Dionex, Acclaim PepMap 100 C18 cartridge, 300 mm) and then separated

at 40˚C with a flow rate of 300 nL/min through a 50 cm nano-column (Dionex, ID 0.075 mm, Acclaim

PepMap100, C18). A multi-step gradient of 4 hr ranging from 4% to 66% of 0.1% formic acid in 80%

ACN in 200 min was applied’ (Chinello et al., 2019). NanoBoosterCaptiveSpray ESI source (Bruker

Daltonics) was directly connected to column out. Mass spectrometer was operated in data-depen-

dent acquisition mode, using CID fragmentation assisted by N2 as collision gas setting acquisition

parameters as already reported (Liu et al., 2015). Mass accuracy was assessed using a specific lock

mass (1221.9906 m/z) and a calibration segment (10 mM sodium formate cluster solution) for each

single run. Raw data from nLC ESI-MS/MS were elaborated through DataAnalysis v.4.1 Sp4 (Bruker

Daltonics, Germany) and converted into peaklists. Resulting files were interrogated for protein iden-

tification through in-house Mascot search engine (version: 2.4.1), as described (Liu et al., 2015).

Identity was accepted for proteins recognized by at least one unique and significant (p-value<0.05)

peptide.

Pathways analysis
Gene-set enrichment analysis was performed with DAVID 6.8 (Huang et al., 2009; Dennis et al.,

2003). Pathways were visualized and partially analysed with STRING v10 (Szklarczyk et al., 2015).
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Statistical analysis
Supplementary file 5 resumes the statistical tests chosen for the analysis with the justification for

their choice.
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Appendix 1

Supplementary data
The followed pipeline is detailed below:

PC2 and PC3 are mapped into polar coordinates.

�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PC2ð Þ2þ PC1ð Þ2
q

’¼ atan2 PC3;PC2ð Þ where PC2 and PC3 are calculated from the rotation matrix

PC2 = 0.0444 � CD69 + 0.7048 � OX40 + 0.4764 � LAG3 – 0.5236 � TIM3

PC3 = �0.7505 � CD69 + 0.3656 � OX40 + 0.1196 � LAG3 + 0.5372 � TIM3

The point of maximum activation (Activation = 1) was defined as the point where the

projected value of CD69 in PCs 2 and 3 reaches a maximum (Figure 2—figure supplement 3,

point A). The angle corresponding to the multi-valued inverse tangent of the rotation vectors

of PC3 and PC2 (atan2(PC3, PC2)) (’0) is added to ’.

’
0 ¼ ’þ’0

The point of maximum exhaustion (Activation = �1) was defined as the point where the

projected value of TIM3 in PCs 2 and 3 reaches a maximum (Figure 2—figure supplement 3,

point B).

The line of transition (Activation = 0) was defined as the bisector between the projected

vectors of LAG3 and OX40 over PCs 2 and 3 (Supplementary Data Figure 6, Transition Line).

The four resulting areas (Figure 2—figure supplement 1 and to 4) do not cover the same

range of ’. Each area was scaled so that it covers 90 degrees (p/2 rads).

Finally, the value of activation of each cell was calculated as:

Activation = r � cos(f’’) where r is the radius and ’’’ the scaled angle.
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